
A.V.Radyushkin, R.Ruskov* 

OfillBAMHBHHblM 
MHCTMTYT 
RABPHblX 

MCCJBAOB8HMM 

AYfiHa 

E2-92-425 

THE FORM FACTOR OF THE PROCESS -y*y*➔,r 0 

FOR SMALL VIRTUALITY OF ONE OF THE 

PHOTONS AND QCD SUM RULES (I): 

THE STRUCTURE OF THE INFRARED 

SINGULARITIES 

Submitted to 11 51AepHasi qi1113111Ka 11 

*On leave of absence from Institute of Nuclear 
Research and Nuclear Energy, Bulgarian Academy of 
Sciences, 1784, Sofia, • Bulgaria 

1992 



1 Introductory remarks 

In the past ten years the processes 7*7* -+hadrons ('1*1 * subpr9cess of. ll -+ ll hadrons) 
have been of increasing inter~st among experimentalists [l). For any luminosity of the e+c. 
be~ms, the best situation from the PC?.int of ~iew of producing hadrons occurs when one of 
t~e photons (or both) is near. its mass shell (q;-+ 0)[2). Let us mention the role of the future 
experim~~ts with real photon obtained by converting a e+(c) beam into ,-beam without 
any lose ~f the energy or luminosity (3). 

As the "quark content" of the photon is well known, the theoretical analysis of two
photon scattering is clearer than hadronic. scattering. We calculate the form factor (Ff) 
F-y•-y•-ir•(q;.ql) of the transition 7•,· -+ ,r0 in particular, in the kinematic region when 
qf -+ 0. Theoretically the process ,•7• -+ ,r0 is a playground 'for comparing different 
approaches. • ': 

In the framework of perturbative QCD the FF F-y•-y•-,,• was first calculated for an asymp
totically high virtuality of one of the photons in (4). The case of asymptotically high and 
equal virtualities of both the photons (Q2 = -q; = -ql), was investigated by Voloshin [5] 
where the next-to-leading power correction was calculated as well. As the virtualities of 
the photons decrease, the rionperturbative QCD-effects play an increasingly important role. 
These effects may be· taken into account by the QCD sum rules (SR) (6). ·In Ref.(7) th~ 
FF F-y•-y•-,.•(Q2), obtained by the QCD SR method and by the perturbative approach were 
compared and the two approaches were shown to be mutually consistent in the asymptotic 
region: Q2 ~ 2 Ge V2

• 

In the asymmetric case ( q; ,f. q?) the total O(a.) corrections in the asymptotic limit for 
F-y•-y•-1r• ( qf, qi) were obtained in Ref. [8)1. In Ref. [10) the SR for FF were obtained for the 
range of moderate virtualities of the photons ( -q;, -q? ~ 1 GeV2

) taking into account the 
nonleading quark vacuum average (VA) of dimension 8. Only the.leading in 1/Q2 terms, 
where Q2 = -(q; + q?)/2, were considered there. In particular, it was established that such 
SR work in the restricted kinematic region w = (q; - qi)/(q; + qi) :5 0.5. -

The authors of Ref.[11), extending their pioneering papers [12), have built a nonlocal' 
version of the SR for FF F-y•-y•-1r•, which is a generalization of the standard SR for a meson FF 
[13, 14) in the case of essentially nonsymmetric kinematics2 Q; ~ Q~ ~ 1 GeV2

• Introducing 
nonlocal condensates corresponds to an effective summation of the whole series of ·power 
corrections (not limiting ourself to the VA of lowest dimension (0ji,&tJ,j0) and (0IG".,G"11 I0)). 
Thus it turns out to expand the SR to nearly all kinematical region of w (0 :5 w :5 0, 95). 
For w ~ 0.8, the FF is most sensitive to the value of the effective virtuality of the "vacuum 
quarks" u2 ~ A!= (0,3+0,6) GeV2 and an experiment being performed in this kinematical 
region, could serve as a measurement of the nonlocality parameter A!, · · 

In the present paper we consider the process ,•7• -+ ,r0 in another essentially non
symmetric kinematics: Q; ~ Q~ ~ 1 GeV2

• In this region one needs to ~odify the SR, 
performing an additional factorization procedure to separate the contributions of large and 
small distances [17, 18, 19). We shall follow the approach of analyzing the electromagnetic 

1see also Ref.[9],in which however, the evolution of the pion wave function was not taken into ~CCOlint 

·2see·atso the recent war~ [16] i 



• 
FF of 1r - and /{-mesons in the low-Q2 region developed in (19,'20] . 

In Sec.2 the main features of the method are briefly described. In Sec.3 the OPE for . 
the three-point correlation function is calculated for the case of moderate virtualities. The 
corresponding SR is presented and its applicability is considered. For the case of essentially 
nonsymmetric kinematics, the OPE needs to be modified. In Sec.4 the most important steps 
in the calculations are demonstrated for the simple scalar example. For' the realistic case 
of the process ,•,• --+ 1r

0 the structure of the infrared singularities is presented. The fully 
modified OPE and the corresponding SR will be presented elsewhere. ' 

2' .The Method 

To write down the SR for the FF, we start, as usual, from the three-point correlation functio~ 
(s.ee (7)): 

Faµv(qi, q2) = if d4 x d4 y e-iq,x e-iq2Y(0IT {Jµ{x) J.,(y) i!(0)} I0), (2.1) 

being considered at euclidean virtualities q~, qi, p2 = (q1 +q2 )2• Here J" is the electromagnetic 
current of the two light quarks and j~ is the axial current, its projections onto the pion state 

j1r, P) .bei~g proportional to the pion decay constant /,,: 

(
2 - 1 - ) ·5 1 c- - ·5 -+ • Jµ = e 3u,µU - 3d,µd ,la= ../2 U')'5")'aU - d7s70 d),(0IJ 0 (0)j1r,P) = -ip0 f,, (2.2) 

A~cording to the general approach of factorization the small and large distances, based on 
the Feinman diagram asymptotic analysis (21, 22), the leading contribution in the correlator 
(see fig.I), which behaves like a power of I/qi, l/p2 (p2 ~ qi ~ -1 GeV2

) comes from two 
different regions of integration: either from the SD(I)-region where all three currents are at 
small distances (i.e. the intervals x2, y2, ( x -y )2 are small) or from the SD(II)-region so that 

. the electromagnetic current Jµ(x) is placed at large distances ( i.e.y2 is small, but x2, (x-y)2 

are large) 
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Here fig.la) presents the full correlator (2.1), whereas fig.lb,c) corresponds to the lead
ing p~wer contributions'. In the fig.le) the large· distances are presented by a generalized 
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, 
multiplier - the two-point correlator of the electromagnetic current Jµ(x) and some com
posite operator of quark and gluon fields with."~" derivatives, denoted as ®, the sum ove;
"n" is undertaken.' Let us emphasize that the twist, not the dimension of these operators, 
counts the value o°f the contribution for such two-point correlator. This proposes to take into 
account the operators of lowest twists for every "n". The corresponding, so calle~ bilocal 
object is not calculable in the perturbation theory. Nevertheless, one. can write down a dis
persion relation for it (with a subtraction, strictly speaking) so that the parameters of the 

, corresponding spectral density can be determined from a suitable "internal"· bore! SR (see 
• sec. 4.1 for details). 

Such a factorization of the small distances one needs to make for the triangle graph (see 
fig.2a,b,c) and also for all other diagrams (see fig:2d,e,f) which correspond to .the ~onde~sate 
power corrections. , 
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Du~ to asymptotic freedom one m'.3-y write down fo~ the SD(I) co~tributi~n the following 

symbolical identity (fig.3): 
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Finally we obtain (fig.4): 
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Here the dots stand for the rest .of condensate diagrams .. The first row of (fig.4) ~ori-e
.sponds to the usual OPE for the correlator ( 2.1) in the· symmetric kinematics ( lq; I ~ lqil ~ 
lp2 j~ 1 GeV2

). ·The second row corresponds just.to that additional terms which one needs 
to take into. account. for the case of essentially nonsymmetric kinematics ( l~n ~ lq~I ~ 
ip21 ~ 1 GeV2 

)_'. Note, that at large and ~od~rate values of q; these additi6nal terms should 
' ., ' . . ' 

besuppressed and the corresponding modified OPE is converted to the standard OPE for .. 
symmetric kin'.ematic. This miy be fulfilled be~ause at these virtualities the bilocal ;object '' 
. .. . ... . ., ' . .. . ' ·, . / ' ' 

satisfies the above mentioned "internal" SR (see [19; 20]). .· .· , 
On· the other hind the terms' in parenthesis into the second row of fig.4' have just the 

same behavior at qi -. 0 as the corresponding terms of the first row of fig.4 and therefore the 
f~ll expression is regular at this kinematical limit. As it is shown in Sec.4, the singular in qi. 
terms (so called massive or infra~ed singularities) appear from the lowest twists operators. 

,·:i}, . ' ,- . t.::·.· t ,i :,": "';'; • ., • ·, ·, ,' 1 ·.. - • ,"; ' ' ' '-,, ' " 

3 Sum·R:ulefor the form/actor F,:,*~1ro(qr,.'~n:at ~~d-. 
erate .virtualities ~f the photons qf rv ql •~. -1. Ge V 2 

· 

The. form' factor of interest F.., • ..,._,,. (qi, qi) is determined by the matrixeleme~t: 
. ' -~ . ' . ' . . '' ' 

I~ix e-,iq,x(1r' p IT { J,,(~) J~(0)} IO) ~ fµvq1q2 F-,-~•-·,,~ <:r.~h./ ,, (3.1) 

Let us consider the Lorentz structure for the three-point correlator (2.1) to extract the tensor 
s'tructure related to F-,•-,•-1r•• Using Lorentz· invariance and Bose symmetry of the photons 
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the pseudotensor amplitude :Faµv takes the form: 

:Faµv(qi,q2) = Pafµvq 1112 :F1 (p2,q; ,qi)+ qafµvq 1~A1 (p2,q; ,qD 

+ [faµq192qlv - favq,q2q2µ) :F2 (p2, q;, qi) + [faµq;q2q2v - favq192qlµ) ;F3 {p
2

, qf, qi) 

+ [faµq1q2qlv + fo,;~1q2q2µ)A2 (p2,q;,qi) + [faµqiq2q2v + favq,q2qlµ),A3 (p2,ql,qD 

[

p2 q2 . ] [p2 q2 ' ] + faµvq 2 :F4 + 2 :Fs + (p.q)A6 + fo,µvp 2 ~ + 2 As + (p.q):F6 

where 

p = q. + q2, q = q. - q2, ;:; (p2,q?,qn =;:; (p2,q~,qn 
~fµvqm = fµvpuqlPqz'' etc., A;(p2,q;,qi) = -A;(p2,q~,qn 

·Taking into account the nonexistence of rank 5 tensor in 4-dimension space-time: 

faµv-r 95, + fµv-,5 9a, + fv-rfo g,,, .+ f-ifoµ 9v< + .ffoµv 9-,, = 0 

and the gauge invariance conditions qf :Faµv = q2:F0 µ11 = 0 we get finally: 

.roµv(q1, q2) = fµ11q192 (pc,FI + qc,At] + [q2,,faµq,q 2 - qtµfovq 1 ,i2) F2 

[
p2 + q2 (p.q) ] + [q211faµq1q2 + q1µfa11q1q2) Ai+ fc,µvq --

4
-. -F2-;_ -

2
-A2 

[ 
(p.q) . p2 + q2 ] + faµvp --

2
-F2 + --

4
-Ai 

(3.2) 

(3.3) 

It is clear that on the photon mass shell the contributions come only from. the structure 
Pafµvq, 92 F 1(0,0,p

2
). Therefore, and bearing in mind the expression (3.1), we shell study 

throughout this paper the invariant amplitude Fi (qi,q~,p2 ) (see [7]). 
For F1 we have a dispersion relation: 

2 2 2 1 1"° pph (u,q;,qi) . · . F1 (p ,q1 ,q2 ) = - , 
2 

du+ subtractions 
7r o u-p 

(3.4) 

where for the physical spectral density one may write the standard phenomenologi~al anzatz, 
including 1r0 -meson and higher resonance state contributions (the continuum):, 

p1'h (u,q;,qn = 1rJ,ro(u)F-,•-,•-,r• (qi,qn + O(u -uo)PP1(u,qi,qi) (3.5) 

In. the chiral limit we neglect the .Pion mass and the masses .of light quarks as well. The 
parameter u 0 stands for the threshold of the continuum with A1-meson being included there. 

Applying the SVZ-Ilorel transformation results in the SR: 

• . 2 2 2 2 2 _ ~ 2 2 _ l 1"° -·u/M2 ph · 2 2 · B(-p -. M )F1(q.,q2,p) = <I>1(q1tq2 ,l\J) - dJ
2 

0 
due p (u,q1tq2 ) (3,6) 

I~ the Euclidean region q;,q?,p2 < 0, where the virtualities are large enough, due to 
asymptotic freedom, the main contribution comes from the perturbative · triangle graph 
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(fig.Sa). The perturbative loop make a contribution to mo~t ,of the tensor structures of 
eq. (3.3). Extracting F1 one gets: 

'. 'In 1 · 3 
pt( 2 2 2) Oe.m.2v2 l ~) X1X2 

Fl q1,q2,P = dx1dx2dx3 o(l - ~ [ 2 2 2 l 
' 7f O , i=l -q1X1X3 ~ q2X2X3 - p X1X2 

(3.7) 

For the borelized amplitude after simple· calculation we obtain: 

·<I>.,,'(q2 q2 M2) = _1_1"° dae-ufM\l't(a q2 q2) 
1, 1 • 2 • 7f A,f2 O . , 1, 2 

(3.8) 

where the perturbative spectral density reads: 

' t 2 2 In 11 
xxQ4 (1 +w(x - x))2 

p1' (a,qi,q2 ) = 2v2ae.m. 
0

· dx[axx+ Q2(l +w(x -x))]3 (3.9) 
' . 

With decreasi~g the virtualities two type of corrections come into play. As was argued previ-
.. . ' ·· . · . I . - . '2 

ously (6], for a sy~tem of light quarks the power corrections to <I>r ( ~ {0IG~.,G~.,I0), {0llf'PI0) , 
etc.), are of the most importance, wherea:s the perturbative ones may by neglected .. The 
procedure to calculate the power corrections is well known (13, 14], but .nevertheless it is 
reasonable to make it for the sake of subsequent analysis. 

The contributions proportional to (0IG~.,G~.,I0) condensate are depicted in fig.5b)-g) 
incorporating the fact that a quark propagates not in empty space, but interacting with the 
background field of nonperturbative gluon fluctuations. The most straightforward way is to 
take quark propagator in coordinate representation (23] (the Pock-Schwinger gauge for the 
background field_ xµAi,(x) ~ 0 is implied): 

•· .. · r 1 Tor~ . 

S(x,,y) = 21r2r4 - .81r2 r2 Ga"'(Oh"',s 

{ 
i ·;. 1 ;. · 2 2 ( 2 (. ) ( )} + 47r2 r4 ypxµGpµ(O) - 1921r2 r4 (x y - xy) )G<Px O G<Px O • (3.10) 
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Fig. 6 

where r = x - y and G"'"' = ½fo,pupGup• The diagrams of fig.5b-g) obviously correspond to 
the different parts of the expression (3.10). From this representation it is straightforward to 
observe that the contributions d) and e) vanish due to the·choice of the coordinate reference 
point. It should be noted that the diagrams b),c),f),g) are most easily to calculate by a 
direct transformation to a- representation with subsequent Fourier transform. Extracting 
the contribution to the relevant tensor structure and performing the Borel transform of 
the corresponding form factor Ff0 >(q?,q~,p2), we get for the sum of the above mentioned 
diagrams: 

V .l:Oe m.7r a. -- - -- --. In (1. 1) 1 
<I>i°G}(q:,q~,M2) = 9· 7r (0IGGI0) Q2M4 Q4Af2 1-w2 . (3.11) 

Considering the contribution to quark condensate term, it should be mentioned that in 
the chiral limit they would start from the terms proportional to {Oli,bfipi,bftJ,10}. For these 
VA it is supposed the dominance role of the vacuum intermediate state from the full set 
of hadronic states (see [6]). Two types of diagrams contribute to the term proportional to 
{Ol\btJil0)2

• The first type diagrams are depicted in fig.6a-i) - the so called diagrams with 
a soft gluon. The calculation proceeds further in a standard way[13, 14]. 

The second type diagrams depicted in fig.7a-r) correspond to the situation with a hard 
gluon exchange. Only the diagrams a)-d) contribute to the form factor F1 • Summing the 
contributions to the form factor F?q} one gets for the borelized amplitude: 

qi<fq> = v'2ae.m. 64 3 {Oj·T..,.10}2 ( 11 - 3w
2 

~) __ 1 
1 7rAf2 2431ra. 'l''I' Q2Af4 +Q6 (1-w2)2 (3.12) 
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Combining now Eqs.(3.6),(3.8),(3.11) and (3.12) we find the SR for the FF for moderate 
virtualitie·s of the photons: 

F.., • ..,._,...(qi, qn = ../20~_;_,._ {2 r• due-afM• /1 dx xxQ•(l + w(x - x))2 
1rf,.. lo lo [uxx + Q2(l + w(x - x))]3 

1r
2 

a, ( 1 1 ) 1 + g-;-(OIGGIO) Q2Af2 - Q◄ 1 - w2 

64 3 - 2 ( 11 - 3w
2 

18) 1 . } . 
+ 243 7r a,(OlipiplO) Q2 M◄ + Q6 (1 - w2)2 (3.13) 

In the symmetric kinematics ql = q~ this SR coincides with previously calculated (7). It 
should be mentioned that in Ref.(10) only the leading l/Q2 terms have been calculated. 

In fig.3 we give F.., • ..,._,...(Q2,w) for Q2 = 2 GeV2 normalized.by the value 
F.., • ..,._,...(0, 0) = ../2a,.m.f1r /,.. (24). The sum rule method is applicable for all 0. ~ w ~ 0.7. 
The scale a-0 , obtained by an explicit fitting procedure, varies from a-0 = 0.75 GeV2 to 
a-

0 
= 1.2 GeV2, For w i 0.7, the extrapolation is already invalid here. For w ~ 0.8, SR 

become. nonstable. The increasing of the u O is not unexpected because with increasing of 
w the relative value of the power corrections in (3.13) grows up and the scale a-0 play role 
of an effective duality interval. However, a universal, w-independent value for <ro is more 
natural (14, 15). To make a-0 stable in the kinematics Qi » Q~ ~ 1 GeV2 one should take 
into account the whole series of higher power corrections (12, 11, 16) introducing nonlocal 
condensates. In the other essentially nonsymmetric kinematic one should use a modified 

form of the OPE (19) as well. 

0.18 
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s 0.16 
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J r.: 0.14 
--.... 
~ 0.12 
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i 
:~ 010 

r.: 
0.08 

0.0 0 5 W 

Fig. 8. The normalized J orm J actor 
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4 The structure of the infrared singularities .. A_. mod:

ified OPE in the case of essentially nonsymmetric 

kinematics: lqrl ~ lq~I rv 1 Ge V 2 

It is more instructive to return to "old" variables q; and q~ instead of w and Q2 in the 
, SR (3.13), to investigate this kinematics. The condensate terms will contain singularities at 

qi -+ 0 like 1/ qi or 1/ qt: The perturbative expression contains ~onanalytic in qi contribution 
as well. To make this clearly it is sufficient to substitute in (3.7): 

X1 = (1 - x)>. = x>., X3 = x>., X2 = l ·- X1 - X3 

and after borelization, to perform the integration over>.. (see Sec. 4.1). 
For <I>1,p1(q2, Q2, M 2) we obtain an expression suitable to analyze the limit q2 -> 0: 

<I> ( 2 Q2 M2) = 0 e.m.2v'2 /1 d -Q2x/M2x_I. _ 
l,pt q ' ' -rr lo xe 2Af2 

(1 ~ q
2x/M2

) q2x/M2 1 ~ 2~ ~ { 
2 2 [ 2 4 2] 

x + M2 e + e n Af2 Af2 + Af4 

_ f (q
2
x)nt/!(n)(n + 1)} 

n=l Af2 (n - l)! 

where q2 = -q;, Q2 = -q~, t/!(z) = f'(z)/f(z), f(z)- the Euler Gamma function. 

(4.1) 

Nonanalyticies of logarithmic .type ~ q2 ln q2 ~ q4 ln q2 appear in the representation 
(4.1), which is connected with the possibility to create a massless qij-pare by a photon 
with a virtuality q2• Terms proportional to In q2 signal the appearing of the so-called mass 
singularities [25] and therefore one needs to perform the factorization of the small and large 
distance contribution more precisely in accordance with the method described in Sec.2 (see 
fig.1,2). 

4.1 The Scalar example g<p~4l 

To make more clear the origin of the singularities and trace a program to remove it, consider 
a simple scalar example. In this example most of the elements of the real problem of the 
process 1•1• -+ -rr 0 will be considered as well. 

X 

P.· ~ {>[j. 
y 

a) b) c) d) 

Fig. 9 
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Consider the g,pf4i-theory for definiteness. The scalar three-point correlator analogous to 
Fa~,,( qi; q2) reads: , ' 

J=fo, q2) = / d4x d4y e-iq,x e-iq211(0IT {j(x)j(y) j(0)} I0), (4.2) 

where j(x) .=: ,p(x ),p(x) :. The perturbative contribution and some of the power corrections 
are depicted in fig.9. As to the other power correction diagrams one not need to consider 
them for better understanding of the problem. 

Calculating the perturbative contribution (fig.9a) in et-representation one gets3: 

,<P(a) = B(-p2 -+ M2)F(a) <X 11 
dx 1dx30(1 > x1 + x3)_._l_e-(q2

x1x3+Q
2
x2x3)/x1x2M2 

0 ~~ ' -11 d>.dx -q•x>./1\,(l>,, -Q'x/1\,(lx - ----e · e 
o >.xMZ 

(4:3) 

, If expanding formally the exponent in ( 4.3) in powers of q2 , the integral over >.. for each t~rm 
of the series diverges. Nevertheless, it is possible to perform the integration directly by using 
Mellin representation for the exponent: . 

e-A = -
2

1
. f AJf(-J)dJ 

-rrilc+ 
(4.4) 

where c+ is the integration contour in the complex plane J placed on the l~ft of all the poles 
of the integrand. Instead of ( 4.3) one gets the representation: 

<P(a) = ~ t dxe-Q'xtM•x_1_ {-1n q2x eq'xf/1,{l + ~ (q2x)nt/!(n + 1)} 
2-rr lo xM2 M2 ~ M 2 n! ' 

n=O 

(4.5) 

in which the singular in q2 term is extracted evidently. 
It is very easy to obtain the results for the diagrams of fig.9b,c,d), which simulate the 

power corrections: 

, . <I>(b) = B(-p2-+ M2) (-8(4>2)) = 
. . ' . q2Q2 0, 

'8(4>2) 
<I>(c) = - Q2Af2' 

<J>(d) = - 8(,/>2) 
q2Af2 · (4.6) 

•·Obviously, one needs to perform an additional factorization of th.e small and large distance 
; contribuHons for the diagrams of fig.9a,d), as just these di~grams contain singular· in q2 

terms. 

To get SD(II) contribution for the full amplitude (4.2), let us to extract the propagator 
S(y) = i/41r2(y2 

- iO) as a coefficient function (see fig.le): 

/ 

1 00 1 
_;rSD(l/) = d4y e-iq211 22 L I y"' ... y"n 

1r y n=O n. . , 

XI d4x e·-iq,r (0IT { j(x) 4>(0)(8 l'l ... a l'n)4>(0)} I0} (4.7) 

3 bearing in.mind that all invariants ql,qi,P2 are negative, we have made a Wick rotation in a-plane 
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Here the two-point correlato~ is responsible for the large distance contribution. 
It should be noted, that for any "n" one may reexpand the current with derivatives over 

the set of traceless operators with _definite twist (22]: 

+- +-
y "' ..• y"" c c/J a ,., . . . a ,. .. </J) = 

(n/2) I( 21 I) ( 2)' +- +- +:-= "' n. n - + '#_ {y"' ... yl'n-21 }( cp( 82 ) 1{ 0 ,., . • • 0 l'n-21 }cp) 
L., l!(n - l + I)! 4 · 
l=O 

(4.8) 

+- +-
In (4.8) we have introduced the notation { {) ,., ... {) ,. .. } for a traceless group of indices 
µ1 ... µn: g";";O{ ... µ; ••• ,.; ••• } = 0. Then, obviously, the main contribution in (4.7) at q2 -+ 0 
comes from the lowest twist operators (t = 2 in our case). The higher twist operators are 
accompanied by the multipliers ~ y2 , (y2 ) 2 , etc., which cancel singularity of the propagator 
~ I/y2 and provide the regular in q2 terms. 

The factorization of the SD(II) regime for the perturbative triangle loop corresponds to 
the e~pression ( 4.7) iri which the perturbative contribution for the two-point correlator is 
taken into account. The main observation here is that, all, singular in q2, terms in ( 4.5) is due 
to the operators of twist 2. Indeed, considering the two-point correlator in the perturbation 
theory we find: 

rr{,., ... ,. .. }(q1) j d4 x e-iq.,, (OIT { j(x) cp(0){8 ,., ... a ,. .. }</J(O)} IO) 

= (-i)n {gi,., ... q1,.,.}Iln(q;) (4.9) 

where 
IJPf(q2) - 2-11 d n I q2xx 

n - 8 2 xx n-2-
7r O µ 

{4.10) 

Substituting (4.9), (4.10) in (4.7), it is straightforward to sum over "n", bearing in mind 
that. { q1,., ... q1,. .. } differ from q1,., ... q1,.,. in the terms ~ y2

• Then we find: 

~SD(ll) = _1_ 11 
-5!::__ -Q'xfM'x {-} q

2
XX q'x/M'} 

pt 2 2 M2e n 2 e . 
7r O X µ 

(4.11) 

This result should be compared with the exact expression ( 4.5). Here µ2 is the parameter 
. ---·- +- +-

of UV regularization for the composite operator cp{ {) ,., . . . {) ,.,. }cp. Thus, the coefficient 
function of the SD(I) regime ( see fig.2b ), fig.3,4 ) does not contain nonanalytic in q2 terms 
{see (25, 26]) due to the exact cancelation of the singular terms from (4.5) and (4.11). As 
to the factorization of SD(II) region for the diagram of fig.9d) proportional to (cp2

), the 
corresponding contribution of the lowest twist operators reproduce the singular term ( 4.6) 
~ 1/q2 at all and thus, this singularity shall not appear in the modified OPE in the case of 
essentially nonsymmetric kinematics q2 ~ Q2 as well. 

As have been mentioned above, the two-point correlator in (4.7) is responsible for the 
large distance contribution~ 1/lq1I and is not calculable in the perturbation theory. 
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However, we may write down a dispersion relation for it, substituting a reasonable spec
tral density of the type: "the lowest resonance contribution"+ "continuum": 

IIn(qD = .!_ 1
00 

ds oIIn(s] + ( subtractions ) {4.12). 
1r lo s -qi 

where olln(s) = (Iln(s + iO) - Iln(s - i0))/2i. 
_A similar relation one may write down for the perturbative correlator ( 4.10) substituting 

the perturbative spectral density instead of exact one. It should be .mentioned that the 
arbitrariness in the value of µ2 ( 4.10),( 4.11) corresponds to a finite arbitrarii:iess in the UV 
subtraction procedure. However, the UV behavior of the exact and perturbative spectral 
density coincides and it is not necessary to specify the subtraction procedure becaus~ the 
corresponding correlators come into play in a difference in the QPE (see fig.4). · 

Using the completeness condition for the set of the "hadron" states in ( 4.12), it is easy · 
to get the following representation: 

illn(qi,y) = ill1,;, ... ,. .. J(qi) y"' .. . y"" = 
fJ(-i)"(yqi)n(x") I 100 it5II~1(s )(-i)n(yqi)" = 2 2 + - ds · 2 

71l</> - qi 7r So S - ql 
( 4.13) 

+ ( subtractions ) 

where we defin~ (Olj(O)lcp, p) = if.,, by analogy, with the known matrix element' for th'e _1r

m~on; (xn) = f
0
1 dxxncp(x) ; cp(x) - the twist 2 wave function (WF) of th~ scalar "meson_" 

cp, the moments of which are defined by the matrix element: 

-+ fl 
·(</>, Pl<f>(O)(y a )"</>(O)IO) = nyp)"(-if.,,) lo dxx"<f>(x) ( 4.14) 

The continuum contribution of the higher exited states, as usual,. is approximated by the 
perturbative spectral density t5II~1(s) = -(i/81r2 ) J; dxJ:"1r starting from the continuum 
threshold s0 in this chanel. ' 

As it have been already mentioned in Sec.2, the spectral densfty parameters of the exact· 
correlator {4.13) (namely: the mass m.,,, residut• f.,,, moments of the \VF (,r") and s0 ) one 
may determine from the corresponding sum rule for the moments of the scalar meson \-VF, 
which provides the additional terms in the OPE to be suppressed with increasing q2 • So the 
modified SR will be in accordance with the standard one for the three0 point correlator in 
the cas~ of a symmetric kinematics (see fig.4). Considering these _parameters as known one 
may substitute (4.13) in (4.7) and define the "bilocal" contribution inthe r.h.s. of the SR 
for th~-·three-point correlator. Finally, all additional terms in the OPE (see the second row 
of fig.4) we may ~rite clown in the form: 

~~ ~bilocal _ (<t>SD(ll) + ~SD(J/) + .. ·) 
- (a) (d) 

1.I 1 -Q2 x//112 x _q2 i://112 = --e C 
o xJ\12 

x [,lf}<f>(:r; + ~In(~) + 8 (¢:) (5(x) + 5(i))] 
111.,, + q _;r ,;., + q q 

1:1 

(,us) 



• 
Thus the full expression for the r.h.s. of the SR reads: 

<I>(q2,Q2,M2) = <I>ca) + <I>(b) + <I>cc) + <I>(d) + A<I> = 

- · --e ---=---e - - n e + _ 11 1 -Qlx/Mlr {4};,</J(x) ql!i;fM2 1 l (s0 + q2)i qlx/Ml 

0 xM2 m! + q2 2ir2 M 2 

~ (q
2
i)n1/J(n + 1) }- 8(¢

2
) 

+ ~ M2 n! Q2M2 
(4.16) 

It is straightforward to observe that the last expression is well-defined for q2 = 0. · In our 
subsequent analysis of the SR for F.., • .,._,,. we shall follow a similar strategy. Instead of the 
scalar meson the p-meson will contribute. 

4.2 Structure of the infrared singularities in the realistic case of 

the process ,*,* -+ rr0 

Consider the SD(II) contribution for the correlator (2.1) (see fig.lb), where only the points 
y and O are at small distances. The small distance contribution is factorized in a coefficient 
function - a propagator or a multiplication of propagators. The large distance contribu
tion is represented by a two-point correlator of the electromagnetic current Jµ.(x) and some 
composite opetator with derivatives (see (17,191). 

Namely, if one extracts as a coefficient function the free quark propagator S(y) = 
y /2ir2(y2 - i0)2, for the contribution from fig. I b one get from (2.1 ): 

2 J /J 00 1 :F.SD(ll) = __ e_ ci4ye-im, _Y_ ~ - y"'' ... y"" 
"'"'" 3 '2 2ir2y4 L..... n! . V~ n=O 

X { -S11/Jou J d4x e-iqp: (0IT { Jµ.(x) ii(0)(8 µ.1 ••• 8 ,.J-y,,-ysu(O)} I0) 

+frv/Jc,uf d4xe-iq,r (OIT{Jix)u(O)(Bw--B,,nhuu(o)}10)} (4.17) 

+ charge conjugate contribution 

where S.,fJc,u = (g.,/J gc,u - g.,c, gp,, + g.,,, gc,fJ)-
. For any definite "n" we may expand the current with derivatives over the set ·of traceless 

operators. More precisely, one needs to deal with traceless combinations of the indices 
fJ.,µ1,•••,Pn• Therefore the m~in contribution to (4.17) will come from the oper~tors with 
lowest two ·twists, which corresponds to the traceless {,8, µ 1 , ••• , Pnf ·combination. and to 
combination with one contraction ~ g/J,., or ~ g,.,µ.,- The higher twist operators yields the 
multipliers like (y2)2, (y2 ) 3 , etc., which cancels the singularity of the quark propagator 1/y4 

and leads to regular terms in (4.17). 
Consider the factorization for the perturbative loop (see fig.2a,b,c). Diagram of fig.2c) 

corresponds to the expression ( 4.17) with a substitution of the perturbative two-point cor

relators. 
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The notations read: 

IIL!(:1, y) = j d4x e;-;~,r (Oli' { Jµ.(x) u(O)(y Bt1u1'su(o)}IO) 

ITLn(qi,y)~ J d4xe-i~,x (OIT{Jµ.(x)u(O)(y8t-y,,u(O)}IO): (4.18) 

Analogously, IIR!( q1 , y) and IIRn( qi, y) denote correlators of the type {4.i8), but with deriva
tive~ on the right. Calculating these correlators in the perturbative theory we obtain for 
arbitrary· "n": 

{ 
ITL!(qi,Y) •. }' = (-ir3 [ -4frµ.c,u{J. ] ·! dDk (yk)n[kc,k{J - kc,qip] 
ITLn(qi,y) . 4Sµ.c,u{J , . . k2(k - q1) 2 

(4:19) 

where dDk = dDk/(2ir)0 , D = 4 - 2e:; here.and in the following v;e use the dimensional 
regularization and the MS subtraction scheme. · · · · 

Let us expand the integral (4:19) in powers of y2 keeping only the terms up to y2 (see 
Appendix), because it is sufficient for the sake of extracting the contribution of the lowest 
two twist operators. Indeed, the contributions of the lowest twist operators in ( 4.17) one can 
get if suppose formally y2 =. 0 in the numerator of the integran:d .. The terms proportional 
to y2 will provide thecontribution _of the next-to-leading operators . .Taking into account 
these expressi~ns and (4.17) after simple but too large calculations it is possible to sum 
over "n" and to integrate over d4y with the help of Fourier transforms. As a result; for 
<I>SD(H)(q2 Q2· M2)· we find·, . . . . , .. · . . 

},pt ' , , O 1 

<I>SD(ll){ 2 Q2 M2) _ ne.m.2./2 · /1 d -QlxjM•'z_l_ 
l,pt. q ' ' - ir lo xe 2M2 

{ 
2 - [. 2 4 2] 2 · 3 4 2} 

X. q•rjM• I q XX 2!.:. ~ 2!.:. - -~ , 
e n . 2 . M2 +. M4 + M2 2 M4 

' µ ' . 
(4.20) 

We note that the contributions· of the lowest .two twist operators proportional to q2 ln q2 and 
q4lnq2 respectively, just coincide with the nonanalytic terms in (4.1.). 

Now we'may proceed further in a similar way as to the diagrams proportional t_o the gluon 
condensates (see fig.5). A similar study of the singularities appeared, is more convenient to 
make diagram by diagram because for the different groups of diagrams, after a factorization 
of the SD(II) regime, the different'coefficient f~nctions (CF) come into play. For the diagrams 
of fig.5b,c) the exact expression, after a transformation just similar to that the pertu~bative 
one have been made, has the Corin: 

<I>1,b( q2, Q2' M2) = - a~.m. ,/2ir ( a, GG)-1-. 11 dx x e'..q•~tM•z: 
· 18 ir M 6 0 x2 • . 

. x { M: + eq2x/M2 In q2x - ~ (q2x)n1/J(n + l)} 
q2x · M 2 ~ M 2 n! 

n=l , 

(4.21) 
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41 ( 2 Q2 Af2.) = Oe.m . ../21r ( a. GG)-1- { _!_ + _!_} 
1,c q ' ' . . 18 7r· Af4 q2 Q2 

Oe.m . ../21r(a.GG) 2 11 d .:.q•x1· M2:z: {M2 (j; 1) q•xtM• 1 q2x ----- - xe, -+. --- e n-
18 '. 1r M6 

0 · q2x x , x2 Af2 

-(!.-:-_ _!_)~(q2x)n1/i(n+l)} (4.22) 
x x2 L.., M2 n! 

: n=l , , 

The factorization for these diagrams may be performed as in the perturbative case. The obvi
ous difference from that case.is that instead of the perturbative contribution for the '_'bilocal" 
objects (4.18) mentioned above, it is necessary to take into account the corresponding {GG) 
contributions. The final result for the diagram of fig.5b) take the form: · · 

41sD(II)(. 2 .Q· 2 M2) = Oe.m. ,/21r {a• GG)-1-1
1 

d X -Q2:i:fM•:z: 
I,b q,' 18 7r· Af6o xx2e 

{'
M2 q•xtM• q•xtM• 1 q2xx q'z:/M•(2-· 7)'} x -e + e n -- + e x - -q2j;, . ' µ2 6 ' (4.23) 

and for_ the diagram of,fig.5c): 

41sv(II)( 2 Q2 M2) = a._,;._,/21r{a.GG)-l _ _!_ 
l,c q • , ',_ 18 Af4 2 

' ·, 'Ir q . 

O'e.m.,/21r(a•GG)_!_ /1 d -Q•:i:fM•:z: 
18 7r Af6 }o xe 

{ 
Af2 q•xtM• (x 1 ) q•xtM• 1 q2xx} x -e + - - - e n --
q2x x x2 µ2 

(4.24) 

Note, that the terms proportional to l/q2 are due to the traceless combination of indices 
/3,µ1,; .. ,µn in (4.F), whereas the terms proportional to lnq2 correspond to the next-to
leading twist operators. A similar consideration of the diagrams of flg.5f,g) can be made 
analogously. ·The exact expression for the sum of these. two diagrams reads: 

41 ( 2 Q2 M2) = O'e.m.v27r(O·cc)-l- /1 d -Q•xfM~r 
I,J+g q ' ' . 18 7r Af6'Jo xe -

{
. (2x2 + x) (· q•xfM• 1 q2i - ~ (q2i:)nv,(n + 1):) 

x . x2 e n Af2 L.., Af2 n! 
. n=l 

(2x - 1) Af2 ·} (4.25) 
x2 q2 

To separate the contribution of the small distances for these diagrams one gets a multipli
cation of two quark propagators as a CF: 

:F.SD(II) = _::_ I d4y ~-iq,y d4 z (y :__ Z )
6 

aµv . 3,/2 · 21r2(y _ Z )4 21r2 z4 

z• 00 1 
~ Pl Jin VJ Vm L.., -,-, y .... y z ... z 

n.m=D n.m. 
(4.26) 

J ' . { +- +- -+ -+ } 
X d4xe-'9'"' {OIT Jµ(x) u(O)( 8 w .. 8 l'nhv16'Y-,9( 8 VJ ••• 8 VnA~(O))tb,.,s,a:u(o) IO) 
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The {GG) C()ntributi_on in (4.26) leads to the expression: 

41SD(ll)( 2 'Q2 !112)··= - O'e.m.,/21r(a.GG)·-l_ {
1
::dxe-Q2:i:fM•r' 

' 
1,1+9 q ' ' · 18 1r .M6 }o 
· · · { (2x2 + x) 92i/M2

1
·., q2xi: (2x - 1) M 2 

92:i:/M• 
x . 2 e n-2- - 2 2 e 

X . µ X q 

+e9
2
l'/M

2 
( •. • .) } ( 4.27) 

' .. ' ', ' ·, . ,· . ' ' 

Finally, an analog~us procedure of factorization should be perf~rmed for the diagrams 
with a quark condensate. The situation ,here is very similar to that of the scalar example. 
As to the diagrams with ~ soft gluon (fig.6) , the contribution of the diagrams of fig.6a',b,c) 
in F1 i~ independent on p2 and vanishes after borelization, Diagrams of fig.6g,h;i) give a 
regular in q2 contr.ibution and thus tl;ey need n~ of additional factorization. The relevant 
diagrams arc of fig.6d,e,f), for which the factorized expression (extracting the, corresponding 
CF,(see (,1.17),(4.26)) coincides with the exact one. . · 

' The same result WC shall get for the diagrams with a'hard gluon exchange (fig.7). ·It should 
be mentioned that the CF which c~rr~sponds t~ the diagram of fig.7a) (after extracting 
th~ SD(II) regime) is a rrmltiplication of two quark propagators (see ( 4.26)), whereas the 
diagrams offig.7b;c) iri the'same,rcgime provide a new CF:..:.._ a multiplication of two·quark 
propagators and one glu~m. The contribution of fig.7d) is a regular in q2 function and it is 
no need of additional factorization. 

A~ have already b~en Illenti~~cd ab~ve, the 'diagra1~s of fig. 7e-r') do nclcontribute to the 
F1 form factor. However, a, more precise consideration of the bilocal objects which belong to 

' the corresponding CF le~ds to possible ri~1\.t~irjal co'~t;ibuti~ns ~ the so-called cont~~t ter~s 
[17,J9, 20). A subsequent analy~is of such a terms leads to the correct normaliza:tion for the 

. mesC>x,i electromagnetic form fa~tors at ze~o moment~un tra;;~fcr [19, 20). A consideration 
of the contact type terms due to operators of the.lowest ,twist ( at. an arbitrary "n" of the 
derivatives) will be performed in ·the next our paper. · · . ·.·._. 

As a conclusion it should be mentioned that as a result of the subtraction procedure, 
symbolically depict~d in fig0'4, all infrared singularities· in the. standard:,SR cancel with the 
corresponding singular contributions from the diagrams in which the SD(II) CF have been 
,already extracted., Herewith, in _the bi local objects the contribution of the operators of the 

,lowest two twist'is take~ i~to acc~unt,. Tl1e rc~ui'ar :in q2 ;terms: whici1 remain after this 
subtraction, will confribi1te to the.desired SR: . . , .. 

'A further step in the calculations is to determine the contributions of the bilocals them
selves. It is of importance to emphasize that ,we take,into account the ,contributions from 
composite operators in the correlators for an' arbitrary ~~n", because th~ twist of these opera
tors co~ntsrnther ihan their dim~n~ion .. For ih~ proce,~s i~ co;;side~ation these contributio~s 

. wiHbe obtain iri the nexlour wo;kand tht: derivati~n of the f~U SR for the process,·,· -+ 1r0 
. 

in die essentially non~ymmctric kinematics will be completed: 
.. The authors are most grateful to A.V.Efremov, S.V.Mikhailov, A.P.Bakulcv and V.A'.Ne

stercnko for stimulating discussions and remarks .. One of the authors (R.R.) thanks S. V ;J\likh-
. ailov. for many fruitful discussions and critical remarks. · 
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A 
• 

Appendix. Calculation of some useful ni.omenturri . 

integrals expanding in powers of i/ 
' ' . 

We.shall calculate our integrals using dimensional regularization. The basic, well-known, 

integral reads: 

J D• (p2t i(-I)r-L µ4-D f(r + D/2) f(L-r- D/2) 
/(L,r) = d p(p2 + S]L = (47r)D/2 r(L) r(D/2)· (-S)L-r-D/2 . 

(A.I) 

where D. = 4-:- 2e and d0 f, = d0 p/(27r)0 . It is more convenient to define the integral: 

. _ , f(D/2) 
R(L, r) = I(L, r)2 r(r + D/2) 

' . ' 

(A.2) 

The integrals of interest are of the form: 
I•. 

I dD .(py)~{l,pp;pPp", · · .} 11 d 0-1-(J-1 f(a + /3) !. do .(py)"{l,pp,ppp", · · .} 
p = XX X p 

(p2)a(p _ q)2/J O f(a)r(/3) , .. .. ((p - q)2 + S)L 
. . . (A.3) 

where L ~a+ fl, q = qx, S = q2xx, x = 1 - x. Omitting for ~ moment th~ integration over 

x _we are left with: · 

·{J(L ) J (L ) J (L ) } Jdv.(py)"{l,pp,PpP", •• ;}, 
, , n , P , n , pe7 , n , . .. = .· P _ ((p _ q)2 + S)L , . (A.4) 

. ) ' ' . ' ' 
After a shift of the integration variable we expand in a standard way: 

(p + q.y)" = (q.y)"+ C!(q.y)"-l_(py) + C~(q.y)"-2(py)2 +... . '(A:5) 

where C;:' = n!/m!(n - m)!. are the binomial coefficients. Now the integration over d.0 f, is 

straightforward and we obtain up to terms ,..;, y2
: 

'. J(L, n) = (q.y)" R(L, 0) + C~(<j.y)":_2y2 R(L, 1) + O(y4
), 

Jp(L,n) = '~P {(<i:y)"R(L,0) + C~(q.y)"-2 y2 R(L, 1)-t(J(y/)} + 
+ YP { C!(q.y)"-1R(L, 1) + C!(q.y)"-33y2 R(L,2) + O(y

4
)}, 

(A.6) 

JP"(L, ~) 

(A.7) 

= qpq" { (q.y)"R(L,O) + C~(q.y)"-2y2 R(L, 1) + O(y
4

) }+ 
+· -(~PY"+ q"yp) { C!(q.y)"-1 R(L, I)+ C;(q.y)"-33y2 R(L,2) + O(y

4
)} + 

+ gpe7(q.y)" R(L, 1) + C~(q.yr-2 R(L,2){2ypyC7 + gpe7y2
} + ' ' 

+ C!(q.y)".-:-4R(L,3){12ypyay2 + O(y4
)} .. , (A.8) 

/ 
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· · PaA10W1<11H A.B., Pyc1<oe P. 
<S>opM<pat<Top npouecca 1*1* + rr 0 npl1 MMOH B11pTyaJlbHOCTl1 
OAHOrn 113 Q)OTOHOB 11 npae1111a cyMM.KXA ((): 
crpyt<rypa 11H<ppat<paCHblX Cl1Hry11ApHOCTeH 
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· MeroAOM npae1111 cyMM KXA Mbl 11cc11eAyeM q:iopM<pat<rop F -y*
1

*•rro (q1, 

qi) B 0611acr11 Ma11b1x e11prya11bHocre'1 OAHoro 113 q:ioroHoe; lqi I < jqj I > 
> 1 r3B2 .rAe Heo6~0A11MO npoeecr11 AOn011Hl1TeJlbHYIO q:ia't<Top113al.l~IO Bl<Jla
AOB 0011bWl1X 11 MaJlblX paCCTOAHl1H. B t<a'lecree nepeoro wara, q>OpM<pat<TOP 
11cC11eAyercA e 0611acr11 yMepeHHblX e11pryanbHocre'1 q:ioroHos: lq1 I ~ jqj I>, 
> 1 raB2

• rAe nony'leHbt no11Hbte <0I G~vGivl O>, <0I ii/I I 0>2 nonpast<~ 
B npas11ne CYMM. not<a3aHO, 'ITO 11H<ppat<paCHble (MaCCOBble) Cl1HrynApHOCTl1 
Moryr . 6btTb Bbl'ITeHbl np11 COOTBeTCTBYIOIJ.leM oneparopHOM pa3nO>KeHl111 
A11A CylJ.lecTBeHHO Hecl1MMerpi-i'IHOH t<l1HeM~Tl1'1ect<OH c11rya1.11111 611aroAapA 

, ' ' "' . 
oneparopaM AByx H11>Ka'1w11x rs11cros. Ha116onee sa>15~i.1e warn AanbHe'1w11x 
Bbl'll1CneHl1H npoAeMOHCTp11poBaHbl Ha npOCTOM Ct<anApHOM np11Mepe. , 

P·a6ora si.ino11HeHa s. fla6oparop1111 reoper11'1ec1<0'1 q:1113111<11 01,1A1,1. 

IlpenpHHT 0~J:IHHeHHOrO HH~THryTa 11,lepHblX HCC.1e;J.0BaHHH • .lly6ua .1992 
-· . -~ . 

Radyushkin A.V., Ruskov R. 
The Form Factor of th~ Process 1*1* + rr 0 for Small 
Virtuality of One of the Photons and QCD Sum Rules (1): 
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.The.Structure of the Infrared Singularities . . .. 
) • . . • . . '. 2 ; 

We extend the QCD sum rule analysis of the form factor F 1*1*•rro (q 1 , 

q~) into the region of small virtuality of one of the. photons: I q1! < I q~ I -;;,. 
;> GeV2

, where on~ should perform mo~e precisely an .OPE to factorize large · 
and small . distance contributions. As a first step the. form factor is· investiga- · 
ted in the region of moderate virtualities: qi ~ q~ ;;, ,-1 GeV2 and the full 
<OIG~vG~vlO>, <Ol~l/110>2 corrections in .the s~m rule are o.btained. It 
is shown· that the infrared mass singularities are subtracted in the· correspon
ding OPE for ess~ntially nonsymmetric kinematics: due to the operators ~f 
lowest two twists. On a simple. scalar example the most important.steps of 
the further calculations are demonstrated. · · · 

. Th!) investigation has been performed at the Laboratory of Theoretical 
'Physics, JINR. . . . 
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