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1. INTRODUCTION 

Contemporary theory of gravitation is the Einstein General Relati

vity (GR). This theory describes the gravitation as a space-time metric 

gmn which satisfies the Einstein equations 

where G mn 

G = ICT • 
mn mn 

Rmn- ~ R gmn is the Einstein tensor. 

(1) 

These equations are very difficult and nonlinear. For investigation 

of these equations it would be useful to find the action functional. The 

action is necessary for any development of the theory, for instance, for 

the problem of quantization. 

Usually, the vacuum Einstein equations 

G = 0 mn 
are derived from the Hilbert action 

S =JAR d
4

x. 
H 

These equations are of the second order, and the Hilbert Lagrangian 

L =AR 
H 

(2) 

(3) 

(4) 

contains the second - order derivatives too. This leads to the known 

difficulties I 1). For avoiding them Hi.bbons and Hawking have suggested 

the surface term (1), but due to this term local gravitational invari

ants such as energy-momentum density became quasilocal [2). 

Another way consist in finding a suitable Lagrangian which will be 

local and contains only first-order derivatives. For a Lagrangian like 

that to exist, it is necessary to introduce the background object in the 

theory (3-5). It should be mentioned that the well-known Einstein Lag-
.,---,-, mn ( a b a b ) rangian LE= v-g g r mb ran - r ba r mn contains the background affine 

connection I 4) whose coefficients f'" are zero in a chosen coordinate mn 
map (see sect.2). 

Introduction of the background connection permits our to expand the 

GR by admitting a more general (nonflat) background connection. By com

paring such an expanded theory with GR some interesting specific featu

res of the Einstein equa~ions can be found. But it is clear that the ma

in interest to introduce the background geometrical object is connected 

with the problem of localization of the energy-momentum characteristics 

of the gravitational field, 

Many attempts were made to solve the problem of localization of the 

gravitational energy by introducing the nondynamical (background) object 

(6-8). Usually, it was a background metric (bimetric theories) and the 
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' gravitation was considered as a conventional matter field alongside with 

other fields [8]. The theory remained generally covariant but the dyna

mical invariance under the group of diffeomorphisms was violated. In the 

general case, when the background object is arbitrary, the invariance is 

completely violated, i.e., any residual symmetry is absent. However, if 

the background object permits the group of motions, the theory is inva

riant under this group. Usually, the background object is a metric per

mitting the Poincare group, and thus the energy-momentum problem seems 

to be solved. But a more careful analysis shows that it is still unsol

ved. Although we can construct a gravitational energy-momentum tensor 

(see sect.4), conserved quantities become trivial because conserved cur

rents have a specific structure (improper current, (9]). It seems that 

the gravitational field does not carry energy like the electromagnetic 

field transferring the interaction between the electric charges does not 

carry charge [4]. 

In studying non-Einstein generalization of the gravitational equa

tions, we shall be interested mainly in degeneracy of these equations. 

It is well-known that the Einstein equations (2) .are degenerated in the 

sense that for ten unknown components of the metric tensor there are 

only six independent equations due to the Bianchi identities. We will 

see that for equations to have this properties it is necessary that the 

symmetric part of the Ricci tensor of the background connection R 
( mn) 

should have such a null vector~ 

~
1R = o 

(lj) 

that the Lie derivative of R should vanish 
(lj) 

(5) 

LR = 0. (6) 
~ (lj) 

Also we discuss correlations between generalized integrability conditi-

ons and the "harmonicity conditions" 

v CA g
1 Jl = o. 

l 
(7) 

Finally, we investigate one exact solution of non-Einstein equati

ons. We shall see that in this case there is no the Birkhoff theorem but 

Schwarzschild-like peculiarity can be present. 

2. THE GRAVITATIONAL ACTION FUNCTIONAL 

AND EOUA l'IONS OF MOTION 

Usually, equations (2) are derived from the Hilbert action (3) with 

the Hilbert Lagrangian (4). As it has been remarked above, this Lagran-
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f 
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( 

gian leads to the known difficulties. 

Instead of (4) the noncovariant Einstein Lagrangian is often used 

L = Y-g gmn(fa rb -fa rs), 
E mb an sa mn 

(8) 

which differs from L by the divergence term 
H f 

L - L = 8 w 
H E f 

(9) 

where 
Wt = Y-g (gfnfm _ gmnfl ). 

mn mn 
(10) 

Now let us prove that noncovariance of LE in fact means that the 

background object is present in the theory [4,5]. It is the affine con

nection• without torsion. We shall denote the background connection co
vk 

efficients by r . mn 
The difference between the connection coefficients 

pk =· rk - fk (11) 
. mn mn mn 

is a tensor. It is named the affine - deformation tensor. Let us con•si-

der the Lagrangian 
[ =Y-g gmn(Pa Pb _paps). 

mb an sa mn 

For the action functional 

the variational derivative 

has been calculated in (5) 

S = J [ d
4 x 

q;mn 2 
cSS 
5g 

mn 

q;mn = Y-g gmagnb(R + R - R g1Jg - 2G ) 

(12) 

( 13) 

(14) 

where 
ab ba 

the Ricci R = ftP 
lj ab ab' 

tensor· RP = a rP - a rP + 
' llk 1 lk l lk is 

lk plk rP rs - rP rs is the Riemann tensor for the background connection. 
lslk lslk 

If R =0, then the equations 
(lk) 

q;mn = 0 

coincide with the Einstein equations (2), and 

(15) 

LH - L = V 
1 
F

1 
, ( 16) 

where V
1 

is a cov~riant derivative with respect to the background con

nection and 
F' = Y-g (gmnpl _ g'npm) (l7 ) 

mn mn 

is the vector density of weight one. 
· v/ . · vf 

If R = 0 one can choose the coordinate map in which all r = 0. 
klm km 

· Then, P1 turns into - r' , [ turns into L , F
1 

into w
1 

and ( 16) is 
h h. E 

transformed into (9). 

Since LE is noncovariant, converting LH into LE can be possible on

ly after fixation of the coordinate map. Converting LH into LE by formu-
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la (9) is in fact converting L into [ with the fixation of the backgro-
H 

und connection whose coefficients in this map are assumed to be zero. 

Hence, it follows that in this theory it is necessary to use the Lagran

gian L 
The situation is similar to the appearing of the not unity compo

nents of the metric tensor in Maxwell equations when they are written in 

the curvilinear coordinate map. The generally covariant Maxwell equa

tions 

mnv '!f = jm (18) 
g m nl glm ' 

where '!f = a A - a A is the electromagnetic strength tensor, contain the 
mn m n nm 

metric field g In the Cartesian frame of reference equations ( 18) mn 
turns into 

8o'!fo,- 81'!f1,- 82'!f2,-a3'!f3,= J,. 
The components ·or the metric tensor become the set of uni ts as though 

they "disappear". 

The same situation takes place if after converting LH into LE by 

formula (9) we want to use (8) in an arbitrary coordinate map. LE trans

forms into (12) and nonzero f' appears. Then, if we want to return to 
km 

the original map, the background connection coefficients convert into 

the set of nulls as the metric components in (18) convert into the 

units. 

As it is clear from (14), the conditions R1 = 0 are stronger than 
klm 

the necessary conditions for deriving the Einstein equations. If we put 

R = o 
(I j) 

(19) 

it would be enough. Although we cannot choose a coordinate map with non

zero f' , the latter is not contained in gravitational equations that 
km . 

coincide with the Einstein ones. 

Now we will briefly dwell upon the possibility of further generali

zation of the theory. 

Up to a divergence term the Lagrangian (12) can be presented in the 

form 
,..,. mn"" 
L =AR - Ag Rmn+ div. (20) 

The first term can be interpreted as the term corresponding to the pure 

gravitational field, the second is the "cross" g - f term describing the 
, vk 

interaction between the fields gm~ and rmn· For the background connect-

ion be dynamical, the Lagrangian needs a "kinetic" term for ·pure fk . mn 
The simplest term like that has been proposed by A. Eddington [10] (see 
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also I 11]): 

L = ~ l!det(R< l I, (21) 
C l I J J 

where~ is the·coupling constant. Then, the full Lagrangian can be writ-
1 

ten as 

L = L + L + 2A Fg. 
D C 2 

In this Lagrangian we have added the cosmological term. 

Being varied with respect tog , the action 
mn 

S = f L d
4

x 
D D 

(22) 

(23) 

gets the same variational derivatives as ( 13) but with the cosmologi_cal 

constant. Equations for g are 
mn 

1 V 

Rab- 2 R gab- A2gab= R(abJ 
vk 

For r we obtain the equations mn 

1 v I J 
2 R, Jg gab 

11 (-A
1
/ildet(R l I J ( I k) 

R(Ik)_ A g'kl = o. 

(24) 

(25) 

-(Ik) 1 . 
Here R is the inverse matrix 

v -(Ik)v J 
for R(IkJ R R<kJJ=o

1
. An evident 

(but not single!) solution of (25) is 

R =Ag . (26) 
(lk) 1 lk 

Substituting (26) into (24) we come to the Einstein equations with the 

cosmological constant (A - A): 
. 1 l 2 

R - - R g + (A - A) g = 0. 
lj 2 lj 1 2 lk 

(27) 

It means that the system described by (22) locally contains all vacuum 

solutions of the Einstein equations with the cosmological constant 

(A
1

- A
2
). If A

1
= A

2
, then the cosmological constant is zero. As we can 

see, in this theory there is a mechanism which allows our to renormalize 

the cosmological constant. 
vk 

Further we shall assume the affine connection r is background and 
mn 

restrict our consideration only to the Lagrangian (12). 

where 

3. THE INTEGRABILITY CONDITIONS AND THE HARMONICITY CONDITIONS 

In this section we consider the full action 

s = s + s 
F M 

(28) 

S = Kf L d 4x (29) 
M M 

is the action of the external (nongravity) matter. 

Let us suppose that L is independent of fk. Then, the conventio-
M = . 

nal energy-momentum tensor of the external matter 
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A Tm"=!.. oSM 
IC og 

mn 
satisfies the ordinary conditions 

V Tmn= 0 . .. 

(30) 

(31) 

Here Vis the covariant derivative with respect to Christoffel's symbols 

r' . 
Jk 

By varying Sr with respect tog we get 
mn mgs 

'li = 2-M = r og 
mn 

the equations 

..,f"7g gmagnb(R + R - R glkg - 2G + 21CT ) 
ab ba lk ab ab ab 

Let us consider the covariant derivative of (32) 

As Va(G 
ab - IC T ) s 

ab 

V 'limn= 0. 
m r 

0, we get 

gab'fl S 
p ab 

where S = R + R - R gpqg 
ab ab ba pq ab 

0, 

(32) 

(33) 

(34) 

The conditions (33) are necessary for equations ( 32) to be inte-

grable. We will call these conditions the integrability conditions. 

It is well-known that the Einstein equations .(2) are degenerated in 

the sense that for ten unknown components of the metric tensor there are 

only six independent equations due to the Bianchi identities. It leads 

to the existence of the functional arbitrariness in their solutions. For 

avoiding this arbitrariness the suitable noncovariant conditions are 

used. Very popular are the "harmonici ty conditions" a ( A g 1 
J) = 0. In 

l 

the covariant form they can be written as (7): 

v s'J = o. (35l 
l 

Here s'J= A g1
J is the contravariant metric density. It is (35) that 

we will call the harmonicity conditions. 

If the background space is flat, then equations coincide with the 

Einstein one. The harmonicity conditions are not connected with the 

equations and must be postulated as external conditions. But if the 

background space is curved, then in general case the gravitational equa

tions differ from the Einstein one. If these equations are not degenera

ted, then (35) must be either consequences of the (32) or inconsistent 

with them. 

Now we show that the harmonicity conditions (35) are equivalent to 

the integrability equations (33) and, consequently, follow from equati

ons (32) only if the background space is the Einstein space. More exact

ly, the following statements are true: 

6 
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1. For (35) to be consequences of (32), 

a) it is necessary that the symmetric part of the Ricci tensor 

should satisfy the condition VJ R(lkJ= 0; 

b) it is necessary and sufficient that VJ R(lkJ= 0 and 

det(R ) * 0. In this case, (35) and (33) are equivalent. 
(lk) 

2. If V R = 0 and det(R ) = 0, then (35) agrees with (32), J (lk) (lk) 

but (32) without (35) remains degenerat~d. It means that 

the functional arbitrariness remains in the solutions; 

- (35) can be postulated as external, but they are not conse

quences of (32). 

The contents of 1 b) is equivalent to the statement that the back~ 

ground connection can be in agreement with a certain metric of the Ein

stein space. In other words, R =Ag where A* 0 and g is a met-
<tJJ lJ lJ 

ric tensor with an arbitrary signature. 

In [12) it has been shown that if the background space has a cons-

tant curvature then (33) coincides with (35). In [13) it has been found 

that the coincidence of (33) with (35) takes place if V R = 0 and J (lk) 

det(R(lkJ) * 0. Let us investigate this question in the general case. 

Now we consider the following term: 

Let us denote 

8 
a 

It can be shown that 

emn 
a 

oS --r. 
ora 

mn 

v v emn + Rs emn_ 
m n a amn s 

(36) 

(37) 

8 s V ,rim, (38) 
a m a 

where ,rim= g 'limn_ Then, the integrability conditions can be written as 
a an 

V l J Let V
1
g be denoted by the 

As it was shown in [13) 

8 = 0. 

term ~j: 

~J= v s'J. 
l 

(39) 

(40) 

8 = 2V (gns R ) - ns V R (41) 
a n (sa) S ans 

Let us demand that the harmonicity conditions (35) be valid. Then, 

9" 5 in the first term in the right-hand side of (41) can be transferred 

through V 
n 

and (41) becomes 

s"scv R + v R - v R l = o. 
n (as) s (an) a (ns) 

(42) 

This condition is a constraint on the components of 9" 5
• The harmonicity 

conditions (35) are the constraints on derivatives of 9"
8

• For the inte

grability conditions (33), not limited gns by any other restrictions be-

7 



sides the harmonicity conditions (35) it is necessary that (42) be true 

for arbitrary s"s. Hence, the necessary condition for (35) and (33) to 

be not contradictory is 

VR +VR -VR n (as) s ( an) a ( ns) 
0. (43) 

It is evident that (43) is equivalent to 

v R = o. C44l 
· a ( ns) 

Then, the statement 1 a) is proved. 

The right-hand side of (41) can be transformed by means of the fol-

lowing number of identities: 
2V ( ns R ) - ns V R 

n S ( sa) S a ns 

= 2 ns V R + 2R V ns - ns V R 
s n (sa) (sa) n8 s ans 

2ft v ns + ns v ft + ns v ft - s"s v R 
(sa) n8 s n (sa) s s (na) ans 

= 2R v s"s + s"s c v R + v R - v ft l . 
(sa) n n (sa) s (na) a (ns) 

By solving the covariant derivatives we can rewrite (39) as 

R V ns = ns(R fP - R ) • 
(as) n8 s (ap) ns a,ns 

(45) 

where 

R 
a,ns 

1 • • • 
= 2(BnR<asJ + 8sR(anJ - 8aR<nsJ). (46) 

If (44) holds, then 
R = R fP , (47) 

a,ns ( ap) ns 
and, as it is clear from ( 45), the integrability conditions take the 

form 

R ~s=O. (48) 
( as) 

Now we can see that if det(R ) = 0, then in fact the number of 
. (as) 

constrains on s"s in (45) and, consequently, in (33) is smaller than the 

number of constraints in conditions (35). But (35) does not contradict 

(33). 

In sect.7 we shall show that in this case equations remain degene-

rated and it is necessary Just 4 - rank(R ) conditions on g for 
(as) ns 

avoiding this degenerating. Hence, it is the harmonicity conditions (35) 

that can be assumed as the conditions for fixation of the solution of 

(32). 

If det(R ) ¢ 0, then from (47) we obtain 
(as) 

fP = ftP 
ns ns 

where RP= R(paJ R Here R(paJR 
ns a, ns ( aq) 

op. 
q 

It is clear that if we put ft' 
( pa) 

8 

a. ft<paJ' 

(49) 

where a.~ 0 then 

I 
l 
~ 

I: 

I 
' 
t 

., 
ll 
I 

I 
l • ( 

•p' 1 -(pa) • •p 
R =-R a.R =R 

(ns) a a,ns (ns) 

Let us consider background metric 
• 1 • • ~mn -(mn) 
gmn =;;; R(mnJ: Since det(R(mnJ) ¢ 0, g =AR , and gmn is in agre-

• l • • • 
ement with r so that R = ;\g ; R = 0. It means that the back-

Jk (mn) mn [mn] 

ground space is the Einstein space with the metric g But its slgnatu-
mn 

re is indefinite and may be arbitrary. 

From (45) we can observe the specific role of the harmonicity con

ditions: It is such term that presents derivatives of g
11 

in the integ

rability conditions. 

4. THE GENERALLY COVARIANT REPRESENTATION OF 

THE ENERGY-MOMENTUM PSEUDOTENSOR OF THE GRAVITATIONAL FIELD 

A number of pseudoten~or objects have been proposed for determining 

the gravitational energy (14, 15]. Their tensor representations can be 

found by this method (5, 16]. The geometrical meaning of pseudotensors 

is that these objects are the tensor functionals of the background con

nection. 

For constructing local gravitational characteristics we can use the 

method of Lagrangians with covariant derivatives (17] This method con

sist in changing partial derivatives 8 by covariant V ones. But we 
l l 

shall use a more general approach. 

Let us consider a general Lagrangian 

L = L(g ; 8 g ; fk ). (50) 
mn k mn mn 

It is supposed that the background connection is symmetric. Let the fol-

lowing terms be defined as 

tk = .!!!::..__ V g - L Ok; (51) 
a 8g a mn a 

mn,k 

er) k = ~ ( g Ok + g ok); (52) 
a Og ma n na m 

mn,J 

>limn = 2 ~ = 2( ~ - 8 ~) • (53) og ag 1 ag • 
mn mn mn,J 

emn = ~ = ~ (54) 
k ofk 8['k 

mn mn 
where 

S = J L d
4

x (55) 

is the action functional; comma before index means the partial derivati

ve. 

All the terms introduced are the tensor densities of weight one. 

The tensor (1/v-g)tk may be assumed as a canonical energy-momentum one, 
a 

9 



a1
k is connected with the gravitational spin density, the term 

a 

(l/v-g)8mn also appeared in literature [18]. 
k 

The number of identities can be proved by the variational method 

[19], in particular, 

tk+ v a1k+ ~k•g = o, 
a J a ma 

-v tk= emnRk +(l/2)amnRk +(l/2)~•nv 
k a k amn k mna 

cl'k= -ifk+ gpag S _ gkag S 
m m Jm a lm a 

and already known expression (37) - (38) 

V ~m = V V emn + Rs emn_ 
ma m n a amn s 

g • 
a mn 

(56) 

(57) 

(58) 

(59) 

The terms (51) - (54) are defined for the· general Lagrangian (50). 

Let the terms corresponding to the concrete Lagrangian (12) be marked by 

the tilde - above the letter. After simple calculations we get the known 

relation (14) 

imn = Fg' gmagnb(R + R - R g'Jg - 2G ) 
ab ba lJ ab ab 

and 

Wk= V (v-g(gk{pos]+ gp{kos]l). 
m s m m 

(60) 

Substituting (60) into (58) one can get 
upk= (g /v-g)V usapk_2V (v-g gk{posl)_ 

m am s s m 
(61) 

Here Usapk= (-g)(gspgak_ gskgap). 

Substituting (61) into (56) we get 

-(tk+ ikag ) = V ( gam V usapk) - 2V V (v-g gklpos]). (62) 
m am p R. s p s m 

vl -g vk 
If Rklm= 0, then the coordinate map, in which rmn= 0, can be chosen. In 

this map we have imk=-2v-g Gmk. The covariant derivatives convert into 

partial derivatives, and the last term in (62) disappears. Then, (62) 

takes the form 

In the 

v-g( _l_tk- 2Gk) 
-~ m m v-g 

= a ( gam a ((-g)(gpagks_ gspgka))). 
p A s 

right-hand side we see the derivative of the well-known Einstein 

superpotential. Hence, we can conclude that (62) is the covariant gene

ralization of usual splitting of Gk which is often used in pseudotensor 
m 

approach for determining the Einstein pseudotensor. Consequently, it is 

(1/v-g)tk that corresponds to the Einstein pseudotensor. 
a 

5. THE CONSERVATION LAWS 

If the background object ls a .metric, then the solution of the 

problem of integral conservation laws is well known. The metric energy-

10 
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I 
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;, 
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momentum tensor satisfies the local conservation law, and if the Killing 

vector of the background metric is present, then the integral conserva

tion law can be obtained by integrating the local conservation law. In 

the present case, the metric energy-momentum tensor cannot be defined 

because the background metric is absent. Moreover, in the general case 

the divergence of the canonical energy-momentum tensor is not equal to 

zero (see (57)). Therefore, we use the Noether algorithm. 

The general form of the action variation can be 

f [ 8L vk oS ( 8L os = --or + --og + a ---og + 
afk mn ogmn mn J 8gmn,J mn 

mn 

written as [19] 

Lox1)] d4 x. (63) 

Now we substitute the definitions (51) - (54) into (63) and demand that 

oS should vanish under Lie variations which can be written in the form 

oxJ = c~J; (64) 

ofk 
mn 

- ( V V. ( c~k) + Rk c~a) ; 
m n amn 

(65) 

og = - Cg v Cc~al + g v Cc~al + c~av g l (66l 
mn ma n na m a mn 

where c is an infinitesimal parameter, ~ is an arbitrary vector field. 

Then, we ·obtain 

f [emnv V (c~k) + emnRk c~a+ (1/2)c~a~mnv g 
k m n k amn a mn ( 67 ) 
mn v a Jkv a J a ] 4 + ~ g V (c~) + a (a V Cc~) + t c~) d x = 0. 

ma n J a k a 
Since the range of integration is arbitrary, it follows from (67) that 

the integrand is zero. By reduction of cone can obtain 

8 (aJkV ~a+ tJ~a) + ~mn((l/2)~aV g 
J a k a a mn 

+ g V ~al= - emn(V V ~k+ Rk ~a). 
ma n k m n amn 

(68) 

The action invariance under (64) - (66) is a consequence of the ge-

neral covariance. But it is not the dynamic invariance because (65) is 

the transformation of the nondynamical object. 

Let the background connection permit the r-parameter group of mot

ion G , and let ~J ~ , A = 1, . . . , r, generate this group, i.e., the 
r ( ") 

equations 

V V ~k + Rk ~a = 0 
m n (A} amn (A} 

be satisfied. Then, infinitesimal transformations of G are 
ox1 = c(AJ~J · ~,~· 

r 

(69) 

(70) 

v (A) a v (A) a (A) a v 
ogmn = - (gmaVn(c ~CAJ) + gnaVm(c ~(AJ) + c ~CAJVagmn). (7 l) 

Under this condition the right-hand side of (68) vanishes. Using (69) 

we write down (68) in the form corresponding to the first Noether.theo

rem [20]: 

11 



where the Noether currents 

JJ 
( i\.) 

and generators 

a JJ 
J ( i\.) 

X mn 
mn( i\.J W • (72) 

Jk V €a tJ €a 
C1 a k ( i\.J + a ( i\.J ' 

(73) 

X = - ! €a V g - g V €a , 
mn( i\.) 2 ( i\.J a mn ma n ( i\.J 

Then, the energy-momentum problem seems to be solved. 

(74) 

Indeed, let us 

consider the integral 

A= JJJdS, (75) 
J 

where the integration is over any infinite hypersurface including the 

whole three-space. Relation (72) means that A is conserved if the equa

tion of motion holds. Formula (72) is invariant because JJ is a vector 

density of weight one. 

However, a more careful analysis shows that the problem is still 

unsolved. For the concrete Lagrangian [ defined by (12) the conservation 

laws following from (72) appear to be trivial if (19) holds. 

6. DEGENERATION OF EQUATIONS AND 

THE STRUCTURE OF CONSERVED CURRENTS 

Let us consider a system described by the fields ~A where A is the 

collective index. Let equations for ~A follow from the condition of the 

action functional 

S = J L d
4 x, 

where Lis the Lagrangian, being stationary. 

(76) 

The statement known as the first Noether theorem was formulated in 

the first section of the famous Noether paper [20]: If the action is in-

variant under the r-parameter Lie group G, then r linearly independent 
r 

combinations of the variational derivatives turn into divergences, i.e. 

a J 1(i\.)= E 111 XA i\., i\. = 1, ... ,r, (77) 
J AA(l oS 

where J:i\.J are expressions named the Noether currents, wA= 
o~A 

are va-

riational derivatives, x:i\.) 
ding to the transformations 

are the representation generators correspon-

of ~A under G. 
r 

Let the action (76) be invariant under a continuous group which may 

be parameterized by p arbitrary function of the coordinates. We shall 

denote this group by G . If one singles out a subgroup G from the gro-
P"' r 

up G , then according to the first Noether theorem, r local conserva-
P"' 

tion laws will takes place. 

In Sect.6 of paper [20] it has been formulated and proved that if 

12 

, 

r 
I 
~ 

G is a subgroup of the group G , all currents J 1, may be represented 
r roo (") 

in the form 
j - j j 

J<il.> - Ali\.>+ Beil.>' (78) 
where A1i\. = O if w = 0, and B1i\. satisfies the condition a B1i\. = 0. 

( ) A ( ) j ( ) 

Such currents were named the improper currents [9, 20]. 

And vice versa, if the Noether current is improper, then the cor

responding group Gr must be a subgroup of a certain group GP., According 

to the second Noether theorem [9, 20], there are p identities among the 

equations wA= O and these equations are degenerated. This fact was known 

since Noether. But if we want to extend Gr to Gp.,' it may appear that 

such an extension is not simple. In sect.8, we shall.construct such an 

extension for the gravitational action. 

Now we return to (72); It is easy to verify that the right-hand si

de of (72) can be presented if the form 

wm"x =€a. V wk- V ('lik€a ). 
mn( i\.) ( i\.J k a k a ( i\.J 

(79) 

But if the equations 

111mn = 0 (80) 

coincide with the Einstein equations, then 

'iJ Wk = 0 (81) 
k a 

because of the Bianchi identities. If [ is used as L and ( 19) holds, 

then (72) is 

a JJi\. = - V (ikEai\.) = a (- iJEai\. ). (82) 
J() ka() J () 

It means that JJi\. = - iJEai\. + BJ where a BJ= 0. Hence, it follows that 
() a() J 

the current J;i\.J can be presented in the form of (78) and, therefore, it 

is improper. 

It is a well-known fact. The Einstein equations are invariant under the 

group of diffeomorphisms and degenerated. Of more interest ls the case 

when R ~ 0. What conditions are to be imposed on the background con-
(J JJ 

nection for equations to be degenerated? 

7. CONDITIONS FOR THE EQUATIONS TO BE DEGENERATE 

Let the action be invariant under the group generated by the 

following infinitesimal transformations of the dynamical fields 

g - g +og mn mn K mn 

o g = -(g v Cov<il.J€a J+g v Cov<il.J€a J+ov<i\.J€a v g ) 
K mn ma n ( i\.J na m ( i\.) ( i\.) a mn 

(83) 

i\. i\. = 1, ... ,r, 
where ov1 1are arbitrary infinitesimal functions of the coordinates va-

13 



nishing at the integration limits. These variations are similar to the 

gauge transformations [8]. As ov<AJ are demanded to be vanishing at the 

boundary of the range of integration, no surface terms are produced and 

(83) corresponds to the infinitesimal diffeomorphism of g under the 
( A) a mn 

vector field ov ~, . Then, 
< "J os 4 

o S = J-.,- o 9. d X = 0. (84) 
K ug .rrmn 

mn 

Now we substitute the terms of o g into this· formula. Then, we obtain 
K mn 

f,i,m"c-1 ov(A)~s V g - g V (ov(A)~s )) d 4x = 0. (85) 
2 ( A) s am ms n ( A) 

To transform the integrand we shall use the identity that can be easily 

verified 

,i,m"(- ! ov' A) ~s V g - g V ( ov' A) ~s ) ) 
2 ( A) s mn ms n ( A) (86) 

ov(A)~n V ,i,m - V ('1'm ov(A)~n ), 
( A) m n m n ( A) 

Since wk is a tensor density of weight one, the last term in the right -
a 

hand side of (86) is an ordinary divergence and it may be discarded be-

cause ov<AJ= 0 at the integration limits. Then we are left only with 

J ov(AJ~J V '11a d 4 x = 0. (87) 
< AJ < AJ a J 

Since ov is arbitrary, it follows from (87) that 

~J, V '11a = 0. (88) 
( "' a J 

It means that there are r identities among the equations (80). These 

identities can be symbolically written down as 
mn , , 4, 

J '11 (x) Amn(AJ(x x) d x o. (89) 

where Amn(AJ are generators 

A <' (x' ,x) = - ~,, (x) V o(x' - xl. (90) 
mn "' A)(m n) 

Here~,, = g ~a'); V o(x'- x) is a covariant derivative of the four -
"' m ma (" n 

dimensional o - function with respect to x'. 

As we can see, the conditions of degenerating of equations coincide 

with the conditions for the covector (38) to have a null vector~= 

~Je = ~Jv wa= 0. (91) 
J a J 

The question concerning the degree of degeneration will be clear from 

the next section. 

For the investigation of the Lagrangian (12) let us recall sect.3. 

Let us write (45) in the form 
1 v v ns 1 ns v v v v v v 

- 8 = R V 9 - - 9 (V R + V R - V R ) = 0. 2 a (as) n 2 n (sa) s (na) a (ns) 
(92) 

Using (92) we can rewrite (91) as 

~aR V ns =~~a ns(V R + V R - V R ). 
(as) n 9 2 S n (sa) s (na) a (ns) 

(93) 
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For (93) to hold for arbitrary g" 5
• the coefficients of 9"8 and V 9"5 

n 
must be zero independently of one another. We have 

~acv R + v R - v R l 
n (sa) s (na) a (ns) 

0, 

~aR = o. 
(as) 

By virtue of (95) we can conclude from (94) that 

- CR v ~a+ R v ~a+ ~av R > = o. 
(sa) n (na) s a (ns) 

This expression can easily be recognized as the Lie derivative: 

c R = o. 
(sa) 

~ 

(94) 

(95) 

(96) 

Thus, the conditions for equations (15) to be degenerate are that 

the symmetric part of the Ricci tensor of the background connection 

R should have such a null vector~ (95) that the Lie derivative of 
(lj) 

R<IJJ should vanish (96). 

Notice that if~ satisfies (65), then (96) is true automatically. 

It is clear that the property (81) Vim= 0 singles out the Einstein 
m a 

equations among others derived from (12) because (81) means that (95) 

must be true for arbitrary ~a and, therefore, R = 0. 
(I J) 

8. CONSTRUCTING OF EXTENSION OF THE SYMMETRY GROUP 

WHEN THE CONSERVED CURRENT IS IMPROPER 

Let the action be invariant under G . We can always single out the pm 
subgroup G from G by splitting the G group parameters into factors 

r poo pm 

independent of the coordinates and functions remained fixed. For exam-

ple, if the group parameter of G is ov(x), we can consider only such pm 
ov that ov(x) = cf(x), where c is the G group parameter and f(x) is 

r 

fixed. According to the first Noether theorem there are r conserved cur-

rents and since Gr is a subgroup of Gpm' these currents are improper. A 

more .complicated problem consists in building the group G from G if 
. pm r 

the conserved currents corresponding to Gare improper. It may occur 
r 

that the group G derived acts on the action functional in a somewhat pm 
different way than Gr. It is necessary that the action of Gpm on the dy-

namical variables only would be the same as G, but the action of the 
r 

group G on independent variables x1 may differ from G. As we shall pm r 
see, in our case G will not act on x1 . pm 

In other words, there is a group G~, including groups the G and G 
~ r pm 

as subgroups, such that Gr transformations of the dynamical variables 

must be derived from Gpm ones. In more detail, this group is the follo

wing. 
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. A 
When the group G acts on the action, the dynamical fields~ and 

r 
coordinates are transformed by a certain rule: 

A -A -
~ - ~ (x) = ( i\.} ( A ) w~[c ] ~ (x) ; 

J - J ( i\.} (97) 
A= 1, ... ,r, x - x = w) c ] (x); 

where c<il.J are the G -group parameters independent of the coordinates. 
r 

It may happen that there is a group G transforming the dynamical fi
poo -A 

elds ~ according to 
A -A 

~ -~ 0[~< 7Jl(~A(x)); 7 1, ... ,p, (98) 

where ~' 7 'Cx) are the group parameters and 

x1 
- ;J=x1

. 

We are interested in the case when ~< 7 J can be presented as 
r 

~< 7 'cx) = c<i1.,~< 7i1.'cx) = E c<il.,~<r'cx> C99) 
< J i\.=l < J 

( i\.J ( 7} 
where c are -independent of the coordinates and ~<il.J(x) is the set of 

functions fixed so that 

O[c(i\.J~~r~1 c~A(xl) = w~[c(i\.Jl c~A(x)). (100) 

If the action is invariant under both G and G , then there must be a 
r pOO 

group GL that preserved the action invariant and includes Gr and Gpoo as 

a subgroups. Further, we shall see that GL is a semidirect product 

G x G where a is the set of internal automorphisms of G . r a poo poo 
A general structure of the Noether current is as follows: 

JJ = A1 + BJ + CJ (101) 
(~ (~ (~ (~' 

where A:i\.J and B:i\.J have been defined earlier and c:i\.J is a proper com-

ponent of the current. There are certain difficulties in determining 

c1 i\. becau~e in principle AJi\. and B1 i\. can be included in c1 i\. , but 
(} (} (} (} 

c1i\. may be characterized by the property that it cannot be decomposed 
( } 

only into A:i\.J and B{i\.J 

The field charge is a first integral of equations of motion corres

ponding to a one - parameter group of the action invariance. As it appe

ars from (101), if c1i\. = 0, i.e., if the current is improper; then the 
( } 

formally calculated charge becomes trivial since it does not depend on 

equations of motion. 

For the nontrivial charge to exist it is necessary for the term 

c 1i\. to be present. It is a term that does not permit the group of the 
( } 

'dynamical invariance to be extended to the infinite - parameter one. Mo-

re exactly, the following statement can be valid: 
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If c 1i\. = 0, then the group G can be included in the group G~ as a < } r ,,. 
subgroup of the action invariance. If c1i\. $ 0, then the group G cannot 

( } r 

be included in the group GL as a subgroup of the action invariance. 

For our case, the last statement has been proved in the previous 

section. Now we will investigate the consequences of the currents being 

improper. 

From the previous section we can conclude that the C-term is the 

term ~ail. V ~m. If the current is improper, then (88) holds and (89) ta
( } m n 

kes place. 

Let us consider the infinitesimal transformations 
, ( i\.J , 4 , 

o,g (x) = f I\ ii. (x,x) ov (x) d x, (102) 
ii.) " mn mn( } 

where ov' are arbitrary infinitesimal functions of coordinates vani-

shing at the boundary of the range of integration and /\mn<i\.J have been 

defined in the previous section. Let us substitute (90) into (102) and 

perform the integration. Then, we obtain 
1 ( i\.J a ( i\.} a ) ) 

0/\gmn= - 2 (gmaVn(ov ~<il.J) + gnaVm(ov ~<il.J • (103) 

Notice that (103) up to a factor coincides with (83). 

Now we shall find the action variation 

S 
1 mn 4 

o/\S = 2 ~ o/\gmnd x. (104) 

If we substitute (102) into (104) and recall that ov vanishes at the in

tegrating limits, then using (89) we get 
( i\.J , 4 , 1 mn ' 4 

o/\S = S ov (x l d x f 2 ~ (x) /\mn(i\.J(x,x l d x = 0. 

It means that the action is invariant with respect to the group genera

ted by (102). But generators (90) are not independent, and not all the 

parameters ov' i\.J are essential. For the generators to be independent, 

the system of equations 
, ( i\.J , 4 , 

SI\ (i\. (x,x l ov (x l d x = 0 mn } 

must have a single solution ov(i\.J = 0 for arbitrary g mn 

(105) 

If we substitute the definition (90) into (105) and perform inte

gration, we obtain 
V (~ < i\.J 

(n (i\.}m}ov ) 0. (106) 

This is the Killing equation. For arbitrary g the single solution of 
(i\.} IJ 

(106) is ov ~ ii. = 0. But because~ ii. are not independent at every 
( } m ( i\.J ( } m 

point, we cannot conclude that ov = 0 is a single solution of (106). 

It is clear that the left - hand side of (106) up to a sign coinci

des with the right - hand side of ( 103). Consequently, the condition 
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that all parameters in (103) are essential coincides with the condition 
(AJ 

that the solution ov = 0 of the system (106) is single. 

Let us consider an arbitrary point M within the range of integrati

on. Let the orbit of the point M, i.e. the set of the points of 

the area which can be transferred to the point M by the transformations 

of the group G, be denoted by the term Q. Let among the vector fields 
r JI 

s(AJ there be exactly m fields which are zero fields' at M. It can be as-

sumed without loss of generality that the 

p = 1, ... , m. It means thats form the Lie 
(~ 

zero fields are ~ , 
(~ 

algebra of the stability 

subgroup of the point M. In differential geometry the stability subgroup 

is more often called the group of isotropy of M. Let us denote this gro

up by the symbol HN. 

So, the vector fields sr
7
,, 7 = m+l, ... ,r, are not equal to ze

ro in M. It should be remarked that these fields do not generally form 

the Lie algebra. Let us prove that in a certain neighborhood of the po

int M they form a set of basis fields of the orbit QN. 

Indeed, according to the Frobenious theorem [21], the integral cur

ves of the fields sr AJ compose a family of subma_nifolds of the initial 

manifold because they form the Lie algebra. Each of the points of the 

initial manifold belongs to one of these submanifolds which are the or

bits of these points. A linear envelope spanned over s(AJ at the point M 

ls a tangent space for the Q. Let it be denoted by T. Since s I= 0, 
JI JI (p)JI 

then T coincides with the linear-envelope of s I . Then, Q is homo-
JI (7) JI JI 

geneous under the action of the G by definition. Therefore, Q is iso-
r JI 

morphic to Gr/HJI which is a factor space of the group of motion to the 

group of isotropy. Hence, dim QJI = dim Gr - dim HH = r - m. Let us de

note r - m = p. Consequently, the dimension of the linear envelope 

s I is equal to the number of the vectors s( , therefore, these vec-(7J J1 7> 
tors in M form a basis set of T. 

JI 

The vector fields s are assumed to be differentiable, therefore 
(7) 

there is a certain neighborhood UJI of the point Min which these fields 

remain linearly independent, and since their integral curves completely 

belong to Q, then in U the vector fields sr fora a basis set of Q. 
JI JI m m 7 > (7) JI 

Let us consider a vector field~ = s(
7

Jov . In UJI an arbitrary 

vector field tangent to QN can be decomposed over the fields s(
7

J with a 

certain variable coefficients. Consequently, in a neighborhood of Many 

18 

a priori given tangent to the Q vector field can be obtained from ~m by 
JI 

a suitable choice of ov( 7 J. It means, the generator of an arbitrary dif-

feomorphism of Q at the point M has the forms ov< 7 J_ 
JI (7) 

Now we return to (106). It has been shown that in the neighborhood 

of Man arbitrary, tangent to Q, vector field can be decomposed over 
JI ( AJ ( AJ 

the fields s . The fields A ov for arbitrary ov is tangent to 
( 7 J ( J ( AJ • < J 

Q since alls~ are tangent to Q. Therefore, for any ov , ov 7 can 
JI (,\) JI 

be picked out such that in some neighborhood of M, 
(AJ •<7J 

~(AJov = ~r
7

,ov . Then (106) transforms to 

'ii Cs ov< 7Jl 
(n (7)m) 

0. (107_) 

But ( 107) is the Killing equation for the covector field 

; = ~ ov< 7 >_ As an arbitrary metric tensor has no Killing vectors, 
m (7)m 

then the only solution of.(107) is;= 0, and since nows are line-
(7Jm 

arly independent, we obtain that ov< 7 J = 0 is the single solution of 

( 106). 

Summarizing, we conclude that the group generated by the infinite

simal transformations (103) hasp= dim G - dim H essential parameters 
r JI 

depending on coordinates. It is the group of metric transformations cor-

re:,ponding to arbitrary diffeomorphisms of the orbits. The diffeomor

phism of the orbits is such a diffeomorphism of the whole manifold that 

the integral curves of the generating vector fields do not leave the or

bits. It must be emphasized that the elements of the group G are not 
- po> 

diffeomorphisms because they do not act on the coordinates. It is exact-

ly the metric maps. 
j 

So, if c<Al 

including Gr as 

0, then the group Gr can be extended to the group GE 

a subgroup. One can easily be convinced that 

GE = Gr ii GP"" where a'. is the system of internal automorphisms of Gp
01

, 

The symbol ii means the semidirect product. Really, GP"" is invariant in 

GE' the Cartesian product Gr x GP"" is supplied by the multiplication 

with system of j;he automorphisms of'GP"" depending on Gr, and the groups 

Gr and GP"" as subgroups of GE can be intersected only in the unit ele

ment because G does not act on the coordinates. 
po> 

The Cartesian product of G and G is a set of all ordered 
r _pm 

pairs (g, g ), where g is an element of G, and g is an element of 
- OJ ·r· co 

_Let g
1 

and g
2 

be elements of -Gr, _and sia, and g
2

m be elements of 

G • pm 
G • pm 

Action of the pair (g, g ) on {x1 ; g- (x)} consists in 
m mn 

successive appll-
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cation of the operations g and g to {x1; g (x)}. Therefore, to obtain 
oo mn 

the group structure the Cartesian product G x G must be supplied by 
r pm 

the multiplication via the scheme 
g2 

(g1;g1001 ~ (g2; g2001 = (g1g2; g100 g2001• (108) 

where 
g2 -1 

g = o:(g
1 

) = g g g is the automorphism of G depending 100 oo 2 100 2 pm 

on &2 • It is just (108) that means the Cartesian product being a semidi-

rect product. 

The property of G expressed by formula (100) leads to that auto
pm 

morphism o: is internal. 

9. EXAMPLE OF THE EXACT SOLUTION 

As an example let us consider the background connection which is 

the Christoffel connection derived from the background metric 
. v2 v l J 2 2 0: /3 
ds = g dx dx =c dt - h /3dx dx. (109) 

lj 0: 

Latin indices run from Oto 3, Greek indices denote spatial components 

1, 2, ·3_ Let ho:/3 be static: 

Tanks to (110) there is a 

aho:/3 _ 
at = 0. 

Killing vector 
a s = at 

and, consequently, s forms the Ricci collineation: 

£ R = o. 
S lj 

In the component form 

s1= {1, 0, 0, 0}. 

The background Ricci tensor is diagonal and 

(110) 

( 111) 

( 112) 

( 113) 

R = o. Cl14l 
00 

l V 

Hence, s R
11

= 0 and equations (15) are degenerated. The solutions of 

equations (15) must be invariant under the transformations 

g (x) - g (x) mn mn 
(115) 

generated by the diffeomorphism 

x1= x1 (x) (116) 

where 
o: -o: a -1 

X = X ; X = f(X ) • (117) 
- -1 Here f(x) is an arbitrary function of the coordinates x which satisfy 

-a f = x outside of the compact area. 

Let us find these transformations. From the general tensor trans-
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formation law we have 

- axa axb -
g· (x) = - - g (x(xl) 

mn -m -n ab 
ax ax 

(118) 

a 
where derivatives ~ are determined from (116). To obtain (115) we 

axm 
must replace x by x in the left-hand side of (118). 

Now let us find ho:/3 ~uch that never new degenerations would appear. 

It is clear that det(R ) must be nonzero. Consequently; a suitable 
0:/3 

choice is the Einstein space. Since ho:/3 is a three-dimensional metric, 

this space is a space of constant curvature. A very simple space like 

that is the Lobachevsky space. That is why we consider the background 

metric 
v2 2 2 2 2 2 r 2 . 2 2 ds = c dt - dr - k sinh k (de+ sin 8 d~) ( 119) 

where k is a constant, and"will search spherically symmetric static met

ric 

ds2= V2dt2- F2dr2- H2(d82+ sin2e d~2) 

satisfying equations (15) which now can be written in the form 

R = R 
l J l J 

In (120) V, F, and Hare the functions of r. We assume 

x0 = t, x1= r, x2= a, x
3
= ~--

The metric (119) has been considered in [22]. 

( 120) 

(121) 

In our case, the alternative (2) from sect.3 takes place. But when 

we claim the metric be ( 120), the single "free" harmonic! ty condition 

--~
0 = O is satisfied automatically and the functional arbitrariness is ab

sent. Indeed, from (118) we have the diagonal components 

axa axb 
gpp = --=,, --=,, gab 

ax ax 
For these components be independent on tit is necessary that 

a -a -
x =Ax+ f(r) 

where A is a constant. But the nondiagonal term appears 

ax0 ax0 

got= g10= -.:i -=a goo· 
ax ax 

This term contradict (120). For it vanish, we should have 

(123) should take the form 
a -a x =Ax+ B 

ax0 

-1 
ax 

(122) 

(123) 

( 124) 

0 and 

( 125) 

where Bis a constant. Thus, the functional arbitrariness disappears and 

only a trivial linear (125) remains. 
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All nondlagonal components of both R and R are zero, 
I J I J 

2 v v 2 
R

33
= R

22
sln 8 and R

33
= R22sin 8, and we are only left with three equati-

ons for three unknown functions V, F and H: 

d 
Here, means dr" 

R = VV ~ + 2H __ y_ + ~ , ( , , ') 
oo F2 F H V dr 

( ;·) = 0, 

R = _ V 
11 V 

2H+!::._ Y...+2H =-~. , ( , ') 
H F V H k2 

R = 1 -
22 

!_ d 

VF dr 
(v ~-) - 2 sinh2(r/k). 

Now the harmonicity condition ~1
= 0 

~ (VH
2

) = VF k sinh(2r/k) 
dr F 

(126) 

(127) 

( 128) 

( 129) 

ls a consequence of all equations (126)-(128). We use (129) and the com

bination 

!_ H (R + ~\ ) = H,(VF), - H". 
2 11 V2 oo VF 

Instead of (126)-(128) we obtain 

Let us denote 

H"- H/k2 H,(VF)' 
VF 

~ (VH
2

) = VF k slnh(2r/k), 
dr F 

~ (v HH') = VF cosh(2r/k) • 
dr F 

HH' H2 H' (VF), 
2 = <X, 2 = /3, - = 7, -w = w. 
F F H 

Using (134) we write down (131)-(133) in the form 
, 2 2 

7 + 7 - '1W = 1/k, 

13'+ {3w = k sinh(2r/k), 

a'+ aw= cosh(2r/k), 

<X = /37. 

( 130) 

( 131) 

( 132) 

( 133) 

(134) 

(135) 

(136) 

(137) 

(138) 

Let w be considered as a parameter. Equations (136) and (137) are 

the linear equations, and therefore, can be easily solved. But equation 

(135) ls the Riccatl equation. We can't find its general solution. If we 

substitute <X and /3 into (138) and then substitute 7 in terms-win (135), 

22 

we obtain nonlinear integro-differential equation. This equation cannot 

be solved too. 

But we are able to find a particular solution of our system corres

ponding tow= 0. Indeed, if w = 0, then (135) becomes the equation with 

separated variables. From (136), (137) we have 

<X = (k/2)(sinh(2r/k) + a/2), 

f3 = (k2/2) (cosh(2r/k) + b/2), 

(139) 

( 140) 

where a and bare the constants of integration. By separating variables 

in (135) we get 
d7 dr. 

1/k2- 72 
By integrating (141) we obtain 

(k/2) lnl! ~ ~~I r + r 
0 

where r
0 

is the constant of integration. 

Let us denote 

D = exp(r 
0
/k). 

From (142) we have two branches. The first is 

and the second is 

7k + 1 2 --- = D exp(2r/k) · 
7k - 1 ' 
7 < -(1/k); 7 > (1/k) 

1 + 7k 2 --- = D exp(2r/k) · 1 - 7k ' 
-(1/k) < 7 < 1/k. 

In terms of hyperbolic functions we have from (144) 

7
1
= (1/k) tanh- 1 (Cr + r

0
)1k) 

and from (146) 

(141) 

( 142) 

(143) 

(144) 

(145) 

(146) 

( 147) 

( 148) 

7
2 

= (1/k) tanh((r + r
0
)/k). (149) 

As we can see, (145) and (147) are satisfied. But we must satisfy (138). 

Substituting 7, <X and /3 into (138) we obtain 

a
1

= (k/2) (slnh(2r/k) - sinh(2r
0
1k)), 

{3
1
= (k/2) (cosh(2r/k) - cosh(2r

0
/k)), 

7
1
= (1/k) tanh- 1 (Cr + r

0
)/k) 

for the first branch, and 

a
2
= (k/2) (sinh(2r/k) + sinh(2r

0
/k)), 

{32= (k/2)(cosh(2r/k) + cosh(2r
0
1k)), 

72= (1/k) tanh((r + r
0

)1k) 

for the·second. Using definitions (134) we can obtain 
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r + r 
0 

H
1
= P sinh k 

r + r 
0 

H2= P cosh k 

2 
F2= !:'._ 

1 k2 

F2= !:'._ 
2 

2 k2 

r + r 
sinh k 

r - r 
sinh 

k 

r + r 
cosh k 

r - r 
.cosh 

k 

0 2 
V2= 9_ (152) 

1 F2' 
0 

1 

0 2 
V2= 9_ (153) 

2 F2 0 2 

where P and Qare the constants of integration. Therefore, the two bran-

ches of the solution are 

r-r r+r 
k2sinh O P2sinh O r + r 

ds2= k Q2dt2- k dr2- P2k2sinh2 __ o_dn2, 
1 2 r + ro 2 r - ro k 

P sinh k k sinh --:--ic 

r - r r + r 
0 0 r + r k2 cosh P2cosh 

k k 
ds2 = Q2dt2- dr2- P2k2cosh2 __ o_dn2, 

r + r 2 r - r k 
P2cosh 0 2 0 

k k cosh ---ic" 

where ctn2= cta2+ sin2 a ct,/.. By demanding the metric g to have the same 
· mn 

asymptotic as g , we get P2= k2exp(-2r /kl, Q2= c2. If we denote mn 0 

r - r 
0 

sinh---ic 
A= exp(2r /k) r + r 1 0 

0 
sinh---ic 

r - r 

11.
2
= exp(2r

0
/k) 

cosh o 
k 

r + r 
cosh o 

k 
two solutions of (131)-(133) can be written 

ds2= A c 2dt2 -A- 1dr2 
1 1 1 

r + r 
exp( -2r /k) k2 sinh 2 __ o_ ctn2, 

o k 
(154) 

r + r 
ds2= A c 2dt2 -A- 1 dr2 - exp(-2r /k) k2cosh2 ---0-ctn2.· 

2 2 2 o k 
(155) 

The metric (154) has at first been found in (22]. 

For determining r 
O 

we postulate that asymptotic behavior of gmn 

must get the Newton gravitational•law in the Lobachevsky space (23]. It 

leads to 
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2r 
sinh - 0- = Z;M (156) 

k kc2 
Here 7 is the. Newton constant, Mis the mass of the central source. If 

r
0

<< k, then 

r "';M (157) 
0 2 

C 

is the ordinary Schwarzschild r·adius. 

The metric (154) is similar to the Fock metric 

r-r r+r 
ds2= 0 c2dt 2- 0 dr2- (r + r ) 2dn2 (158) r+r r-r o 

0 0 

and turns into ( 158) when k - oo. As ( 158), ( 154) is singular when 

r = r . 
0 

But the second solution (155) doesn't have the Einstein limit if 

k- oo. Corresponding (155) solution (149) has the limit lim ;
2 

= 0 
k-oo 

which is inconsistent with (131).·0n the other hand, it is (155) that 

violates the analogy of the Blrkhoff theorem. 

Notice that if r
0

- 0 then (154) is turns into (119), but (155) 

remains 

ds2= c 2dt2- dr2- k2cosh2(r/k) ctn2 

as a solution of (121) in an absolutely empty space. 

(159) 

Radial movement of a photon may be determined by dS =ctn= 0. For 

(154) we have 

The radial photon velocity 
r - r 

sinh ---ic" 0 

v
1
= dr/dt = ±c exp(2r

0
/k) r + r 

sinh ---ic" 
0 

the time of radial motion from R 
I 

tor< R 
I 

exp(2R
1
/k) - exp(2r

0
/k) 

,: = A ln ---------- + B 
1 exp(2r /k) - exp(2r

0
/k) 

R - r 
I 

C 

(160) 

+ ,: 
I 

( 161) 

where B = exp(- 4r
0
/k), A= k(l - B)/(2c), 

ding to r = R
1

• 

i:-
1 

is the time correspon-

For (155) the same values are: 

The radial photon velocity 
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cosh 
v

2
= dr/dt = ±c exp(2r

0
/k) 

cosh 

the time of radial motion from R tor< R 
I I 

exp(2R
1
/k) + exp(2r

0
/k) 

-c = A ln ___ _::_ _____ _:__ + B 
2 exp(2r /k) + exp(2r /k) 

0 

r - r 
0 

-k-
r + r 

0 
-k-

R - r 
I -- + 't' 

I 
C 

If R
1

- r >> r
0

, both -c
1 

and -c
2 

give the ordinary expression 

R - r 
-c = (1 - B)-1-- + B 

R - r 
I 

R - r 
I 

C C C 

(162) 

(163) 

As we can see, for arriving at r = r
0 

the photon in (154) needs infinite 

time, but in (155) this time ls finite. If r- r
0

, then v
1

---) 0, but 

from (155) we have monotonous increasing from lim v 
2 
= c to r-

v
2 

= c exp(2r
0
/k) if r = O. 

The physical time tr which ls at the point with the radial coordi-

nate r ls determined by the relations 

r - r 
"nh 0 

I exp(-r0 /k) / 
Sl --k--. 

dt 
r + r 

sinh ~ 
0 

Ao dt dt = 

for ( 154), 

r C I , r - r 
0 

exp(-r 
0
/k) I 

cosh--k--
dt r + r 

cosh~ 
0 

for ( 155). 

If r -- a, we have dt = dt for both the metrics, but if r---) r then 
r O 

the physical time in (154) stops. 

The physical speed of light is 

dx 
r -dt-
r 

~dr + -,-.:..____:_:_.::;. 

- (/-g
00 

/ c) dt 
±c 

for both the metrics. 

On the contrary, we can assume that the gravitation is an optical 

medium with the refraction coefficient different from 1 and the physical 

time interval dp is 

Ao dt = dt dpr = -c-

in the spirit of the blmetric theories. 

Notice that such an interpretation is possible only if we consider 
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the background metric. But as has been shown, both equations and the La

grangian contain only the background connection. That is why the last 

interpretation may contain certain arbitrariness. Just in our case the 

constant 
vJ r . The 
Jk 

behavior 

vJ 
c is not contained in rJk' and for different c we get the same 

result Q = c was obtained only due to demands of the asymptotic 

of gmn The background metric in our case is not observable 

and, hence, not important. 
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