


1 Introduction

On the supermanifolds it is possible to define not only even, but also odd
symplectic structures {1]. Phase space structure corresponded to even
symplectic structure and odd one.

Such on the superspace E2MM with coordinates z4 = (z!,...,z%",
01, ...,0M) one can consider an even symplectic structure with correspond-
ing even canonical Poisson bracket:
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On EN-N one can consider an odd one with corresponding canonical odd
Poisson bracket (Buttin bracket, antibracket):
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In the [2, 3] Batalin and Vilkovisky used odd bracket for formulating
Lagrangian BRST quantization formalism (BV -formalizm). Its provides
a possibility to give covariant and the most elegant formulation of the
conditions on all the ghosts . BV-formalism is an effective method for
quantization of gauge theories with open Lie algebra. An attempt to
consider it as a framework of background independent open-string field
theory was made [4, 5].

On other hand the possiblity importance of the odd bracket in twisto-
rial program and supersymmetric mechanics was emphasised [6-9]. The
problem of reformulation of supersymmetric mechanics in terms of odd
bracket, using the supercharge as a new Hamiltonian and the attempts
to quantize it were performed in [8-10].

There is no doubt that odd bracket needs to be geometrically inves-
tigated.

It is possible to formulate Hamiltonian mechanics in term of odd
brackets as well as in term of even one [11]. Arbitrary even nondegenerate
bracket can be reduced (locally) to canonical form (1.1), and arbitrary
odd one ~ to'canonical form (1.2) [12]. But in the general case even and
odd brackets cannot be simultaneously reduced to form (1.1) and (1.2).
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The structure of the supergroup of transformations which preserve both

brackets, depends on their mutual position. Anyway this supergroup is
finite-dimensional and it is the dlfferent gr admg of the brackets that leads
to this fact [13].

There are nontrivial geometrical objects depending on second deriva-
tives which are invariant under transformations preserving odd bracket
and the volume form connected with even bracket. It is the "operator A”
[13] which used in BV -formalism [2, 3] and the semidensity constructed
in [14]. These objects have no analogs in a classical case.

These results strongly indicate that nontrivial geometry arises on the
supermanifolds which are provided by Poisson brackets of different grad-
ing. Geometrical properties of superspaces provided by Poisson brackets
of different gradings were investigated in [13, 15-17]. -Superspaces, pro-
vided simultaneously by even and odd canonical one was investigated in
[15]. It was shown in {16] that exists a large class of supermanifolds (the
supermanifolds, associated with tangent bundles of Kahlerian manifolds)
on which one can defined simultaneously even and odd symplectic (and
Kéhlerian ) structures. These structures turn out to be lifting of the
corresponding structures on the underlying manifolds. Therefore their
properties have to be expressible in terms of classical geometrical ob-
jects. They are good models for revealing geometrical properties of two
-bracket supermanifolds. :

But there don’t support by nontrivial examples where even and odd
symplectic structures have natural geometrical origin.

In this work we construct the example of such supermanifold as re-
duced phase superspaces-of the superoscillator. . (The dynamics of the
superoscillator in the superspace E?V2?N can be described either in terms
of the canonical even bracket (1.1) or in terms of the canonical odd one
(1.2). In the second case the role of the Hamiltonian is played by one of
its supercharges [15].)

In the Section 2 we demonstrate reduction procedure on the simple
examples constructing phase superspaces reduced by the Hamiltonian of
the superoscillator. This procedure performed in terms of even and odd
structures leeds to the two different supermanifolds .

In the Section 8 we perform the reduction procedure by Hamiltonian
of the superoscillator and by its supercharges. In terms of both symplec-

tic structures we come to the same supermanifold which naturally inher-
its even and odd structures of the initial superspace. Canonical complex
structure on the initial superspace E?M?N provides this supermanifold
with the complex structure and with the even and odd Kahlerian struc-
tures corresponding to them.

It occurs that this supermanifold is associated to the tangent space
of the underlying manifold - complex projective space.

This supermanifold obtained by reduction procedure can be natu-
rally included in the family of the supermanifolds ( which are associated
with tangent bundles of arbitraty Kahlerian manifold) with even and odd
Kahlerian structures lifted from the Kahlerian structure of the underlying
manifold, which was investigated in [16].

In the Section § we investigate the bi- Hamiltonian mechanics (1 e. the
even vector fields preserving both symplectic structures) and "operator
A~ on the constructed supermanifold and discuss theirs connection with
the geometrical objects on underlying manifold. .

In the Appendix A for the general case we briefly mention the method
of Hamiltonian reduction in the terms convenient for our purposes.

In the Appendix B we recall the connection between the supermani-
folds and the linear bundles to the extent necessary for our purposes. In
this Appendix we suggest a natural lifting in the general case of the reduc-
tion procedure from the manifolds to their corresponding supermanifolds
with odd symplectic structures.

For rigorous definitions and conventions in supermathematics used
here we refer too {1].

The preliminary results of this article were published in {17].

2 Examples of Kahlerian Supermanifolds
and Hamiltonian Reduction

We mostly consider symplectic structures (odd or even one) as the part of
corresponding Kahlerian structures. In the same way as in the bosonic
case [18] complex supermanifold is provided by even (odd) Kahlerian
structure if symplectic structure is defined by real closed nondegenerated
even (odd) two-form % which in local complex coordinates =#; is given



by the following expression

QF = i(—1)PAEBR gr oA A (58, (2.1)

gag = (— 1)(P(A)+K+1)(P(B)+K+l)+n+lgBA’ P(gfm) =pa+tpstr.
Here and further index « = 0(1) denote even(odd) case.

Then there exists a local real even (odd) function X*(z, 2) (Kihlerian
potential), such that
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(As well as in usual case {18] the potential K is defined with precision
define up to arbitrary analytic and antianalytic functions.)

To even (odd) form Q there corresponds the even (odd) Poisson
bracket
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Its satisfied to conditions of reality and "antisimmetricity”
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and Jacobi identities :
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On the complex superspace CNtUN+1 with complex coordinates z =
‘(z", "), n=0,1,..., N canonical symplectic structure

Q0 = i(dz" A dz" —idy™ A i)
with corresponding even Poisson bracket
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defines even Kahlerian structure, and canonical odd symplectic structure
Q' = dz" Adi® + dz" A dp”
with corresronding odd bracket
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defines odd Kahlerian structure. One can obtaines more nontrlvml ex-
amples by Hamiltonian reduction. :

It is well known that for the harmonic oscillator in (N +1)q;—di'rnerisi0nzil
phase space using the energy integral for decreasing by one the complex
degrees of freedom we go to N-dimensional complex projective space and:
Kéahlerian metric correspoﬁding to reduced symplectic structure on it co-
incides with canonical one [19].  The straightforward generalization of
this procedure on supercase gives us the following example.

Let o :

' “H =z"z" —ig"q" ’ (2.8)

be the Hamiltonian of the superoscillator in the complex phase super-
space CN+IN+1 with even Poisson bracket (2.6). H defines Hamiltonian
action of group U(1) on CN“ N+1 yia motion equations

e L)

As well as in the ordinary case the (N.NV + 1) - dimensional complex
projective superspace CP(N.N + 1) (the manifold of (1.0) - dimension
complex subspaces in the C®™N+1-N+1} ) i5 obtained as the factorization of
the (2N + 1.2N + 2)R -dimensional level supersurface

H=h _ ‘ , 4"(2'.1‘0)

by Hamiltonian action (2.9) of the group. U(1). One can choose as the
local coordinates of the supermanifold CP(N,N + 1) in the map z™ # 0
the functions w("m) = (w}‘m),n(‘m)),a # m, where

a
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restricted on the supersurface (2.10). The transition functions for these
coordinates from the map 2" # 0 to the map 2™ # 0 are
a w?’") k aéc"-) m a n
Wim) = =m s ) = oy Where winy = (Wi, Wiy = 1)- (2.12)
Yin) (n)

These coordinates are invariant under U(1) group action:
{w(m)’H}O = {H(m), H}o = 0.
So the inherited Poisson bracket on CP(N N + 1) is naturally defined by

 -the relation

{f,g} = {f,g}o |E=h,

where f, g are functions depending on the coordinates w(m), w(m) (see for
details Appendix 1 or [19]).
The calculations give us

{w(m)7 w(m)}ﬂ = {w(m),w(m)}red — 0 |
{w(m)’ w(m)}oe l)pApB“ {w(m)1 w(m)}red (2.13)
w? wf
(m)™(m) cAB
é
h (677 + (
From (2.12) one obtain that the coordinates w( m) provide CP(N.N 4+ 1)

by complex structure and to Poisson bracket (2 13) correspond Kahlerian
structure with potential:

e L ’)
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Kmy = hlog(1 + (Zi)ewl,yl,)).

Let us consider now the reduction of the odd Poisson bracket (2.7) on
the CN+1N+1 by Hamiltonian action of U(1) group. It is easy to check
that it defined by an odd Hamiltonian_

Qz—Z(ZU — %), - (2.14)

( which is supercharge of previous one), because it is easy to check that
for arbitrary function f:

f={H,f}o={Qz h
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where { , }; is odd Poisson bracket (2.7). Performingng the reduc-
tion as above we obtain the supermanifold MZY+'*N+1 of real dimension
(2N +1,2N + 1) which evidently can not has (even) complex structure.
We define an odd symplectic structure on it similary to even case : the
U(1) -invariant functions (w?®, 8%, w°, 6%, Ho, Q1) where w®, 0°, are defined
by (2.11) , :

Hy = 2*3*, - (2.185)
Q. = 2%+ 7%k, ’ (2.16)

restricted on the level supersurface

Q2 = ¢

can be seen as local coordinates of MZV+12N+1_ [n these coordinates the

odd Poisson bracket is defined by following basic relations

wg
Hy ’

{ozlm)"HO}ll‘e'd‘: '-—’w?m)’ {Ql HU = = Ho.

We see that the same transformations group {/(1) of the complex super-
space e '
C(N+LN+D which Hamiltonian action in both cases is defined by (2.9)
reduces this superspace to rather different svmplectic supermanifolds.

In the following section by Hamiltonian reduction we construct ‘a
complex supermanifold which can be considered as a reduction of both
of them and which have naturally defined even and odd Kahlerian struc-
tures.

{w((lm)7 m)}rec‘

3  Supergeneralization of CP(N) with Even
and Odd Kahlerian Structures -

N+1 with

In this section we do Hamiltonian reduction of initial CN+1:
canonical even structure (2.6) by one generalization of U(1) and the re-
duction of CN*IN+1 with canonical odd structure (2.7) by another gen-

eralization of U(1). The complex supermanifolds obtained in both cases’

T



appear to be the same (up to diffeomorfism) and can be considered as
"intersection” of supermanifolds considered above. This supermanifold
provided by even and odd Kahlerian structures turns to be associated to
the tangent bundle of complex projective space CP(N).

3.1 Reduction by Even Bracket

Now let us consider at first the reduction of even structure (2.6) on the
superspace CN*1N+1 by Hamiltonian H and its supercharges Q; and Q,
(which defined by (2.8), (2.14), (2.16)). They form the superalgebra

{Qr’ Qs}O = 26rsH1 {QT7H}O = {H’ }1}0 =0, rs=12 (3‘1)

_This superalgebra defines the Hamiltonian action of (1.2)- dimensional
group of transformations of the CNt1N+1 | To every even element H=
aH + BQ, + vQ2 (where a is even and and 7 is odd constants) of this
superalgebra corresponds one-parametric transformation z — #(t,z) via
motions equations z = { H, z}o. The group of these transformations is the
supergeneralization of the U(1) group transformations (2.9). We denote
it by U*(1). Lets define in C(N“ N+1) the level supersurface M v by
equations

H=h, Qi=q, @Q2=q. (32)
Reduced phase superspace is the factorization of M, 4, ., by the action
of U(1) subgroup of U*(1), because transformations corresponding to ),
and to (), do not preserve (3.2). For pulling down Poisson bracket (2.6)
on it we have to. choose convenient local coordinates which are U*(1)
-invariant functions on CN*IN+1) restricted on My, 4, (see for detalls
Appendix 1) These coordinates are following

Tlmy =~ W) @4} = 0y = O iim), (3:3)
a a 'Q— a
Ty = W) H T ‘ - (34)
where w00y, 07, are defined by (2.11) and
' +iQ
Qs = 9_1_2__2

These coordinates provide reduced superspace by complex structure (see

Subsection 3.3).

If f and g are U*(1)-invariant functions then {f, g} is U*(1)-invariant
function too, so from (3.1), (3.3) using Jacoby identity (2.5) one can
obtain that their Poisson brackets depend only on z¢, ¢, 0® &%, and H.

The inherited Poisson bracket as well as in previous section is defined
by the relation
: {fag}red = {f’g}o |H=h,Q1,2=<h,21
where f, g are U*(1) -invariant functions, { , }o is the canonical even
bracket (2.6) on CN+!N+1_ gubstituting (3.3), (3.4) in this relation and
taking into account (2.13), (3.1), (3.2) and U?®(1)-invariance one obtain
by straightforward calculations

{z4,28} = {z4, zB)ed =0, where z* = (2% 0%)
azb
{ a ~b}red - i_‘:_(é‘a'b_*_maa—:b) 0'/0' ’
1
{l'a,o—'b}aed — Z% ($a5'b+;l(5ab+$a.’z'b)) (3.5)

A . ) e .
{0,050 = 2 ((L+in)6 + 222 +i(0" + ua®)(0* + ),

(other relations are obtained from (3.5) taking into account (2.4)) where

igtzogzh %o

A:l‘*‘xx'—laa +‘m, l[:m.

One can show that to odd structure (3.5) corresponds Kéahlerian struc-
ture with potential

¥es x“abxb)

3.6
1+ z¢z° (3.6)

K = hlog (1 + 2°z% —i0%0°% +

3.2 | Reduction by Odd Bracket

In the same way we consider the reduction of the €(N+1N+1) with odd
structure (2.7) by another supergeneralization U*(1) of the group U(1)
generated by Q2 and Hp (defined by (2.14), (2.15))(as it was mentioned
above @, defines U(1) group action (2.9) in terms of odd bracket). This
group is abelian :

{Ho, Q2 = {Ho, Ho}r = {Q2,Q2:}1 =0,

9



so reduced phase superspace have real dimension (2N.2N). The functions
wi’m),.az’m), defined by (2.11) and (3.3) commute with ), and Hy so their
restriction on levels supermanifold

Q2 = g2, Hy = hy

are the appropriate local coordinates for pulling down odd Poisson bracket
on a reduced superspace. The inherited odd Poisson bracket is defined
in the same way as (3.5):

{f,g}red - {fvg}l IHo =ho,Q2=¢2>

where f,g are U%(1)-invariant functions, { , }; is the canonical odd
bracket (2.7) on EN+1N+1 | The calculations give

{w wB}red — {wA —B}“d 0, where w? = (w®,0%)
{wa u-)b}red — O,
. re 1+ woc,
fwt, it = e (% wta), 37
1 ‘W
{a_a }red — #(gau‘)b —w O'b) +
0
, o‘w’ — weo’ . c,~C ab ot
T\ T il w) ) (67 + wha')

(other relations are obtained from (3.7) taking into account (2.4)). Cor-
responding odd Kihlerian structure (the local coordinates (Wimys Ofm))

provide reduced superspace by complex structure (see Subsection 3. 3))
is given by potential

(w's® — w'o®)

Ki=ho 1 + wbwt

-+ g2 log(1 + w*w®). (3.8)

3.3  Investigation of the Global Properties

i We obtain two reduced superspaces one with coordinates z°, o° and even
Kabhlerian structure with potential'(3.6), another with coordinates w®, o®
and odd Kahlerian structure with potential (3.8) . Now we show that
they coincide up to diffeomorphism and clarify their global structure. It
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is not useless for these purposes to investigate the transitions functions
from map to map for coordinates w(m),UE’m) and z{ ), O lm)-
The coordinates of,,, transform like differentiales  of the wg, , a

cording their definition (3.3).

Win) = Wm) = ——w((::)’ (3.9)
W) o
ot wh, —w! . .o"
a a _ (n) " (n) (n)"(n) .
U(n)—’a(m) = y k——O,...,N)

m 2
(w(n))

where (wf,) =1, o0 =0).
From (3.4) and (3.9) it is easy to see that the coordinates (z{,.);0{))
transform like (w(,.), 0()):

Py =zt = _xi‘n) (3.10)
= ) = 10)
(n) .
o.a a:m _xa o.m
a a — (n)™(n) (n)" (n) n o __ n __
Tl = Om) = (=) (2w = 1,00 = 0).

As seen, this supermanifolds have global complex structures.

It allows us to consider these two reduced superspaces as the same
because one can identify (w,,,0{,,)) with (x{.). () The correspon-
dence (z (m),a(m)) — (w? Wi,y (m)) preserving under the transformations
(3.9), (3.10) sets up isomorphism from the functions defining on the re-
duced superspace with even structure (3.5) on the functions defining on
the reduced superspace with odd structure (3.7). The obtained phase
superspace we denote by SCP(N).

Now let us summarize our results . The phase superspace CP(N.N + 1)
which was constructed in the Section 2 as the reduction of CN*!-N+1 with
even canonic structure by the Hamiltonian of superoscillator (without
using its supercharges) and now constructed SCP(N) have the same un-
derlying manifold - N-dimensional complex projective space CP(N) . The
Kahlerian structure which corresponded to (2.13) on the CP(N.N+1) as
well as the even Kahlerian structure with (3.5) for SCP(N) pull down to
the standard Kzhlerian structure of underlying complex projective space.
SCP(N) can be considered as the further reduction of CP(N.N + 1) by
the supercharges. In contrary to CP(N) it have naturally defined odd

11



Kahlerian structure with potential (3.8) and can be considered as fur-
ther reduction of M&N“'?NH by Hy too

C(N+1.N+1)_H_,CP(N,N+1)QL’93SCP(N) (even reduction)

C(N“'N“)—QLMQH'WH —}-{LSCP(N) (odd reduction).

Moreover from the equations (3.9), (3.10) it is easy to see that SCP(N)
with local coordinates z{,,), o, is associated to the TCP(N) - tangent
bundle of the underlying manifold CP(N) because the even coordinates
from map to map transform through themself only and odd coordinates

transform as differentials of even ones [1] (see also Appendix 2).

From this point of view it becomes natural the following property of
the odd symplectic structure (3.7). One can show that in the coordinates

G, = gagab,

where ¢, is the Kdhlerian metric of the underlyind projective space , the
odd symplectic structure turns out to be canonical one if Q2 = 0 (for
general case, if Q)2 # 0 see Appendix 2).

M = dw® AdG, + dw® A dG, -

Indeed in the coordinates (w®,0,) SCP(N) is associated to T*CP(N) -
cotangent bundle of CP(N), which have naturally defined canonical sym-
plectic structure [19).

It has been mentioned in Introduction that these constructions have
general meaning. Indeed for every Kaihlerian manifold M with local
complex coordinates w® one can consider the complex supermanifold SM
(dimgSM = (dimgM.dimgM)) with local coordinates w®,o® which is
associated to TM. Then the local functions

Ko(w,%,0,5) = K(w,w) +F(ig,(w,w)o®a’), (3.11)
w, W)

, o K
Ki(w,9,0,5) = ¢2Kwdlga +e—‘(——aa+a1((w,ua), (3.12)

Sw* aw

( where K(w,®) is the Kahlerian potential of M , g,;- corresponding
Riemannian metric, F'(r)-arbitrary scalar function such that F'(0) #

12

0, ¢ is even complex constant an « is real odd one) can be considered
as the potentials which correctly define global even and odd Kahlerian
structures on SM [16]. '

In the case M = CP(N) we obtain immediately the structures con-
structed above putting in (3.11), (3.12) K (w,w) = log(1+w*w?*), F(r) =
log(l —r),e =t,a = q. :

4 Operator A and bi-Hamiltonian
Mechanics

Now we want to discuss the properties of some supergeometrical con-
structions which can be defined in natural way on the supermanifolds
provided by even and odd: symplectic structures studying them on the
supermanifold constructed above.

The supermanifolds which are associated in some coordinates to tan-
gent bundle (see Appendix 2) can be considered as "gauge fixing” ob-
jects for the studying the supergeometrical constructions which in this
case have to reduce to the well-known geometrical objects. So this con-
structions can be considered as the generalization on supercase of the
corresponding geometrical objects. ‘

From this point of view it is interesting to look at the explicit ex-
pressions for the "operator A” and the bi-Hamiltonian mechanics on the
SCP(N) provided by odd and even brackets (3.6), (3.9) (similar expres-
sions for the supermanifolds provided by two Kéhlerian structures with
potentials (3.11), (3.12) see in [16]).

4.1 Operator A on SCP(N)

On the supermanifold M™™ with coordinates z4 = (2, Oi)
provided by odd symplectic structure with Poisson bracket {

which is

Hh and

- the volume form dv = p(z,0)d™xd™0 one can invariantly define the odd

differential operator of the second order, so~called "operator A” which is -
invariant under the transformations preserving the symplectic structure
and the volume form [2, 11]. Its action on the function f(z,8) is the
divergence of the Hamiltonian vector field Dy = {f, zA}laa—;‘- with the

13



volume form dv:

ED]dv

Af =div*Dy = T (4.1)
where Lp; — Lie derivative along Dy [1]. In coordinate form
ok
Af = p( W= 7 (p{z", fh). - (42)

The ”operator A” have no analogs with even symplectic structures —
the oddness of the Poisson bracket { , }, which force that operator
(4.2) to have dependence of second derivatives. '

If the density p =1 and { , }; has the canonical form (1.2) then
A is in the canonical form
o f

Acanf — 2 '80‘

(4.3)
which is well-known from BV-formalism [2-4].

It is easy to obtain from (4.1) using Jacobi identities, Leibnitz rules
and the transformation law of integral density p(z) that generalized op-
erator A (4.2) is connected with corresponding odd bracket by the same
expressions as canonical operator A®" (4.3) connected with canonical

odd bracket (1.2) 3, 4]:

Affigh = {LAgh + (=197 {af,gh
(PO {f,gh = 5(AUg) =~ fAg— (~1PD(AS)g)
Af = Af+{log, [},

where J-Jacobian of canonical transformation of odd bracket, A’- oper-
ator A in new coordinates. However the nilpotency condition

A?=0 (4.4)

are violated for arbitrary p(z,8).
For example , if symplectic structure is canonical, (4.4) hold if p(z,0)
satisfy to the equation
Ap=10
which is master equation of BV-formalism for the action S = logp .
Then A corresponding to operator of BRST transformation [2-4]. It is

14

interesting to study the connection between the condition (4.4) and the
possibility to reduce (4.2) to (4.3) by the suitable transformation of the
coordinates. .

If the supermanifold M provided by even symplectic structure Q°
also here one can put into (4.2) the density p , which is invariant under
canonical transformations of Q° [19, 20]:

P(Z) vV BcrﬂzB | (4.5)

Let M = SCP(N) provided by odd Poisson bracket (3.7) ( with ¢; = 0)
and cven one (3.5).The invariant (under canonical transformations of
(3.5)) density p on it has the form

p(w,w,a,é) = (1 - 7‘)2 = (1 - igal;oao_b)z (46)
where ) '
1 ww
s = 6 - . )
b = T3 wewe ( ® 14 wfu")c> (4.7)

~Kahlerian metric of CP(N) (r corresponds to cohomologies on CP(N)).
The operator A on SCP(N) with this density takes the folowing form

af=1 ve +Wab (pf) (4.8)
PR TR TTY Ak '
where p oL
—_ T 0b Ja — ab
va D" Fab ao ) \% g vb-:
re, = g gad,, = ﬂ%a_ - the Christoffel symbols of the Kihlerian
metric (4.7) on CP(N -S Nllpotency condition (4.4) is satisfied obviously.

The operator (4. 8) corresponds to the operator of covariant divergency
6 = xdx on CP(N).
Since M = SM with Kéhlerian potentials (3.11), (3.12) (¢ = i,a = 0)
operator A is also defined by the expression (4.8) [16], where I'¢,~ the
Christoffel symbols of the Kahlerian metric on underlying manifold M,

_ det(& 4+ iF'(r)RE 0°0%)
—F(NE () + ()

(4.9)

where R} ; = (T',) is the curvature tensor on M, r = ig,;. (We see that
p depends on Chern classes of the underlying Kahlerian manifold.It is

15



interesting to compare (4.9) with the general formulas for characteristic
classes on the supermanifolds [20].) To operator A on SM is corresponds
the covariant divergence on the underlying Kéhlerian manifold M.

4.2 Bi-Hamiltonian Mechanics on SCP(N)

Here we deliver explicit formulae for the even vector fields preserving
even and odd Poisson brackets (bi-Hamiltonian mechanics) (3.5), (3.7)
on SCP(N). In other words we have to find the pairs of the functions
(H,Q)-(p(H) =0, p(Q) = 1) on SCP(N) such that for arbitraty function
K '

{H, flo={Q. fh, (4.10)

where { , }Jo({ , }i) defines by (3.5), (3.7). To every pair (H,Q)
the solution of (4.10) corresponds vector field

Dig = {1, =)oy = Q.+ )i

These fields form a finite-dimensional Lie algebra [13] and they are de-
fined by Killing vectors of the underlying manifold M {16]. The solutions
of the (4.10) is following:

i 0%Ho

— apnb

H = Ho- 1—rawaaw”
[ 0H, OH, -
— a___ga

Q ’(awao oe )

where N
0 = hgwtw® — trh + h,w® + how®
o 1 + wewe ’
h,; are arbitrary Hermitian matrices and h, - arbitrary complex numbers.
Corresponding vector field

7] 0
Do = V“(w)—a—w—a + Vca(w)ocgz);’ (4.11)
where _
Ve(w) = igB“ OHy(w, w)

ow?
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is the Killing vector of CP(N). Since Dy g defined by (4.11) is holomor-
phic and Hamiltonian for the both brackets, it is the Killing vector for
both Kahlerian structures.

Bi-Hamiltonian mechanics on supermanifold SM with symplectic struc-
tures, defining by (3.11), (3.12) have a similar form (4.11), where V* is
Killing vector of underlying Kéhlerian manifold M [16].
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Appendixes
A On Procedure of Hamlltonlan
Reductlon

In this Appendix we retell the main algebraic notions of Hamitonian re-
duction mechanism using language which is maximally adapted for our
purposes and can be evidently generalized on supercase.(The detailed
considerations see in [19]). Let M be symplectic space with symplec-
tic structure  and I'(M) be an algebra of functions on M . Poisson
bracket { , } corresponding to ! defined by the following relation
{f,g9} = Q(D;,D,) where D; is the vector field corresponding to f via
the equation

Dy, V) = df(V)

for arbitrary vector field V.

Let C be an subalgebra in I'(M) which is closed under { , }. The
algebra of functions I'(M) has two algebraic operations — usual multi-
plicative structure and Lie algebra multiplication provided by Poisson
bracket { , }. Further if it is not pointed we suppose the first opera-
tion only.)

Let the functions F} ye ., F}; be generators of C. In this case { F}, F;} =
c; Fk where cf; are constants the functions {F;} generate Hamiltonian
actlon of the group G (correspondmg to Lie algebra with structure con- .
stants CU) on the M . To every function F; corresponds G group infinites-
imal transformation via the vector field Df,. and Dy, s} = [DF,,Drg].

17



To subalgebra. o corresponds the reduction procedure from M to

symplectic manifold M7,
Let M, be the level manifold in M deﬁned by -

F; = p;

and G, - its isotropy group: G, = {g € G : gpig™' = pi}. .Th.en
Mrd = M,/G,, and Q is pulling down on the Qred on M4 defining its
symplectic structure.

o . C . . . d red =
For supercase it is more convenient to describe M™¢ and Q"¢ cor

respondingly in the terms of I'red — algebra of the functions on it and
{ }e¢ - Poisson bracket corresponding to Qrd,  (The generators
- of I""d are the coordinates of M™d.) Let B(M) be an subalgebra of
the functions which is “orthogonal” to subalgebra C' by Poisson bracket

{ .k |
B={I5/:{f,g}=0 VgEC}
in other words feBiff {f F } =0.
" Because of Jacoby identity B is Lie algebra too:
| fr9€ B={f,g} € B,

so B is the subalgera of G — invariant functions of T.
“To level manifold M, corresponds the ideal J in the algebra I' gen-
erating by the functions F; — p;
J = {T>f: f=‘2a,-(F,-—p,-): where «; € T'}
BNnJis the ideal in B too, so on can consider subalgebra
r=pB/BnJ.

It is the algebra of functions on reducted space M. The Poisson bracket
{ , }™d on I'" is defined in the following way. For any [f],[g] € B,
where [f] is the equivalence class of the function feBinlr

{1y = [{f.9}]-

To check the correctness of this definition we note that if f,g € B then
{f,9} € Bloo. If f = f=f+hwhere h =3 oi(F;—p;) € BNJT
then {h,g} € B and

{h,g} = D ail(Fi—pi)ig} = D {awgl(Fi—p) €T
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because {F; — p;,g} =0.-So {f,9} = {f.9g) e BN J. -

The reduction procedure leads to the fact that if dynamical system
on M is described by Hamiltonian H which is G - invariant (H € B) and
at t = 0 the conditions F; = p; hold then ‘

1) these conditions preserve in a time,

i) [ = 1],

~ where ht we denote the evolution of the function & i in the time ¢ via
motion equations h = {H, h} [A] = {[H],[h]}™d .

As example we retell in these terms the reduction procedure per-
formed in the Subsection 3.1.

We consider as C the algebra of functions on the CMN+1.N+1) which
explicitly depend on the functions H, @y, @, playing the role of generators
F;. The "orthogonal” subalgebra B of U*(1) - invariant functions is
the algebra of functions explicitly depending on 22, z°, ¢° °, and H
functions. The functions f(H — &) + g(Q, — q1) + r(Q2 — ¢2) where
f,g,r are arbitrary fuictions consist the ideal 7 . BN J - the Us(1) -
invariant part of this ideal consists on the functions depending only on
H. So the generators of the algebra l""‘fd B/BNJ are [2°], [#7], [0°]
[0°] and the functions (coordinates) 2*, &*, & ¢ are their corresponding
representatives. . ; :

B Supermanifolds‘ and Lineai' Bundles

In this Appendlx we brleﬂy mention the connection between superman-
ifolds and corresponding linear bundles to the extent necessary for our
purposes. (See in details in [1].)

Let TM be the tangent bundle to the manifold M. T(n) are the
local coordinates on the M in m-th map and the (:t(m),vi‘m)) are the
corresponding local coordmates on TM (¢ V() are coordinates of tangent

space in the basic ﬁ—-) From map to map
(m)

a a a a a (m) p
Ty 7 Timy = T (T Uy = Vi) = Bat,, b (A2.1)

Considering for every map the superalgebra generating by (x4nyr Oimy)

where () are even and 0, are odd, transforming from map to map
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like (:c(m),v(m)) in the (A2.1) (v & ) we go to supermanifold M which
is associated to TM in the coordinates (af,,,,0{,,))- For the coordinates
(2{n)) Omy) 0D the M the more general class of transformations is admit-
table :
g — #%(z° 0°) 0° > 0°(z°,0°)

which do not correspond to (A2.1). In particularly if 0* — 0, = gap0°,
where g, is some Riemanian metric on M then the supermamfold M in
the coordinates (z°,0,) is associated to the cotangent bundle "M of M.

On the supermanlfolds which can be associated in some coordinates
to tangent or cotangent bundle the superstructures ev1dentlv are reduced
to the standard geometrlcal objects.

For example on the supermanifold M considered here the canonical

odd (Buttin) bracket { , }, (defined by basic relations {z*,0, = 5')

is corresponding to the Schouten bracket-[ , ] of the polyvector ﬁelds,

on M: To polyvector field T = T#»*(z) on M corresponds the function
pT = T(z,0) = T (z)0;, ...0;, on the M such that

{rT, pU}1 = p[T U]

Slmllarly operator D 0“ 22 on the M cor responds to the exterlor

differentiation operator on T "M and operator A to the divergence {1 }.
On one hand these type supermanifolds, can be served as the good

tests for studying superstructures on other hand we can use them as

-condensed language for constructed the geometr ical structures in supert-

erms. We deliver one example which is strightly connectcd with the
considerations in the Subsection 3.2. '

The reduction procedure performed in Section 3 was indeed the pro-
longation of the MreARgon ppred g the ™ reducuonT V!”d in thc case M =
CN+1 Mred CP(N)

Now for the odd structure reduction we show that in the general
case. Let M be the symplectic manifold with symplectlc structure defined
by Poisson bracket { , } and the functions I.. generate Hamiltonian
action of the Lie group G on it:

1,1} = ¢t In
{ ? } TS

where ¢, are the structure constants of the Lie algebra G of G. Let
Mred be the manifold obtained by reduction: M™ = M,/G, where
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M, = {z € M : I.(z) = p,} is the level manifold and G, - is its isotropy
group.

Let z be the local coordinates on M and y°® - the local ones on M™4
in which the reduction was performed : {y*(z),I.(z)} = 0. Then

0 = {591 = (4°(2), 8 (@)} |1ty (42.2)

defines the reduced Poisson bracket (and symplectic structure) on M.

If M is supermanifold associated to T*M in the local coordinates
(z*,0;) and Poisson bracket { , }; defines the odd canomcal structure
on it then it is easy to see that the functions

Qr = (L(z),2}0i = (I, F}, where F={c",2'}00;

define the same Hamiltonian action of the group G on the M in the terms
of odd bracket: for arbitrary function f(z) on M

{f(2), I(x)} = {f(2), Q- (=, 0) }r.

Moreover the functions (Q,, I,) define the Hamiltonian action of the su-
pergeneralization of the group G on the M in the terms of odd bracket:

{QT7QS}1 = cith’— {QraIs}l = cislt, {In Is}l =0.

One can show that the functions y* = (y%7* = {y*(z),z'}6; =
{y°(2), F(z,0)}-1) play the role of local coordinates on reduced super-
manifold M4 (dimM™d = (dimM™d.dimM™?) ) :

{y*(2,0), L}h = {y"(z,0), Q)1 =0,

and in this coordinates M'ed associated to TM™?. The functions y*

(y*,n®) one can used for reduction of odd bracket { , }; on M"’d
{v, 9’ ) =0, {yn'}=
ab awab
{7] ) }red_ c+ 5 r
P

where w*(y, p) is given by (A2.2) and I, = p,, Q. = q, define the level
supermanifold in M.
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One can construct local coordinates (y*,7,) such that in these coor-
dinates M™d is associated to T*M™d :

~ w b aAa I3
Na = Wep?M apk o749

where

0A, 0A, w

3y” aya = Wab-

In this coordinates reduced symplectic structure coincides with canonical
one : ‘

wpw™ = 6 and

{v*, ") =0, {7%#)}4=0,{y", 77}“3d
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