


1 Introductory remarks’

‘.'In the past ten years the processes ¥ —vhadrons vy subprocess of - llhadrons)
: have been of i xncreasxng interest among expenmenta.hsts [1]. For any luminosity of the ete™
beams the best situation from the point of view of producing hadrons occurs when one of

- .. the photons (or both) is near its mass shell (g? — 0)[2]. Let us mention the role of the future :

experlments with real photon obtained by converting a et(e~) beam into y-beam without
any lose of the energy or lumlnosxty 3] Sipies
‘As the “quark content” of the photon is well known, the theoretical ana.lysls of two-

- photon scattering is clearer than hadronic scattering. We calculate the form factor (FF)

S F',, yo—ro(q?,q3) of the transition v*y* — #° in particular, in the kinematic region when

qi-— 0. Theoretically the process ¥"y" — =° is a playground for comparing different .
approaches. T ) . ‘ N
In the framework of perturbative QCD the FF Feqero was first calculated for an asymp- . ‘
totically hlgh virtuality of one of the photons in [4]. The case of asymptotically high and "
equal virtualities of both the photons (@* = —¢% = —q?), was investigated by Voloshin [5]

- where the next-to-leading power correction was calculated as well. As the virtualities of

the photons decrease, the nonperturbative QCD effects play an mcreasmgly 1mporta.nt role
These effects may be taken into account by the QCD sum rules (SR) [6]. In Ref. (7 the

FF F,eqoro(Q?), obtained by the QCD SR method and by the perturbative approach were * -

compared and the two approaches were shown to be mutually consistent in the asymptotlcv -
region: Q% > 2 GeVZ. : :
In the asymmetric case (¢? # g2 ) the total O(a,) corrections in the asymptotlc limit for
Fjorno(q3,¢2) were obtained in Ref.[8])'. In Ref.[lO] the SR for FF were obtained for the
range of moderate virtualities of the photons (—g¢?,~¢2 > 1 GeV?) taking into account the
nonleading quark vacuum average (VA) of dimension 8. Only the’ leading in l/Q2 terms, .
where Q2 = —(¢? + ¢2)/2, were considered there. In particular, it was ‘established that such :
SR work in the restricted kinematic region w = (¢? — ¢3)/(¢? + ¢2) < 0.5. ’ B
" 'The ‘authors of Ref.[11], extending their -pioneering papers {12], have built a nonloca.l('

version of the SR for FF Fe.;s —re, which is a generalization of the standard SR for a meson FF

(13, 14] in the case of essentially nonsymmetric kinematics? Q} 3> Q% > 1 GeV?. Introducing
nonlocal condensates corresponds to an effective summation of the whole series of power
corrections (not limiting ourself to the VA of lowest dimension (0[%[0) and (0|G,, G, [0)).
Thus it turns out to expand the SR to nearly all kinematical region of w (0 < w < 0,95). -
For w.> 0.8, the FF is most sensitive to the value of the effective virtuality of the “vacuum
quarks o ~ A= (0,3+0,6) GeV? and an experiment being performed in thls kmematlca.l
_region, could serve as a measurement of the nonlocality parameter /\2 .
In the present paper we consider the process 4*y* — =#° in another essentially non-
symmetric kinematics: Q? < @% > 1 GeV?. In this region one needs to modify the SR,
performing an additional factorization procedure to separate the contributions of large and
small distances [17, 18, 19]. We shall follow the approach of analyzing the electroma.gn(‘tlc

~1see also Ref.[9),in which however the evolution of the pion wave function was not taken mto acconnt
’see also the recent work [{16) B
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FF of 7 — and K—mesons in the low-Q? region developed in' [19,'20].

In Sec.2 the main features. of the method are briefly described. In Sec.3 the OPE for .
the three-point correlation function is calculated for the case of moderate virtualities. The.

correspondrng SR is presented and its applicability is considered. For the case of essentially

“nonsymmetric kinematics, the OPE needs to be modified. In Sec.4 the most important steps
in the calculations are demonstrated for the simple scalar example. For the realistic case
of the process ¥™y* — 7° the structure of the infrared singularities is presented The fully
modified OPE and the correspondrng SR will be presented elsewhere

2f‘ : ,,The Method

. To write down the SR for the FF, we start, as usual, from the three-point correlation function
(see [7]):

T Falnw =i [dedy o (L@AWEOL), @1

: bemg considered at euclidean virtualities ¢, g2, p* = (q, + ¢2)*. Here J,, is the electromagnetic
- ,current of the two lrght quarks and 7% is the axial current, its projections onto the pion state
; |7r, P) bemg proportional to the pion decay constant f,:

f E 2.—
Ju=e (guwu - —d‘md) o= \/—(uvs"/au - dy57ad), (OIJ(,(O)I7r P) = —ipafn (2 2)

, Accordmg to the general approach of factorization the small and large distances, based on
" the Feinman diagram asymptotic analysis [21, 22], the leading contribution in.the correlator
" (see fig.1), which behaves like a power of 1/¢2, 1/p% (p* ~ ¢2 ~ —1 GeV?) comes from two

. different regions of integration: either from the SD(I)-region where all three currents are at :

“small distances (i.e. the intervals 22,92, (z —y)? are small ) or from the SD(11)-region so that
- the electromagnetic current J,(x) is placed at large distances (i.e.y? is small,but 22, (z —y)?
- are large) )
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Fig. 1

: Here ﬁg 1a) presents the full correlator (2.1), whereas fig.1b,c) corresponds to the lcad-
ing power contributions. In the ﬁg 1c) the large distances are presented by a generalized

)

: posrte operator of quark and gluon fields with ¢

' symbollcal 1dent1ty (ﬁg 3) ‘

e T

rrlﬁltiplier“— the two-point correlator of the ‘electromagnetlc current J,(z) and some com-
n” derivativés, denoted as ®, the sum over.

“n" is ‘undertaken. Let us emphasize that the tw1st not the dimension of these opera.tors, :

) counts the value of the contribution for such two—poxnt correla.tor. This proposes to take into

a.ccount the opera.tors of lowest twists for every “n”. The correspondlng, so called bilocal -
ob_]ect is not calculable in the perturbation theory Nevertheless, one can write down a dis-

©* persion relation for it (w1t.h a subtraction, strictly speaking) so that the- pa,rameters of the
'+ corresponding spectral density can be determined from a suitable “internal” ‘borel SR (see '
~+sec. 4.1 for details). : ‘

Such a factorization of the small distances one needs to make for the triangle graph (see

. fig.2a,b,c) and also for all other dlagra.ms (see fig. 2d,e f) which correspond to the condensate

power correctlons

Flg 2

Due to asymptotlc freedom one may wrlte down for the SD(l) cont"rihutic)‘n the following

‘h
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+ - - Finally we obtain (fig.4): .. e e

P Here the dots stand for the rest: of condensate diagrams. The ﬁrst row of (ﬁg 4) corre-
- bsponds to the usual OPE for the correlator (2.1) in the'symmetric kinematics (lg?] ~ |3~
PPl 1 GeVz) "The second row corresponds just to that additional terms which one needs o

2 to take into account for. the case of essentlally nonsymmetrrc klnematrcs (l‘hl < @]~
P~ GeVz) ‘Note, that at large and moderate values of g] these addltxonal terms should.

“ be’ suppressed and the correspondmg modrﬁed OPE-is converted to the standard OPE for .~

. symmetric kmematrc ‘This may be fulﬁlled because ‘at’ these’ vrrtuahtles the brlocal ob_]ect

“ "’satlsﬁes the’ above mentioned 1nternal” SR (see [19,20]). - U l‘. S

On the other hand the terms in parenthesrs into the second .row of fig.4' have _]ust the
same behavror at g2 =+ 0 as the corresponding terms of the first row of fig.4 and therefore the
i . full express1on is regular at this kinematical limit. As it is shown in Sec. 4, the srngular ing?
: ‘terms (so called masslve or mfrared slngularltles) appear from thc lowest tw1sts operators SR

S
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= 3 Sum Rule for the form: factor Foys o (ql,q2) at mod-'” k
erate v1rtuallt1es of the photons G ~ q2 ~. —1 GeV2 o

= g _‘ The form factor of 1nterest Fyere _.,,o(ql,qz) is determmed by the matr1x element

Ly

/ d‘*ze-'r’(w,p 1740,(2) 20 10) = s s (q,,é,),f :

b8 'Let us cons1der the Lorentz structure for the three-point correlator (2 1)to extract the tensor e
. structure related to Flepe—ixo. Using Lorentz invariance and Bose symmetry of the photons g

(3;.1)',” |

the pseudotensor amplitude .7-'0,,,‘ takes the form:

qu(ﬁa%) = pc- uvwn}-l (p ’qlv‘h) + qa uvwnAl (p qh‘h)
+ leaququv — €avgie,924] F2 ( aqh‘h) + lfauqrqz‘hv - chqw:‘llul Fs (P qnqz)
+ l‘oququv + eavqnqzqi'ul A, (p ’ql' qz) + leauqm‘hv + fawnqquul A3 (P »qh 192)

+ 6cqu [ ]:4 + —']:5 + (P q)AG] + Cauvp [ -A4 + AS + (P q)]:ﬁ]

where

P=q+q, g=q~-q, Fi@d qg)=F@a.9q9)
Ewvqiaz = €upo1°2° etc., A; (P2, q?r qg) = —Ai (p21 qgv (ﬁ)

Taking into account the nonexistence of rank 5 tensor in 4-dimension space-time:

€apiry 95e F €pins Gae Tt €y Gue T Exbap Gre +.‘5auv Gre =0 : (3-2)

-

~and the gauge mvarrance condrtrons Q Y Fauwr = @3 Fap, = 0 we get ﬁnally

.auV(quq2) = Cuqig lPaFl + qa Ay + l‘hvcaquz - qluea"qwdl Fy . I
2 2 .
-t lq2v€auqnqz + qlucavqmrl A, + Cauvq [B"Z"‘LF2 = _(P_‘Il.Az] : ,(3f3) .

, 2
o +
+ (awp[ ,(pq)F2+P q Az]

‘Tt is clear that on the photon mass shell the contributions come only l'rom the structure

" Pauays F1(0,0,9%).  Therefore, and bearing in mind the expression (3.1), we shell study'
throughout this paper the invariant amplitude Fl (ql,q2, 2) (see [7]) R

For F, we have a dlspersmn relation:

2

ph 2 g2 Sl A ‘ : o . i B . :
( ,quqz)"' / Ml—q—‘—’—gzlda + subtractions S '(3.4) .
o—p . o

- where l'or the physical spectral density one may write the standard plrenomenologrcal anzatz,
) 1nclud1ng 7°-meson and hrgher resonance state contubutlons (the contmuum) Ll

PP (07ql1q2)_7rf1r ) Yyt —x® (qlv(h)’l‘o 0'—0')/) (07‘1“92) (3 5) )

In. -the chiral llmlt ‘we_neglect the p10n mass and- the masses. of hght quarl\s as well. The
parametcr o, stands for the threshold of the continuum with A,:meson being included there ;

o Applymg the SVZ-Borel transformation results in the SR:.. L

B ‘—‘»M’)Fx(ql,qz, )= 0ulah M) = o [ e o) @),

In the Euclidean region ¢f,q2,p* < 0, whcre the virtualities are largc cnough duc to

" asymptotrc l'reedom the main contribution comes from the perturbatne trxangle graph



" Fig: 5

g ‘(ﬁg 5a.) The perturbatlve loop make a contrlbutxon to most of the tensor structures of‘

: eq. (3 3). Extra.ctmg Fy one gets:

' Cem? | : .
Fpt(‘h:‘lz:l’ )— 2 \/_/ d11d$2d153 (1- Z) 172 (3.7) :

f—‘hl'll's T g3T2T3 = p J"112]
For the borellzed a.mphtude after 51mple ca.lcula.tlon we obtam

(Dpt(qth,M?)_ AIZ/ d -U/AI pp‘(a7ql’q2) ‘ . _‘ " (3'8)

: where the perturbatlve spectra.l densxty rea.ds

(0r ‘11"12) = 2\/_0"" / de [azz+Q2(1+w(3"""))]3 :

' Wlth decrea.smg the v1rtuaht1$ two type of corrections come into play. As was argued prev1-
ously [6] fora system of light qua.rks the power corrections to &% (~ (0 IG’“ G 10), (0|1l)1l)|0)

etc.), are of the most importance, whereas the perturba.tlve ones may by neglected. . The

.. procedure to calculate the power corrections is well known [13, 14], but. nevertheless it is
reasona.ble to make it for the sake of subsequent analysis.

' The contnbutxons proportlonal to (0|G%,G2,(0) condensate are deplcted in fig.5b)-g) :
mcorporatmg the fact that a quark propagates not in empty space, but mtera.ctmg with the -
background field of nonperturbative gluon fluctuations. The most straightforward way is to .

 take quark propagator in coordinate representatxon [23] (the Fock~Schwmger ga.uge for the
s ba.ckground ﬁeld T A,,(J:) O is implied): S : ‘

: ar 7“; 1 rax |
 Sewspmeglons
iF 1 F 0)Gox L (310)°
+{47r2;7y9 z,Gou(0) - 1927 19272 4 zy —(Iy)z) ﬂPX(O)GWX(O)}. H(S.IO)'“

6

SRR S '<‘-3.§), |
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x

0

y . d)

) X
0

JUu
y g -

where r = z — y and G’W, eaw,,G’,,,, The diagrams of ﬁg 5b-g) obvxously correspond to
the different parts of the expression (3.10). From this representation it is straightforward to
observe that the contributions d) and €) vanish due to the choice of the coordinate reference
point. It should be noted that the diagrams b),c),f},g) are most easily to calculate by a .
direct transformation to a- representation with subsequent Fourier transform. Extracting
the contribution to the relevant tensor structure and performing the Borel transform of
the corresponding form factor F{¢ (g2, 42, p?), we get for the sum of the above mentioned
diagrams: :

Flg 6

\/_aemra.

2199 (g2, 2. M?) = 2 0jGl0) ( th4 - QfM,) 1_1wr (3.11)

Consxdermg the contribution to quark condensate term, it should be mentioned that in -
the chiral limit they would start from the terms proportional to {0jpT4yT'¥|0). For these:
VA it is supposed the dominance role of the vacuum intermediate state from the full set
of hadronic states (see [6]). Two types of diagrams contribute to the term proportional to
(0]1/;1/)|0)2.' The first type diagrams are depicted in fig.6a-i) — the so called diagrams with
a soft gluon. The calculation proceeds further in a standard way[13, 14].

The second type diagrams depicted in fig.7a-1) correspond to the situation with a hard -
gluon exchange. Only the diagrams a)-d) contribute to the form factor F;. Summing the

contributions to the form factor F('”) one gets for the borehzed amphtude
<qg> __ \/_Qe m. 0 _:il_ 18 1 3.12 :
o5 = e a0 (et 1) (e 12

7



Fig. 7

e e

Combining now Eqs.(3.6),(3.8),(3. ll) a.nd (3 12) we ﬁnd the SR for the FF for moderate
virtualities of the photons:

: 2 2 _ \/fazm | — z2Q*(1 + w(z — £))?
F—yo-y-__.,r.(‘ﬁvqg) = _-f’ {2./; doe=°IM* / dz [aII+Q2(1+“’(1‘—$))P
7r a,

1 1 1
+ 2ot (- )

64 , oo o fl1-3w? 18} 1 .
+ g (S ) ) 6
In the symmetric kinematics ¢} = ¢% this SR coincides with previously calculated (7. 1t

should be mentioned that in Ref.[10] only the leading.1/Q? terms have been calculated.

In fig.3 we give Fleqepe(Q?,w) for Q? = 2 GeV? normalized by the value

Fyoneno(0,0) = V20 . /7 = [24]. The sum rule method is applicable for all 0. £ w < 0.7.

The scale o, obtained by an explicit fitting procedure, varies from o, = 0.75 GeV? to

= 1.2 GeV?, For w > 0.7, the extrapolation is already invalid here. For w > 0.8, SR
becomAeynonstable. The increasing of the o, is not unexpected because with increasing of

~ w the relative value of the power corrections in (3.13) grows up and the scale o, play role

of an effective duality interval. However, a universal, w-independent value for o, is more
natural [14, 15]. To make g, stable in the kinematics QF > Q3 > 1 GeV? one should take
into account the whole series of higher power corrections {12, 11, 16} introducing nonlocal
condensates. In the other essentially nonsymmetric kinematic one should use a modified
form of the OPE [19] as well.
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4 The structure of the infrared 's'ihgﬁlarities.. A mod-
ified OPE in the case of essentially nonsymmetrlc
kinematics: P < g2 ~1 GeV?

It is more instructive to return to “old” variables ¢ and ¢} instead of w and Q? in the
<SR (3.13), to investigate this kinematics. The condensate terms will contain singularities at
q% — 0like 1/q? or 1/4{. The perturbative expression contains nonanalytic in q? contribution
as well. To make thrs clearly it is sufficient to substitute in (3.7):

Il—(l—I)/\_I/\ .’E3—I/\ 3:2—1—3:1—:1:3

and after borehzatlon, to perform the integration over ,\ (see Sec. 4.1)..
For ®1.:(¢%, Q2 M?) we obtain an expression suitable to analyze the limit ¢ — 0 :

a,,,,zf “otziaz 1
Suale' @117 = S22 [ e L |
. o
, X{ (t+ ;]”qu :/M2)+ P z/M? ln il [27‘;; + 3”4] (4.1)
_Z P\ p)n+1) | |
2 \37) “(n-1)

where @ = -2, Q? = —¢2 , ¥(z) = I"(z)/T'(z), I'(z) — the Euler Gamma function.
Nonanalyticies of logarithmic type ~ ¢*Ing?> ~ ¢*Ing? appear in the representation
(4.1), which is connected with the possibility to create a massless gg-pare by a photon
with a virtuality ¢%. Terms proportional to In¢? signal the appearing of the so-called mass
singularities [25] and therefore one needs to perform the factorization of the small and large
distance contribution more precisely in accordance with the method descnbed in Sec.2 (see

fig.1,2).

4.1 The Scalar example g¢?4)

- To make more clear the origin of the singularities and trace a program to remove it, consider
‘a simple scalar example. In this example most of the elements of the real problem of the

process 477" — 7° will be considered as well.

X
I
z3 0
y T
a) b o d)
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Consider the g¢:(’4)-theory for definiteness. The scalar three-point correlator analogous to

Fo(@1592) Teads:

Flawa) = [ ded'y o mmioiT (5(2) 76) S0} ), @)

where j(z) =:¢(z)¢(z}:. The perturbative contribution and some of the power corrections
are depicted in fig.9. As to the other power correction diagrams one not need to consider
them for better understanding of the problem.

_ Calculating the perturbative contribution (fig.92) in a-representation one gets®:

: . 1 i . .
~ N B 1
2@ = B(-p* - M)F f da1dzgf(1 > oy + zg)——e (Pumt@mm)/mnh?
[’} Z2T3 :

d Mz _ 2. ar3 _0ts ' ‘ .
— &9 ZAIMPX —Q3E/M2x ) ;
/0. oz e ' (4.3).

Af expandmg formally the exponent. in (4 3) in powers of ¢?, the integral over A for each term

of the series diverges. Nevertheless, it is possible to perform the integration d1rectly by using
Mellin representation for the exponent: '

—4_ 1 Jp(_ ' f
e =5 - AT T( J)"i,J \(4.4)

wvhere’ ct is‘the‘ integration contour in the complex plane J placed on the left of all the poles
of the integrand. Instead of (4.3) one gets the representation: -

. —Q?z/miz L 9’z z/M? 1/)(""*'1) !
}’ié(u)‘— /d z/M ;M—z{_] M e” Z/M +Z( ) Tl' ’ (45)

n=0

" in which’ the smgular in ¢? term is extracted evidently.

It'is very easy to obtain the results for the diagrams of fig.9b,c,d), whrch simulate the .

: power correctrons

P

ol 12 S e ) . .
S @(b)—B(“P _,Mz)( (222)) =0, @(C]=—%(;SM)7, Oy = — 25?:41 . (4.6)

. Obvrously, one needs to perform an additional factorization of the small and large dlsta.nce
contnbutlons for the diagrams of fig.9a,d), as just these dragrams contain smgula.r in q

“terms.-

To get SD(II) contribution for the full amplitude (4.2), let us to extract the propagator
S(y) = ifan?(y? — 10) as a coefficient function (see ﬁg 1c): e

SD(ITy _ - n
- F ) /d‘ye ig2y 7 Z 5 v .yt

‘a‘un)ésm)‘}m) an

x / 'z e=as ([T {j(a:) $0)( T, ...

3pearing in mind that all invariants ¢?,¢2,p? are negative, we have made a Wick rotation in a-plane

i1




Here the two-point correlator is responsible for the large distance contribution.
It should be noted, that forany “n” one may reexpand the current with derlvatlves over
the set of traceless operators with definite twist [22]:

Yy (88 .. D ) =

[n/21 — — :
nl(n — 20 + 1) a1 yhn-2t 5 ‘ (/
Z:g n(n_—mr( ) {y ...y }(8(8 )'{.‘7“""?”""'}‘*" 49

In (4.8) we have introduced the notation {‘8_‘,x ...‘5“} for a traceless group of indices
B1eoofint g“‘“fO{_,,Fi,_,Fj,,,} = 0. Then, obviously, the main contribution in (4.7) at ¢ — 0
comes from the lowest twist operators (t = 2 in our case). The higher twist operators are
accompa.nied by the multipliers ~ y , (¥?)?, etc., which cancel singularity of the propagator
'~ 1/y? and provide the regular in ¢? terms.

The factorization of the SD(II) regime for the perturbative tnangle loop corresponds to
the expression (4.7) in which the perturbative contribution for the two-point correlator is
taken into account. The main observation here is that, all, singular in ¢2, termsin (4.5) is due
to the operators of twist 2. Indeed, considering the two-point correlator in the perturbation
theory we find:

M) = [ dzeios (o7 {j(z) (O T Tu) 8O} 10
= (=" {q1u -+ Quun) Hn(qlz) . V . (49)
7 ,whefe
TPY(q / dz z" lnq oz (4.10)

Substituting (4.9), (4.10) in (4.7), it is stralghtforward to sum over “n”, bearing in mind
s that {gugy --- Q1. } differ from gy, ... g1, in the terms ~ y%. Then we find: ‘

1 2 .= . .
spun _ 1 dz  _orzms QTT a2z p
(I)pt -272-‘/0 ::M’c —ln -—ﬂ;—e" . (4.11)

This result should be compared with the exact expressmn (4 5). Here p? is the parameter

of UV regulanzatlon for the composite operator ¢{ ¥ pye ,,,_}qS Thus, the coefficient
function of the SD(I) regime ( see fig.2b), fig.3,4 ) does not contain nonanalytic in ¢ terms
(see [25, 26}) due to the-exact cancelation of the singular terms from (4.5) and (4.11). As
“to the factorization of SD(II) region for the diagram of fig.9d) proportional to {¢?), the
" corresponding contribution of the lowest twist operators reproduce the singular term (4.6)
~1/4* at all and thus, this singularity shall not appear in the modified OPE in the case of
essentially nonsymmetric kinematics ¢* & Q? as well. ’
As have been mentioned above, the two-point correlator in (4.7) is responsible for the
.. large distance contribution ~ 1/]¢;| and is not calculable in the perturbation theory.

12

However, we may write down a dispersion relation for it, substituting a reasonable spec-
tral density of the type: “the lowest resonance contribution”+ “continuum”:

i, / ds il (s) -+ ( subtractions ) ' (412)

where 8I1,(s) = ( (s + 10) II.(s —i0))/2i. c

A similar relation one may write down for the perturbative correlator (4.10) substxtutmg
the perturbative spectral density instead of exact one. It should be mentioned that the
arbitrariness in the value of ;2 (4.10),(4.11) corresponds to a finite arbitrariness in the UV
subtraction procedure. However, the UV behavior of the exact and perturbative spectral
density coincides and it is not necessary to specify the subtraction procedure because the
corresponding correlators come into play in a difference in the OPE (see fig.4).

Using the completenms condition for the set of the “hadron states in (4.12), it is easy :
to get the followmg representation:’

iMa(gr,y) = illgpy(@) v .oy =
f¢(—z)"(Jq1 "(=") / 1B S) (=) (yqn)”

: 2
$—q

i -m} — gt
- 4+ ( subtractions }

(@13 g

'whAere we deﬁné (Olj(0)|¢, y=ify by analogy. with the known matrix element for th:élyf-' ;
meson; (z" j;) dzz"$(z) ; #(z) — the twist 2 wave function (WF) of the scalar * ‘meson” :
¢, the moments of whlch are defined by the matrix elcmcnt

B THOET IO = P ity | daamets) uw)

The continuum contribution of the higher cxited states, as usual,. is approximated by the

perturbative spectral density 6“5’,‘(3)\ = -(i/87r2)_[;)l drz™x starting from the continuum
threshold s, in this chanel. . L

As it have been already mentioned in Sec.2, the spectral densi‘ty parametcrs of the exact’
correlator (4.13) (namely: the mass my, xemdue Je, moments of the WF (2*) and s, ) one -
may determine from the corresponding sum rule for the moments-of the scalar meson WF,
which provides the additional terms in the OPE to be suppressed with increasing ¢?. So the
modified SR will be in accordance with the standard one for the three-point correlator m: )
the case of a symmetric kinematics (sce fig.4). (Jormdcnmg these paramcters as known one
may subshtute (4.13) in (4.7) and define the “bilocal” contribution in the r.h.s. of the SR
for tlne three—pomt correlator. Finally, all additional terms in the OPE (see the qecond row "
of f'g 4) we may wnte down in the form:

AQ = thlocul_ ((p(na[))(”)+ q)bl)(”)_’_ .‘-)

1
— / 1 e-Q’i‘/l\l’r Cq’i‘/l\l’
o. Th?

AF20(r : S
[lf;ﬂs(- 4) + %ln (s (-l:qZ) + Si?(é(x) + 6(-.?))] ,(4.Y15.)A

2
my+q* 2
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Thus the full expression for the r.h.s. of the SR reads:

&, Q* M?) = D)+ Bp) + P + Pq) + 4D =
- ‘l 1 -7/ M1z 4F¢(I) SEM L (5o +¢°)E eEME
zM? q . 27r2 M? ]
Y(n + 1) 8(¢%) ‘ ,
+ g ( ) A (4.16)

It is straightforward to observe that the last expression is well-defined for ¢*> = 0. In our

subsequent analysis of the SR for Fyeye_se we shall follow a similar strategy. Instead of the
scalar meson the p-meson will contribute.

.

4.2 Structure of the infrared singularities in the realistic case of

. the process y*y* — #°

VC0n51der the SD(II) contribution for the correlator (2.1) (see fig.1b), where only the points
y and 0 are at small distances. The small distance contribution is factorized in a coefficient
function — a propagator or a multiplication of propagators. The large distance contribu-
tion is represented by a two-point correlator of the electromagnetic current J,(x) and some
composite operator with derivatives (see [17, 19]). v

Namely, if one extracts as a coefficient function the free quark propagator S (y) =
7/27*(y? — 0)?, for the contribution from fig.1b one get from (2.1):

Fad!h — —m / d'y 6f‘"’” 2,:y4. ; Yy -
X { —Svpac /d‘":c einz (o|T {Ju(z) 17(0)(‘-(';,Jl ‘-5,1")'7,"7511(0)} |0) | |
‘+ie,,,‘,,/d“z etz (OIT{Jﬂ(x) ‘7(0)(‘5'#1 ...‘5,1")7‘,,u(q)} [0) } (4.17)

+ charge conjugate contribution

Where Sy ag = (gvﬂ yaa - gva 960 + Guvo gaa)
‘For any definite “n” we may expand the current with derivatives over the set of traceless

opera.tors More precxsely, one needs to deal with traceless combinations of the indices
B, b1s-- - b Therefore the main contribution to (4.17) will come from the operators with
Jowest two twists, which corresponds to the traceless {8, p,,-. ,p,.} combma.txon and to
~ combination with one contraction ~ gg,, or ~ gy,;. The higher twist operators yields the
multipliers like (y?)?, (¥%)?, etc., which cancels the singularity of the quark propagator 1/y*
and leads to regular terms in (4.17). '
" Consider the factorization for the perturbative loop (see fig.2a,b,c). Diagram of fig.2c)
corresponds to the expression (4.17) with a substitution of the perturbative two-point cor-

relators.
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_The notatlons read: » ‘ ;
L (05) = / dzerios (0T {J () 50)sD )"'7a'75u(0)} o)

o A /d“ze"‘"’ '(OIT{J (x)u(O)(ya)"%u(O)}W) . ‘(4-18)'.

e Analogously, TIRS(q1,y) and TR, (q1,y) denote correlators of the type (4 18), but with derlva-

tives on the rlght Calculatmg these correla.tors in the perturbative theory we obta.m forr
arbitrary:“n”: .. ¢ SRR c TR :

[ | i | e o

L where dPk = de/(27r)D = 4 — 2¢; here and in the followmg we use the dlmenswnal
'regularxza.tlon and the M S subtractlon scheme '

- Let us expand the. mtegral (4 19) in powers of y? keeplng only the terms up_ to v2 (see
Appendnx), beca.use it is sufficient for the sake of extracting the contrlbutxon of. the lowest

- two twist operators. Indeed, the contributions of the lowest twist operators in (4.17) one can

get if suppose formally v '-— .0 in the numerator of the integrand.” The terms proportnonal '

to y? wxll provide the contnbutlon of the next-to-leading operators. Ta.kmg into account
these expressions and (4 17) after s1mple but too large calculations it is pos51ble to sum,

over “n” and to mtegrate over. d“y w1th the-help of Fourler tra.nsforms As a result, for -

',S?,(")(q Q2 Mz) we ﬂnd

/ (I>,SD(")(q Q2 M’) aem2\/_/ e _Qz,/Mz 1

k"i»,tx.{eq:/l"l?lnq‘xx (II_}__(I__I_’ 2quf_qu4} (420)

: We note tha.t the contributions of the lowest two twist operators proportlonal to q2 lnq a.nd e

q*lng? respectlvely, just coincide with the nonanalytlc terms in (4. 1) ; B
Now we may proceed furtherin a sxmllar way as to the diagrams proportional to the gluon

‘condensates (see fig.5). A similar study of the singularities a.ppea.red is more convenient to : -
make dla.gra.m by diagram because for the different groups of dlagra.ms after a factorization -

of the SD(1I1) regime, the different coefficient functions (CF) come into play. For the dlagra.ms )

i of fig. 5b,c) the exact expression, after a transformatxon Just srmllar to that the perturbatlve ,
B ’one have been ma.de has the form: - e U

18

‘i’?.-é(tlz,Qz,Mz) b,aek'"\/_" a’GG) / d:c —Q’:/M’ i
. M £ 17 n+1 : o
x{q o /mln;lw (M) #ot1) )} (421) ;,

a=1 ) : ’)
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V em\/— ~1 1 .
,(p"‘(qz’Qz’MZ) = Jem ¥l 7r( GG)M4{ Q?}' o

a,m\/'fr 25 M 15 2, ¢'Z
GG dze=9 ’/M’z {22 e
_ ) _/ gz 7z z . x? In M2

n=1 S
.

The factorization for these diagrams may be performed as in the perturbative case. The obvi-

'~ ous difference from that case is that instead of the perturbatlve contribution for the “bilocal”
objects (4. 18) mentloned above, it is necessary to take intoaccount the correspondmg (GG)
, contrlbutlons The final result for the dragram of fig.5b) take the form:

) M2 — : E e B T
><{:I;-a_:e":“'/llf-l-e""'/l“"2 !nq_:;+e‘q2?/M2(2i_-6—)}"‘l s (4.23’)’

and for the dxagram of ﬁg 5c)

q,SD(H)(q Q2 M2)_bacm \/_7l' aaG >M4q2

acm \/—ﬂ' GG) /d ’—Q7Z/M7

z

M2 o (2 LN\ g, ¢P2E ‘ e
‘x{;l—z—;e" / +<—,—;;) 7 /‘ In — } - (4.24)

: Note, that the terms proportional to 1/¢? are due to the traceless combination of indices
B,pt15: .., pta in (4.17), whereas the terms proportional to Ing? correspond to the next-to-

/ leading twist operators. A similar consideration of the diagrams of fig.5f,g) can be ma.de ‘

analogously ‘The exact expresswn for the sum of these. two dlagra.ms reads: -

a6, 0% M) = "‘“"lgf "(£266) g [ dee- s

(222 42) [ 2z z - A PEN P(n + 1), “
e s Eye)
ERE - ‘::7 q?.

(4.25)

' To separate the contrlbutlon of the small distances for these dlagrams one gets a multrpll-
‘catlon of two quark propagators as a CF:~

. oo

SD(IT i (v —z) z L1 . n o
]:c.,w(') —-/a’"ye oy d4227r2(y—z)4 ori Zon!m.‘ y‘f’...y“ 2z v;(4.26)

/ d2e% O {4 UO(T - Ty vtero(Bor . T AN Er17250 } 0)
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'lhe GG) contrlbutlon in (4 26) leads to the expressron , g

P

SD(”)(q QZ A12) ; " e.m. \/_W(‘::GG AIS/ dI _QZ,,-/MZ

iss 18
x {_(21 ;*-x)cq?f“n l:n)—'-‘-‘q‘:;:r - —-——(2::: l)il-g—e'l’zlnl’ e 'j L
e T g
‘-+v’f/“’(-.)}» R e e (427)'

‘ Fmally, an analogous procedure of factorlzatlon should 'be performed for the dlagrams

‘with a quark condensate. The situation here is.very similar to that of the scalar example

As to the diagrams with a  soft gluon (fig.6) , the contribution of the dxagrams of fig.6a, b,c):

CiniFyis 1ndependent on. p* and vanishes after borellzatlon Diagrams of fig.6g,h,i) give a
e regular in ¢? contrlbutlon and thus they need no of addrtlonal factorization. The relevant
. diagrams are of fig.6d,e,f), for which the factorized expression (extractmg the correspondmg

‘ CF (see (4.17),(4.26)). coincides with the exact one.

" The same result we shall get for the dragrams with a hard gluon exchange (ﬁg 7) Tt should :

.be mentroned that the CF which corrcspouds to the’ diagram ‘of fig.7a) (after extractlng'
‘ “the SD(II) regnne) is a multrpllcatlon of two quark propagators (see (4.26)),.whereas the :
: dlagrams of fig. 7b,c) in the same regrme provrde anew CF —a multlphcatlon of two quark v
: "propagators and one gluon. The contribution of fig.7d) is a regular in g2 functlon and’it is -
.mo, need of addltlonal factorlzatlon : :

“As have already been mentioned above, the dlagrams of ﬁg Te-r ) do not contrlbute to the :

: Fl form factor. However, a more precise consideration of the bllocal objects Wl‘llcll belong to

'the correspondmg CF léads to possrble nontrlvral contributions — thie so-called contact terms ;
[17 19, 20] A subsequent analysls of such a terms leads to the correct normallzatlon for the -
N ;v meson electromagnetlc form factors at zero momentum transfer [19 20] A conslderatlon :
S of. the contact. type terms due to operators of the. lowest twrst ( at.an arbrtrary “n” of the
derrvatrves) will be performed in the next our Paper.. ..o i S : k

As a concluslon it should be mentroned that as a result of the subtractlon procedure, -

,"symbolrcally deprcted in fig4, all infrared smgularltres in the standard SR cancel with the -

' correspondlng singular contrrbutlons from the dlagrams in which the SD(II) CFhave been
. -ralready extracted Hercwrth m the bllocal ob]ccts the contrlbutlon of the operators of thé
»bv,_,lowest two_twist is tal\en into. account I‘he wgular m q tel ms \vluch remain after thxs“ :

- subtractlon, wlll contribute to the' desxrcd SR. e i "

A further step in the calculations is to determine the contrrbutrons of the bllocals them-

selves It is of 1mportance to emphasrze that we- take mto account the contrlbutlons from
“ 77

. composrte operators in.the correlators for an arbltrary m’, because the twrst of these opera-
7 tors counts rather than their drmensrou Tor the process in conslderatron these contnbutrons :

. oo will be obtain in the next our work and the dcrlvatlon of the full SR for the process 7 N A
Sin the essentlally nonsymmetrlc kinematics will be completed B 2

.. The authors are most grateful to A.V.E fremov, 5.V. Mll\hallov A.P. Bal\ulu and V.A. Ne :

g : ‘:»sterenl\o for stlmulatmg discussions and remarks. One of the authors (R.R.} thanl\s S V Mxl\h- '
' “‘ arlov for many fruitful dlSCUSSlOnS and critical remarl\s : ¢
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A Appendlx. Calculatlon of some useful momentum_

1ntegrals expandmg in powers of y

We shall ca.lculate our mtegra.ls usmg dlmensmna.l regula.rlzatlon The basic, well known,

L mtegra.l reads:

I(Lyr) = /do. (Y =)t PTr+ D2)I(L—r—D/2) (A1)  -

P4 ST~ GnpT 0@ KD) (9O
| ‘ ‘where D= 4 25 and de de/(21r)D 1t is more convenient to define the mtegral

I‘(17/2)

i The mtegra.ls of interest are of the form

(U {1, pipepo SRS (N ) (R O |
/ dD” (p’)"(p q)"’. / deze'2? L T(@r(8) J. ,jf [(,, a7 + S

‘z we are left w1th

'

(p—9)?+SI"

. b, 'Aftér a shlft of the mtegratlon vana.ble we expa.nd m a sta.nda.rd wa.y

(p+ g. y)" = (q y)" + C n(d- y)""(py) + C’(q y)""(py)2 -( e "(A"5)

E where cr = n'/m'(n —'m)! are the binomial coeﬂicnents Now the mtegratlon over. de is :

o stralghtforwaxd a.nd we obtam up to terms ~ y

J(L =@ y)"R(L 0)+c’(qy"-’ ’R(L 1)+0(y‘), ] “8)

L) = 4 (@R, 0)+C*(q o, 1)+0(y“)} T

+ y,,{C‘(qy)""R(L D) + OG5 RLL, 2)+0(y‘)} an

. “"JW(L,'r'i)":: q,,q.,{(q WPR(LL0) + G2 o R(L, 1)+0(y‘>}+ e
= @Yo + Gows) {CHEY) T R(L, 1) + CREYN T3 R(L,2) + .0(y4)} +

o+
4 gpe(@9) R(L,1) + C3(Gy)" P R(L,2) {2ypy,+9pay R
+ C‘(qy)“"R(L 3){12ypyay +0(y )} T d '*"(A'?)af“

(A 2) :

K3

: where L Sa+ ,B,q = qz S q zz,z =1-z Omxttmg for a moment the mtegra.tlon over ,

{J(L n), J(L ) J, (L n), }—/dD (py) (l’p“’p’p“’ ‘ } C(A4) i &
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$opmdakTop npouecca 'y 'y -> 7° npm Manou Buptyaanom'M
oAHOro u3 toToHoB 1 npasuna cymm KX, (1):

- ctpyKTypa umbpaxpacuux CUHTYNApHOCTEN . - i o
Metonom npasun CyMM KXA4, Mbl MccneayeM ¢>opM¢aK'rop F7'7*’ﬂ° (ql,
. q3) B-0o6nactun ManbIx BMpTyaanOCTEM OAHOro' U3 tbo*rouoe lq,l < |q2| 3

21 rsB2, rae Heoﬁxonumo nposecru AONOMHUTENBHY!O tbax‘ropuaaumo BKna-

" noB: BonbWYX W ManbIX paccToAHMIA. B KayecTse nepsoro wara, ¢opM¢aKtop
: f’uccnenye'rca B 06NacTn ymepeHHbIX Buptyaanocreu toToHOB: IR H >,
ok I'aB2 TAe MONyyYeHbl  NoNHsle: <0IG5 I0> <0l\!/\!1|0>2 nonpasku
" 'B npaeune cymm. lMokazaHo, uTo. umbpaxpacuble (maccoBsie) CUHFYNIRPHOCTH
MOFYT * 6bITb ' Bbl4TEHbI: NpPH . cooraerc*reyromem ONEpaTopHOM . pasnOXeHnu |-~
" ANA - CyLWeCTBEHHO HeCMMMETpWIHOM KVHEMaTUYECKOM CUTYaunM 6naroﬂapn B
: oneparopam AByx meauumx taucroa Hauﬁonee BaXcHbIe LWarv uaaneumux

Bbl‘lMCﬂeHMM npOIleMOHCTpMpOBaHbI Ha ﬂpOCTOM CKaﬂﬂpHOM npumepe

Pa60'ra BblnonHeHa a J'Ia60patopm1 TeopermeCKou dmam(u OVIFWI

o fnpehoum OGbenuHeHHoro‘ um:mryraeaepuvx}tx nccn’e:xoaanuﬁ; Ilyﬁua‘l992" L

: "PamomKMHAB PyCKOBP y R ‘ R : ' E2-92F425

We extend the QCD sum rule analysls of the form factor F * *’ﬂ.o(ql.‘ A

77

f‘v’,qg) into the region of small virtuality of one of the photons lq,l < 1g3| >

> GeV?, where one should perform more precrsely an OPE to factorlze large .

The lnvestlgatlon has been performed at the Laboratory of Theoretlcal
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" The Form Factor of the Process 7*y" » m°. for Small RN R Y

e V|rtuahty of One of the Photons and QCD Sum Rules (I)
g vThe Structure of the Infrared Smgulantles

4

.and small dlstanoe contrlbutlons As a first step the. ‘form' factor is’ mvestlga- 3 B
“ted-in the region of moderate virtualities: q} "'dz > =1 GeV2 and ‘the-full
’, '<OIGz up IO> <0|\!/\IIIO>2 _corrections: in: the sum  rule are- obtamed Bis
. +is shown that the mfrared mass singularities are subtracted .in the correspon-
- ding- OPE- for essentrally nonsymmetrlc kinematics’ due to the operators of.
- lowest 'two twists. On a simple scalar example the most lmportant steps of
! the further calculatlons are demonstrated : .




