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1 Introduction 

Noncommutative geometry [1) has awakened increasing interest and has started to 
play a very significant role in mathematical physics for last few years. The attractive 
field of investigations here is the theory of quantum groups [2)-[6) and especially several 
differential geometric aspects of this theory such as differential calculus on the quantum 
groups. A bicovariaut version of this calculus has been formulated in the general form 
by S.L.Woronowicz (7). Then, an intimate relation of the Woronowicz's bicovariant 
calculus with R-matrix formalism for the quantum groups [6) has been established 
in Refs. [8,9). Quite recently, a systematic realization of the bicovariant differential 
calculus in the framework of the R-matrix approach has been achieved in [10] .. These 
results give us the promising possibility to use the quantum groups as generalizations 
of the classical symmetry groups in various physical models. 

In this paper we realize the ideas of Refs. [7]-[10] and derive explicit formulas for 
GLq(N) (SLg(N))-bicovariant differential calculus by means of considering quantum 
algebras which are covariant under the coaction of Fun( G L9 (N))1 • The starting point 
of our considerations is the observation that right(left )-invariant vector fields Ej and 
differential 1-forms !l} 2 on GLq(N} can be treated as elements of the adjoint GLq{N)
comodules or, in other words, they realize the adjoint representations of GLq(N) in the 
sense of Ref.[6). Then, we consider the general associative algebras with unity whose 
generating elements A! (the unified notation for Ej or nD are constrained by certain 
quadratic polynomial relations. We require these relations to be covariant under the 
transformations of A} as the adjoint GLq{N)-comodule (Tj E GLq(N)) 

(1.1) 

In the last part of (1.1} the short notation is introduced to be used below. Besides, 
we demand that the quadratic polynomial relations for A} allow us to make the lexi
cographic ordering for any monomial of the type A~~ A~ • • • A~:. Later on we refer to 
the algebras with such features as the GLq(N)-covariant quantum algebras. 

The quadratic polynomial relations for G Lq( N)-covariant quantum algebras can be 
written in the following general form 

(1.2) 

where the index a enumerates different relations and the coefficients (alf!) , (al::') and 
C( a} are functions of the deformation parameter q. On the condition that Eqs.{1.2} are 
covariant under transformations (1.1) we obtain that parameters (al{i) are q-analogs of 
the Clebsch-Gordon coefficients coupling two adjoint GLq(N) representations into the 

1Further we use the short notation GL9(N) instead of Fun(GL9(N)) . 
• 2Here the elements EJ or Oj (i,j E 1, ..• ,N) form the basis in the space of right(left)-invariant 

vector fields or 1-forms, respectively. 
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' irreducible representations (irreps). Parameters (al::'} can be considered as harmonics 
which are not equal to zero only if (al{!) couple A® _A into the adjoint GLg{N)
comodule again, while C(a) ,f= 0 only if combination (ali!}A~Af is expressed in t.erms 
of Casimir operators. Here we use the idea that arbitrary monomials A!! A~ • • • A!: 
(transformed in accordance with (1.1)) can be considered as components of GLq(N)
tensor operators. Some papers have already appeared in which tensor operators for 
quantum groups are discussed in another context [11]. 

We find that, up to some arbitrariness discussed in Sect.3, there are only two kinds 
of GLq(N)-covariant quantum algebras. For the first one the left-hand side of Eq.(1.2) 
is the q-deformed commutator while for the second one it has the form of q-deformed 
anticommutator. It is natural to call the algebras of the first and second kind as 
"bosonic" and "fermionic" GL4 (N)-covariant quantum algebras and relate them with 
the algebras of right(left)-invariant vector fields and 1-forms on GLq(N), respectively. 
As we shall see, these conjectures are justified by some explicit construction for the 
differential calculus on GLq(N) and are in agreement with the results obtained in Refs. 
[7]-[10]. 

2 R-matrix formulation of GLq(N) and GLq(N)- co
variant commutator and anticommutator 

This section is a review of some facts about quantum groups needed in the consideration 
below. We follow the approach by Faddeev, Reshetikhin and Takhtajan [6]. The 
generators of the quantum group G Lq( N) can be defined as elements of N by N matrix 
Tj (T E Mat( N, 0)) with commutation relations 

RuT1T2 = T2T1R12 . (2.1) 

Here and henceforth we use the notation of Ref.[6). The R-matrix for GLq(N) looks 
like [3) 

R12 = R!!~ = 6):~ (1 + (q- 1)~•;•) +·(q - q-1
)~ 6)! O{i1 - i 2) {2.2) 

where O(i- j) = { l, ~ ~ ~ . The associativity conditions for the relations (2.1) yield o, i - } . 

the Yang-Baxter equation for the R-matrix 

R12R1aR2a = R23R1aR12 {=::} R12R:il R:il = R:il R:il R12 . {2.3) 

Comparing (2.1) and (2.3) we see that possible matrix realizations of the operators Tj 
are 

i I, .,. i I, -1 lci 
(T;)1 = ~1 , (T;)1 = (R )1; . (2.4) 
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The R-matrix (2.2) obeys the Hecke relation which can be rewritten as 

Ru= (q- q-1)P12 + R11 . (2.5) 

where (P12)}!i = ~6)! is the permutation matrix. According to Eq. (2.5) one can 
define two projectors 

Pi'2 = __!2!_
1 

(R12 ± r/1 Pu), q+q-
(2.6) 

which are quantum analogs of the symmetrizer ½(I+ Pu) and antisymmetrizer ½(I -
P12). Here (/)~!~ = a;:~ is the identity matrix. As it has been shown in Refs.[12], 
if q is not a root of unity, the representation theory for GLq(N) can be constructed 
in the same way as for GL(N). Indeed, with the help of the projectors (2.6) one can 
construct q-analogs of the Young operators of symmetrization [3,13] and thus realize 
the program of extracting irreducible G L4 ( N)- and S Lq( N)-comodules from the direct 
product of the fundamental comodules. 

Let us demonstrate this by decomposing the direct product of two adjoint comod
ules. The method coincides in principle with the well known prescription for decom
posing the direct product of two mesonic representations considered in the framework 
of the SU(N)-quark models of strong interactions (see e.g. remarkable reviews [14,151). 
First, we note that the tensor A~ has N 2 components and it is possible to decompose 
it into the scalar Trq{A) and the q-traceless tensor Aj with (N2 - 1) independent 
components 

N 

A}= A}- o;Trq(A)/(:Eq2
;). 

i=l 

Here we have introduced the q-deformed trace [6,9,10,16] 

N . 
Tr4A = Tr(DA) = }:q2iA~ 

i=l 

satisfying the following invariance property (Tj E GLq(N)) 

Trq(A) - Tr4(T AT-1
) = Tr4A 

(2.7) 

(2.8) 

(2.9) 

which is true for any matrix representation of Tj, in particular, for (2.4). Using the 
construction of the q-trace one can reproduce the GLq(N)-invariants as 

On = Tr4 (An) 1 n~ 1. (2.10) 

Now we·introduce the basic covariant bilinear combinations P12A1R21A2 of tensors Aj 
with the transformation rule 

P12A1R21A2 - T2T1(P12A1R21A2)T1-
1r2-

1 • (2.11) 
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Using projectors (2.6) it is possible to decompose tensor (2.11) into the four indepen
dently transformed tensors 

x:± = P21(P12A1R21A2)P21 I x:-'f = P21(P12A1R21A2)PJ . (2.12) 

The dimensions of these GLq(N)-comodules are N•(~+1)2 (for x:+), N•(~-t)• (for 

x;-) and N'(~•-t) (for X{f). Their undeformed (q=l) analogs are nothing but 

x±± = ¼(P12 ± I)[A1,A2J+, x±'f = ¼<P12 ± J)(A1,A2)-. (2.13) 

As it is seen from (2.13), x±± are expressed in terms of the anticommutators, while 
X±'f yield the combinations of the commutators. On the other hand, one can express 
the commutator and anticommutator as linear combinations of X±'f and x±± as given 

below 
1 1 

x+- - x-+ = 2(A1, A2l- , x++ - x-- = 2(A1, A2l+ . (2.14) 

It is worth noting here that linear combinations of x++ with x-- or x+- with x-+ 
are the only two possibilities to obtain for any pair of generators A}, Af the bilinear 
expressions of the type (Aj, Af]a = A1Af - aAf A1 (a # 0) which can be used as 
the left-hand side of (1.2) (q = 1). Only such quadratic polynomial relations allow 
us to reorder any monomial A}··· At in an appropriate way ( see Sect.I). Indeed, 
combining, for example, x++ with x+- or x-- with x-+ we are unable to commute 
A~ and A7 when j = l, while the combinations of x++ and x-+ or x-- and x+- are 
unsatisfactory for reordering the pairs A1, Ar when k = i. So, it seems reasonable to 
use only x:+ together with x;- or x:- together with x;+ in defining relations (1.2) 
in order to solve the ordering problem. For these arguments it is natural to define the 
q-deformed covariant commutator and anticommutator, respectively, as 

(q + q-1 )(xt· - x;+) = R12A1R21A2 - A2R12A1R21 , 

(q + q-1)(x:+ - x;-) = R12A1R21A2 + A2R12A1R1i. 

(2.15) 

(2.16) 

Let us note that the tensors (2.12) do not realize irreps of GLq(N). Indeed, con
tracting them over the first or second spaces by means of q-traces (2.7) we obtain 
tensors transforming as in (1.1). As we have seen above, such tensors are reduced to 
the I-dimensional and ( N 2 - 1 )-dimensional irreps. Taking into account these remarks 
we obtain finally the following decomposition ( cf. with (14,151) 

x++. N 2(N + 1)2 = 1 EB (N2 - 1·) EB N2(N + 3)(N - 1) I (2.17) q . 
4 4 

x--. N 2(N -1)2 = l (N2 _ l) N
2
(N + l)(N - 3) (2.18) q . 

4 
EB EB 

4 
, 

N 2(N2 - 1) (N2 - l)(N2 
- 4) x±'f. = (N2 -l)EB . (2.19) q . 4 4 

4 

.. 

,i) 

·h, 

ti,, 

We stress here that (N2 - 1)- and N'(N+!)(N-3) dimensional irreps appear in (2.18) 

only for N 2:: 3 and N 2:: 4, respectively, while (N•-t~N'-4Ldimensional irrep appears 
in (2.19) only for N 2:: 3. Using the decomposition (2.17)-(2.19) one can deduce that 
the direct product of two q-traceless tensors can be decomposed into irreps of the 
following dimensions (here N 2:: 4): 

(N2 - 1)®2 = (1) .EB 2. [N2 __ 1] EB [(N2 - l~(N2 - 4)] EB 

[(N
2 

- 1~(N
2 

- 4>]* EB [ N
2
(N + :)(N - 1)] EB [ N

2
(N + !)(N - 3)] .(2.20) 

In terms of the Young tableaux this formula looks like 

(
~ 

02

= • EB 2~ EB ~ EB ,: ; EB ~ EB J:. ~J ~ l;i rn 
N-1 N-1 N-2 

(2.21) 

The dimensions of the irreps related to the Young tableaux listed in (2.21) are given 
by the Wey! formula (13). Naturally, they coincide with that expressed in Eq.(2.20). 

As it ;..,.ill be seen in the next Section, this information is enough to conclude 
that "fermionic" (with q-deformed anticommutators (2.16) in the l.h.s. of (1.2)) and 
"bosonic" (with q-deformed commutators· (2.15) in the l.h.s. of (1.2)) quantum al
gebras are defined uniquely up to some inessential rescaling factors. Moreover, we 
show that up to some arbitrariness disscussed below there are no other well defined 
GLq(N)-covariant algebras with quadratic polynomial structure relations (1.2). 

3 G.Cq(N)-covariant quantum algebras 

In this Section, using the R-matrix approach [6) we discuss the Jordan-Schwinger (J-S) 
construction for covariant quantum algebras. This is the most simple way to repro
duce explicitly quadratic polynomial relations (1.2) for the generators of these algebras. 
We start with the formulation of the GLq(N)-covariant differentiafcalculus [18) on a 
bosonic (fermionic) quantum hyperplane. Commutation relations for hyperplane coor
dinates and derivatives are identical with the commutation relations for the GLq(N)
covariant q-(super)oscillators [17)-[20). It is known (see e.g. [19,21) and Refs. therein) 
that the generators of the quantum algebras Uq(gl(N)) can be constructed as bilinear 
combinations of the bosonic or fermionic q-oscillators (J-S construction). In this Sec
tion, following the idea of J-S construction we realize the covariant quantum algebra 
generators A~ as bilinears of the GLg(N)-covariant q-oscillators. 

It is known (4,6) that the bosonic (fermionic) hyperplanes with coordinates {zi} = 
lz) (i=l,2, ... ,N) can be defined by using the projectors (2.6) 

(R12 - cP12)lz)tjz)z = 0, (3.1) 

s 



Here c = q and c = -q-1.for bosonic and form.ionic coordinates, respectively. Relations 
(3.1) are covariant under the left rotations of vectors l:i:) by the matrix Tj E GLq(N) 
( l:i:) is the space of the fundamental representation of GLq(N)): 

:i:i -+ T!:i:; . 
J 0 (3.2) 

One can extend the algebra (3.1) introducing the dual vector (81 = 8; with the trans
formation rule 

8i-+ 8;(T-1 ){ , 

Then the covariant associative extension of the algebra (3.1) is 

R12l:i:)il:i:)2 = cl:i:)21:i:)i, (8h(8l2R12 = c(8l2(8h , 

l:i:)i(8l2 = vh'12 + c(8l2R12l:i:)i. 

(3.3) 

(3.4) 

(3.5) 

Here 6'12 = 6'}~ is a unit matrix and v are arbitrary rescaling factors (v = b for bosons 
and v = f for fermions). Note that making the replacements R12 -+ R2l, c -+ c-1 in 
Eqs.(3.4),(3.5) we obtain another (and the last) possible covariant extension of (3.1). 
Below, we concentrate only on the consideration of the algebra (3.4),(3.5) (the other 
possibility can be treated analogously). 

In the bosonic case (c = q) the formulas (3.4) and (3.5) define the covariant q

oscillators [17] or covariant differential calculus on the quantum hyper-plane [18]. This 
algebra can be interpreted also as differential calculus on the paragrassmann hyperplane 
[22] or as finite dimensional Zamolodchikov-Faddeev algebra [20,23]. In the fermionic 
case (c = -q-1) the algebra (3.4) and (3;5) defines covariant fermionic q-oscillators or 
form.ionic part of the covariant super q-oscillators [19]. 

Now, we recall that the coordinates {:i:i} and the derivatives { 8;} (as vector spaces) 
are tensors realizing the fundamental and contragradient representations of GLq(N) 
(see (3.2) and (3.3)). The higher order tensors can~be constructed as direct products 
of the vectors l:i:) and (81. The simplest tensor of that kind is 

Ai_ ~ia. 
j - ~ J. (3.6) 

The transformation rule for this tensor coincides with (1.1) and, thus, A realizes the 
adjoint representation of GLq(N) both for bosonic and fermionic cases. Using formulas 
(3.5) and (3.6) we obtain equation 

cA1R21A2 + vA1P12 = l:i:hl:i:)2(8h(82I. (3.7) 

Then, applying (3.4) to the right-hand side of (3. 7) we deduce the following two rela
tions for the operators Ai; 

(R12 - cP12)(cA1R21A2 + vA1P12) = 0, 

(cA2R12A1 + vA2P12)(R21 - cP21) = 0. 
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(3.8) 

(3.9) 

··:1 

J 

·\ 
IJ 
ii 
JJ 

Difference between (3.8) and (3.9) gives the q-deformed commutation relations (cf. 
with (2.15)) 

V 
R12A1R21A2 - A2R12A1R21 = µ(P12A1R21 - R12A1P12) , µ = - . 

C 
(3.10) 

By construction, these relations are covariant under the adjoint G Lq(N)-coaction {1.1). 
Note that the algebra (3.10) is the same for bosonic and fermionic q-oscilla.tors (up to 
some trivial rescaling of the generators An. In the classical limit q = 1, Eqs.(3.10) 
coinside with the usual commutation relations for the gl(N)-algebra.. We call the 
algebra with the structure relations (3.10) ai, "bosonic" GLq(N)-cova.riant quantum 
algebra. One can check that this algebra is associative. The invariant central elements 
(Casimir operators) for the algebra. (3.10) are represented in the form (2.10). The 
identities [Cn, A}] = 0 can be obtained by using the Hecke relation (2.5), the property 
of the q-trace (2.9) and the fact that the matrix Tr2(D2Pi2 R12) is proportional to the 
unit matrix in the first space. 

The q-deformed commutation relations (3.10) can be rewritten in the form 

R12A.1R21A2 - A.2R12.A1R21 .= 1-(P12A1R21 - R12A1Pi2), [H, A}]= 0, (3.11) 

(q- q-1)2 
" = µ + ( qN _ q-N) H . 

Here A} are the q-traceless generators (see (2.7)) and H = q-N-1Trq(A). Thus, the 
algebra (3.10) is the direct sum of the trivial algebra generated by the central element 
Hand the algebra generated by the operators A}. As we will see below, the operators 
A} and A} can be interpreted as invariant vector fields on the SLq(N) and GLg{N), 
respectively. Finally, we rewrite the relations (3.10) in the form 

R12Yi.R21Y; - Y;R12Yi.R21 = 0 , (3.12) 

where A} = (q:t .. ,)o} + Yj . Eq.(3.12) is well known as reflection equation [23] or as 
relations for the operator Y = (L-)-1 £+, where the elements of triangular matrices 
£± are defined by the generators of the Borel subalgebras of Uq(gl(N)) (see [6]). In 
Refs. [7]-[10] the operator Y is interpreted as differential operators (vector fields) of 
the bicovariant differential calculus on GLq(N). The algebra (3.1~) is known also as 
the braided algebra. [24]. We present here also the commutation relations of Y with 
(81 and 1:i:) 

l:i:)iY; = R21Y;R12l:i:h ' Y;(81i = (8hR21YiR12 . 

We .have considered only part of the relations (3.8) and (3.9), namely the relations 
(3.10). Now we proceed to the discussion of the rest of Eqs. (3.8), (3.9). First of all 
we rewrite them in the equivalent form 

(Rn - cP12)(cA1R21A2 + vA1P12)(R12 - cP12) = O, 

(R12 =f c±1 P12)(cA1R21A2 + vA1Pi2)(R12 ± c'f1 P12) = 0. 
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The pair of Eqs. (3.14) are equivalent to the commutation relations (3.10) for the 
"bosonic" GLq(N)-covariant quantum algebra. Indeed, acting on (3.10) by the pro
jectors (R12 ± c'f1 Pi2 ) from the left we obtain (3.14). On the other hand, difference 
between two of Eqs.(3.14) gives (3.10). The remaining relation (3.13) takes the different 
forms for the bosonic and fermionic oscillators. For the bosonic case we obtain 

(R12 - qP12)(A1R21A2 + bq-1 A1Pi2)(R12 - qPi2) = O , 

while for the fermionic case we have 

(R12 + q-1 P12)(A1R21A2 - fqA1P12)(R12 + q-1 Pi2) = 0 . 

(3.15) 

(3.16) 

The bilinear parts of Eqs.(3.15),(3.16) coinside with x;-P12 and x:+ P12 , respectively 
(see (2.12)) and, hence, combining these equations together we shall obtain GL9(N)
covariant relations with the q-deformed anticommutator (2.16). Indeed, subtracting 
(3.15) from (3.16) we deduce 

R12A1R21A2 + A2R12A1R1l = 

P12 (q-1bPj2 + qf P1~) (A1R21 + R!i A2) = v(R12A1R21 + A2) (3.17) 

We interpret (3.17) as structure relations for "fermionic" GLg(N)-covariant algebra 
and we are obliged to put b = f = v in order to have the associative algebra. The 
contraction b = 0, f = 0 of the algebra (3.17) leads to the relations 

R12A1R21A2 + A2R12A~R1,1 = O , (3.18) 

which, as we will see below, are the q-deformed anticommutation relations for the 
Cartan's 1-forms on the GLq(N). Note that the relations (3.17) can be rewritten in 
the form 

v2 
R,2W1R21W2 + W2R12W1R1,1 = 2 (R12R21 + 1), (3.19) 

where Aj = ic5} + Wj. 
The logic of J-S construction allows us in principle to change the q-deformed com

mutation relations (3.10) by mixing them with the additional relations (3.13). The 
existense of these additional relations has been pointed out in Ref.[21] where J-S con
struction has been considered in the noncovariant way. But it is natural to demand the 
covariance of q-commutation relations under the transformation (1.1 ). This remark and 
the requirements discussed in the previous Sections impose very strong restrictions on 
the possible form of q-commutation relations. It seems that the only reasonable choices 
here are those of (3.10) and (3.17). However, there is remaining abitrariness which now 
we have to discuss. , 

Covariant relations (3.10) and (3.17) define the covariant "bosonic" and "fermionic" 
algebras which are "good" in the sense that they allow to reorder any monomial 
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A} ... Af. But these relations are not the only possible covariant relations of the kind 
{1.2). It is clear that (3.10) and (3.17) are linear combinations of the "irreducible" sets 
of covariant relations (ISCR) which correspond to the irreps presented in (2.17)-(2.21). 
Note that among these ISCR there are several independent "adjoint" ISCR, namely a 
couple of trivial "adjoint" ISCR ([A.,Trg{.A)],1:) and a couple, for N ~ 3 (or one, for 
N = 2), of nontrivial ones (see (2.21)). Some linear combinations of these "adjoint" 
ISCR are included in both the "bosonic" and "fermionic" covariant algebras. Their 
presence is evident due to the existence of linear terms in the formulas (3.10) and 
(3.17). Leaving aside here the problem of the associativity one can use the different 
combinations of the "adjoint" ISCR instead of original ones in the covariant relations 
(3.10} and (3.17). The only restriction is that these combinations must contain both 
the trivial and nontrivial "adjoint" ISCR (to solve the problem of ordering). However, 
it is rather difficult to write the new algebras in the compact form. So, the covariant 
algebras (3.10) and (3.17) look preferable. 

To conclude this Section, we illustrate our results by considering, in detail, the 
special case of N = 2. For this we introduce the new notation 

Ai. = ( A{ A} ) = ( ~::~,• A+ ) 
' A2 A2 A H-q-•Ao 

1 2 - g+g-1 
(3.20) 

where H = q-3Tr9 A = (q-1A{ + qA~) and Ao= A~ - A~. 
The GLg(2)-covariant "bosonic" quantum algebra (3.10) is rewritten as (we change 

the notation A to E bearing in mind the interpretation of the matrix elements' (3.20) 
as invariant vector fields on GLg{2)) 

- q2-1 2 K 
(3.21) [E_, E+J = -

2
-

1 
E0 + -Eo, 

q + q 

[E±, Eo)(g'f',g±I) - q'f1 E±Eo - q±l EoE± = ±(q + q-1 )~E± , 
q 

(3.22) 

[H,E±) = [H,Eo] = 0, (3.23) 

where K is defined in (3.11) for N = 2. Performing the transfonp.ations (1.1) for the 
generators (3.20) we may directly, convince ourselves that the relations (3.21)-(3.22) 
define the covariant algebra. The central element H = q-3Tr9 A of the algebra (3.21)· 
(3.23) can b·e removed by the following rescaling E±,o = (1 + q-2)KE±,o and finally we 
obtain 

-1 • • ' -1 • 2 • • • · • 
(q+q )[E_,E+J-(q-q )Eo =Eo , [E±,Eo)(g'f•,g•U)=±E±, (3.24) 

These relations really correspond to the adjoint irrep ( [I]) of SLg(2) C GLq(2). 
As a covariant object,_ the algebras (3.21)-(3.23) and (3.24) have been considered_ in 
[16]. Note that up to some trivial rescalings the commutation relations (3.24) coincide 
with those for Witten's deformation of the algebra sl(2) (see Eqs.(5.2) of [251). 
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The defining relations for the GLq(2)-covariant "fermionic" quantum algebra looks 
like (we change the notation A} to nj bearing in mind the interpretation of this matrix 
elements as Cartan's 1-forms on GLq(2)): 

I I I I I { q2n+n- + q-2n_n+ - no2 = o , 
......... ___.___..___. : q'f1non± + q±1n±no = 0 , Of = 0 ; 

(3.25) 

r rn + : { r ((q + ¼)(n_, O+J - (q -¼)ni) + {H, !lo}= ,\!lo, 
+ {H, n} r (0±, OoJcq'fl,q±l) ± {H, n±} = ±,\{l±i 1 

(3.26) 

{ 
-1Tr:(n2) + qH2 = vH , 

the scalar ISCR : T (n2 )
9 H2 _ ( 2 -2) H 

Tq + - q q + 1 + q V • 
(3.27) 

Here,\= (q + q-1)v , r = (1 - q2)/(q2 + q-2) and 

1 n2+n2 
3 Trq(02) = (q-10+0- + qO_n+) + 0 

1 q q+q-
(3.28) 

In the limit v = O, Eqs. (3.25)-(3.27) become the commutation relations for the 
Cartan's 1-forms on GL9 (2). These relations in another form have been presented in 
Ref. (9). Note that just the presence of the ISCR rn in these relations prevents us 
(for q f; 1) to remove Hand pass over to the Cartan's 1-forms on SLq(2) 3 • We believe 
that the right way to obtain the commutation relations for Cartan's 1-forms on S£9 (2) 
is simply to ignore the Eqs. (3.26) and use only the Eqs. (3.25) and (3.27) for H = 0. 
These relations define the associative covariant algebra and have the correct classical 
limit. 

Finally, one can check directly that the quadratic Casimir operators for the algebras 
(3.21),(3.22) and (3.25)-(3.27) are related to the invariant 0 2 (see (2.10) and (3.28)). 

4 Conclusion 

To conclude, we present here an explicite construction for the invariant vector fields 
and 1-forms on GLq(N) and thus illustrate the connection between GLq(N)-covariant 
quantum algebras and the covariant differential calculus on GLq(N). Let us introduce 
the quantum group derivatives 8j = 8/81'/ and diff~~~ntials d(Tj) to extend GLv(N) 
in the following way 

R12T1T2 = T2T1R12 

8zR12T1 = vP12 + T1R2118z 
R,11d(T1)d(T2) 

, R128281 = 8182R12 , 
, R,11T1d(T2) = d(T2)T1R12 , 

= -d(T2)d(T1)R12 . (4.1) 

This algebra is covariant under the left(right) GL9(N)-coaction on the operators T, 
8 and d(T) which can be considered as bicomodules of GL9 (N): T -+ TTT', 8 -+ 

3This feature was pointed out in Ref.[9] for SL9 (2) and in Ref.[7] in general. 
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T 1
-
1af-1 , d(T) -+ Td(T)T', where fj, T;" are generators of various examples of 

G Lv(N). Using the relations ( 4.1) one can directly check that operators E = T8 satisfy 
"bosonic" commutation relations (3.12) and operators {l = d(T)T- 1 satisfy contracted 
"fermionic" antic

0

ommutation relations (3.18) 4 • Thus, we relate the GL9(N)-covariant 
quantum algebras introduced in the previous Section with bicovariant differential cal
culus on GLv(N). 
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"1caea A.n., nATOB n.H. 
GLq(N)-Koaap11aHrnb1e KBaHTOBble anre6pb1 11 
Koaap11aHrHoe A11cj:)cpepeHu11anbHoe 11c1rncneH11e 

E2-92-477 

' . . . 
PaccMaTpl1E!alOTCA GLq(N)-Koaap11aHTHble KBaHTOBble anre6pbl, 

reHeparopbl KOTOpblX YAOBneraopRI01 KBaApaT11'1HblM COOTHoweHl1AM. 
noKaJaH'o, ~TO, .c TO.'IHOCTblO AO HeKoero Hecyr.uecrBeHHoro npOl13BOna, 
cyr.uecrayer -ionbKO ABa rnna raK11x anre6p, a 11MeHHO: anre6pb1 c 
q-Aecj:)opM11poaaHHblMl1 KOMMyTal.1110HHblMl1 11 q-Aecj:)opM11poaaHHblMl1 
aHTl1KOMMYTal.1110HHblM11 COOTHOWeHl1AMl1.· O6cy>t<AaeTCA . CBA3b. 3T~X 

· anre6p c Koaap~aHTHblM A11cj:)cpepeH1.111anbHblM ·11c1111cneH11eM Ha n11He~-
HblX KBaHTOBblX rpynnax. 

Pa6ora BblnOnHeHa B na6oparop1111 iTeopern'!ecKO~ cj:)11311Kl1 
O~A"1. 

Ilpenp11ur Om.en1111euuoro H~crnryra H;iepttblX HCCJ1e;tosau11ft. )ly6ua 1992 

lsaev AP., Pyatov P.N. 
Glq(N)-Covariant Quantum Algebras· 
and Covariant Differential Calculus .. 

.E2-92-477 

. . 
. We consider Glq(N)- .covariant quantum algebras vvitli generators · · 

satisfying quadratic polynomial relations. We show· that, up tq some 
inessential arbitrariness,' there are only two. kinds of such quantu'm al-

. . . . . . , 
. gebras, namely, the algebras with q-deformed commutation ·and 
q-deformed antlcommutatlon relations .. The. connection with the bico
variant' differential ~lculus on the _linear quantum groups is disscussed. 

The investigation has been performed at the Lahoratory of Theore~ 
tical Physics, JINR. 

• 
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