


The first of Depember,'of this vyear 1is the 200-th
anniversary of the birthday of N.I.Lobachevsky. The author
presents this paper to celebrate this great day.

The creator of the non-Euclidean geometry Lobachevsky
din not consider the geometry alone. Having no doubt of the
self-consistency of the new geometry and being convinced in
its wvalidity, he ©posed the problem of astronomical
verification of the geometry of  our visible ' world.
Supplementing the available at that time data on parallaxes
of stars by his - own observations, he found out that the
constant k specific of the non-Euclidean geometry is larger
than the distances from the Earth to the nearest stars
[1, pp. 207-210]. This unsatisfactory result did not however
prevent him from posing the problem of what kind of changes
will occur after introducing a new geometry in mechanics
(1, p. 261)}.The second problem inevitably follows the first
one as soon as one starts considering celestial bodies uhder
the conditions of the non-Euclidean geometry. But having
introduced a new Ggeometry into celestial mechanics,
Lobachevsky went further and posed the problem of what
changes this introduces 1into Newton's law of gravity. He
himself answered this question giving a fundamental solution
to the Poisson equation in the non-Euclidean space
[2, Pp. 158-160].

Those were completely new problems and Lobachevsky's
idea " one should not doubt that the forces produce all by
themselves : the motion, velocity, time, mass, even
distances and angles ... when it is true that forces depend
on the distance, then lines can also depend on angles *“
[2, PpP.159] leads us far beyond the scope of the Newton
mechanics and theory of gravity. With this idea in mind one
can go even far beyond Einstein's theories.

In the present paper, a new appfoach to the theory of
gravity, based on Lobachevsky's geometry is expounded. We
start with a fragmentary statement of [Lobachevsky's
differential geometry and end .up with the exact solutlon of
the Schwarzschild problem in the Lobachevsky space.
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1. INTRODUCTION OF LOBACHEVSKY GEOMETRY

Lobachevsky’'s geometry 'is completely defined by the
metric ‘
2 o

- B
d1l” = LaB dx dzx", (1)

in spherical coordinates p, 6, ¢ taking the next form:

d1°=dp®+r2(de°+ sin® e d ), (2)
where

- P
r = k sh - (3)

Straight lines in the Lobachevsky space are geodesics with
respect to affine connection with the components
o

_ 1
L“V = 5 L

ac .
(auLav + 0, Lau 8, Luv) s (4)

where L%’ is the cometric tensor determined by the metric

tensor LUB and unit affinor Sg from the condition
ac a
L L =48, , 5
oB P (5)
] is the partial derivative with respect to the

i
coordinate x M. Geodesics are determined upon deriving the

system of equations
x* o dxM dx

d —
a1 *lw a1 91 =0 @il 2, 3} (6

qa
d1

It is interesting that the components (4) remember all

about the metric (1) they have been generated by. Indeed,

they compose a tensor

[od o o [od
= - L + L - L
LUVB a“ LVB aV uB uo LUB vo TuB

which equals

L7 (7

o _ o o -2 :
Log = (L“B 3, LDB 6“) k (8)
Consequently,
1 2 . @ '
LHB = 5 k LuaB . . (9)

This is nontrivial as in the 1limit
K — o (10)
the components (4) forget much about the limit metric
a a

B _ . B
EaB d x" d x" = k{imm LaB d x4 x" . (11)

In this case, the limit tensor
o o

o g o4 g

E =38 E - 8 E + E -
uvB u “ve v Bug * Euo Bug 7 Euo Eug o (12)
composed , 1like (7), of the components of the 1limit
connection
a1 oo _
Euv = 5 E (a“ Eav + au Eau aa Eyu) ’ (13)
equals zero. Consequently, there can be found such

coordinates y through which the connection (13) will be
represented as

E a _ 8 X 3" vy . (14)

In the y coordinate map the components of the metric tensor
EaB are independent of the coordinates. This is” probably all
we can say about the metric (11) if only the connection
components with the zero curvature tensor (12) are known.

However, we can add that the metric (11) defines the
Euclidean geometry as in spherical coordinates it takes the
form }

Eyg 4 % d %P = d p? + p% (d € + sin® 6 .d ¢?) . (15)

Meanwhile, the connection (14) is invariant with respect to



affine substitutions
yo = A; v + B° (16)
and defines only the affine geometry rather than a much

richer Euclidean geometry.
2. LOBACHEVSKY'S GEOMETRY AND LORENTZ GROUP

Four functions

x =k sh £ sinecos ¢, .y =k sh sin @ sin ¢ ,

K

=|o

= P = £
Zz = K ch % €°s e , u ch " (17)
of the ‘sphefical coordinates p, 8 and ¢ define the
three-dimensional surface in the four-dimensional
centro-affine space with the Cartesian coordinates x, y, 2z
and u . The latter is the hyperboloid cavity
x®2u® - x2 - y? - 2% =¥, (18)

in which u >0. In the Cartesian coordinates it is defined by

the equation

u=+v1+ (x°+ y2 + zz) / K . (19)

We have obtained the one-to-one (or, as now it is called,
bijective) mapping of the Lobachevsky space onto the surface
(19). Differentiating the functions (3) and (17) we get

dx*+d y2 +dz2-dr®+r®(de®+ sin® @ d wz) s

2

kK“"du=rdp, dr=udp. (20)

Hente, we find that in the coordinates X, y, and z

Lobachevsky’s metric (2) equals
d12=dx®>+dy’>+dz® -k au, (21)
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where du is the differential function (19) so that
K+ x> +y +29) KB dul = (xdx+ydy+zdz)2
(22)

Consequently, the internal geometry of the surface (19)
in the four-dimensional pseudo-Euclidean space with the
metric (21) coincides with the Lobachevsky geometry.
Therefore, isometric transformations of the Lobachevsky
space are given as linear transformations of the coordinates
X, Y, Z and u conserving the quadratic form in the left-hand
side of equality (18) and not changing the sign of the
coordinate u. By the Poincare definition transformations of
that type form a Lorentz dgroup. Thus, the Lorentz group is
isomorphic with respect to a group of isometries of the
LobachevsKky space. ‘

According to (21) and (22) the metric tensor components
of the Lobachevsky space in the coordinates x, y, and z
equal '

LaB = caB -k u X, XB ) (23)

where caB are the constants (in the present case equal to 1

at « = g and 0 at o # B),

X =c X . (24)

Consequently,

) .
- (au Lav + av Lcu - aa Luv) = -k u X Luv . (25)

The components of the cometric tensor in these coordinates
are equal to

LaB = ¢ 4 k2 x% xB , (26)
where caU c = §% . Therefore,
o8 B
Lad X, = u® x% . i (27)
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Consequently, R
L = -k x L . (28)

A simple form of the components (23) and (28) allows one to
easily prove equality (8).

According to (6) and (28), in the x,y and z coordinates
straight lines in the Lobachevsky space are determined after

the solution of the system of equations

d a x* -2 _d dax* ax’ (29)

dl d1 ur dl d1l

o € {1, 2, 3}.

Calculating the second‘derivative of the function (19) we

get
H 14 '
d du -2 d x d x - 30
31 a1 k¥ ul,, @17 ar - °- (30)
Now denote by
r = {x, vy, 2z, u} (31)

the vector of the four-dimensional centro-affine space in
which the surface (19) 1is the Lobachevsky space. The
quadratic form (21) is denoted by (d r,d r) . In this

notation the surface (19) is given by the conditions
(r,r) = - k°, u>o0, (32)

and eqgs.(29) and (30) are written in the form

d dr _ ,-2 dr dar - 33
Hence, it follows that a straight line of the Lobachevsky
space lies at the intersection of the surface (19) with the

two-dimensional plane of the centro-affine space, passing

through the center r = 0

3. VELOCITY SPACE IN THE SPECIAL THEORY OF RELATIVITY

In the four-dimensional space-time of the special
relativity theory the velocity of a material point can be
represented by a bundle of timelike parallel straight lines.
The combination df all these bundles 1is the three-
dimensional space of velocities. In that space, the absolute
geometry based on all the Euclidean postulates except for
the fifth one is realised.

In the Lorentz case, we arrive at the Lobachevsky space
of velocities assuming that the constant k equals the light
velocity c, and the distance p equals the rapidity of a
particle s. In this case, the quantities (17) are equal to
the components of the four-velocity of a particle. The
components of the usual velocity of a particle in the
Lorentz case equal

_ s . _ s , .
v =¢ th X Sin e cos ¢ , v, =¢ th % Sin 6 sin ¢ ,

v = cth =— cos 6 . (34)

In the Galilean case c = o and the space of velocities
is Euclidean. Instead of the surface (19) in this case there
appears the hyperplane u = 1. As for the Galilean group, it
is isomorphic to the group of isometries of the Euclidean
space.

So the light velocity plays the role of the Lobachevsky
constant in the space of velocities. This is the essence of
the special relativity theory. It 1is interesting that a
the perimeter of a circle in the Lobachevsky space is a
particle momentum; and the area of the circle, its energy.

As in cosmic rays one can observe and at accelerators
achieve rapidities much exceeding the light velocity ¢, in
the high energy physics one cannot do without - the



Lobachevsky geometry.

4. NEWTON’'S THEORY OF GRAVITATION

IN THE LOBACHEVSKY SPACE

The Lagrange function of a material point, if it is
influenced only by the gravity force with the potential U,
equals

(35)

Consequently, the Lagrange equations of motion are

v u v
d d x 1 d X d X _
at Loy a t ) - 2 (aa Luv) dt at t9%U=0 » (36)
i.e.
o 1l v
d d x" a dx d x av _
at a¢ tLlw @t @t *L 9,U=0. (3D

Here we have introduced the absolutely stationary (at rest),
according to Newton, Lobachevsky space and the absolute,
according to Newton also, time t, which is equivalent to
denial of the Euclidean postulate of parallel lines in the
visible world. In this <case, the special relativity
principle becomes invalid though the principle of kinematic

relativity is conserved.

In the space-time SXT with the coordinates maps
xl, xz, x3, x4, where x* = t, the absolute time gives the

differential form @ = d t. Writing down this form as
® =6 dx, (38)

we introduce in SxT the covector field with the components
e =0, 6_=0, 6, =0, 64 =1 (39)

and the factorising metric

e dx"d xX* =0 @ . (40)

The factorising time tensor determined by it equals
6 =86 o8 . (41)

The introduction of the Lobachevsky geometry defines in SxT
the cometric tensor h®® with the components equal to

= LaB f h = 0, h4B = 0, h = 1, (42)

h** e = o0, ’ (43)

the time tensor and cometric tensor are coupled by the
condition

8 h = 0. (44)

The equations of motion (37) define in SxT the affine

connection. Indeed, they can be written as equations of

geodesics
d d x° a dx" dx" _
ds ds "l @s @5 =9 (45)
by substituting s = A t + B, where A and B are constant.
Hence, we find
a _ o o _ Lav
F“v = Luv , F44 L 9, U,
(46)
a _ [+ 4 _
Fu4 =0, F4D o, an =0

Consequently, the world trajectory of a material point in
the dgravitational field U is a geodesic line in the world
SXT with respect to the affine connection (46).
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Essentiall®, the world trajectory of the material
point, which is not influenced by any forces, is a geodesic
line with respect to the affine connection with the
components fm: equal to (46) at U = const. Thus, we have
two connections at once.

When there are two connections (say T' and '), then for
each tensor field two covariant derivatives V and V¥ are to
be composed. For the vector and coveétor fields one assumes
that

vV T =98 T*+TC>T", vV T =8 T -T*>T ,
m m mn m n m n mn a
(47)
vV =98 T +1PF2>1, ¥ 1 =6 T -IF°2T
m m mn m n m n mn a
The difference
p®=r*-r? . (48)

is called the affine deformation tensor.
In the present case, the affine deformation tensor

equals

P>=-96 6 na8 U. (49)
m n =3

mn

For each affine connection I' there are composed the

torsion tensor

s®=r?-r? (50)

R® =8 '*-g r>s+r>r®-rr?. (51)

mnb m nb n mb ms nb ns mb

S + S =0, R + R =0 . (52)

10

All the affine connections considered here (for
instance, (46)) satisfy the condition

ﬁm: =r1r 2%, (53)

nm

so that their torsion tensor equals zero, and the curvature
tensor obeys the algebraic identity

+ R? +R =0 (54)

V R®>.+V R® +V R® =o0. (55)
k mnb n kmb m nkb

Moreover, we will consider only the equiaffine connections.
For them the contracted tensor of curvature

mn smn

is symmetric, i.e.,

R =R _. , (57)

mn nm

Another contraction of the curvature tensor equals zero:

R® =o0. (58)

mns
In the case (46) the curvature tensor equals

a

= = R =0 ,
RHVB LuVB ! RHV4 0 1aB
v 4 (59)
R =8 u%+1L %u?”, R T=0
Haa u uy mnb
where
u* = L% 5_u , _ (60)
[e2
11



and the contracted curvature tensor, according to (8) and
L]

(9), equals

-2
= - = = , R =0 , 61
Ruu 2 K _Luv , R AU, R 0 (61)

where
— MV _ 6
A=1L (au a, Luu 8,) - (62)

Note that the gravitational potential U is a scalar function
in the Lobachevsky space with the metric (1), u® is the
vector in this space, Ru?4 is the covariant derivative of
the vector U% generated by the connection (4), Rugﬁ is the
curvature tensor (7) for the connection (4), and A is the
differential Laplace operator generated by the metric (1).
Now let us recall the connection resulting from (46) at
on We will call it the

background one. The curvature tensor ﬁm:b of the background

a

U = const and denoted by r

connection and the contracted tensor ﬁmn result from (59)
and (61) at U = const.
Consequently,

R -R =6 6 AU. (63)
m n

mn mn
It is obvious that the equation

R -R =Z=4nzvw M, (64)

mn mn

where M is the mass tensor equal to
mn

M =peo 6 , (65)

mn m n

and p is the mass density, is equivalent to the Poisson

equation
AU=4amnvyp (66)

in the LobachevsKy space.
Note that » is the gravitational Newton constant. Mass

12

embedded in the region of the Lobachevsky space, is equal to
the integral

m=[TpvL ax'dx*dx’ (67)

over this region where L is the determinant of the matrix
(Luu)'

It 1is interesting to note that the gravitational
equation (64) includes the contracted tensor of curvature

ﬁmn of the background connection I In the 1limit (10)

a
mn

eq.(64) turns into

R =4y M , (68)
. mn R

mn

in which nothing reminds the background connection. The
thing is that in the 1limit (10) the contracted tensor of
curvature ﬁmn equals zero. To the point, the complete tensor

(%4 . 3 . -
of curvature R ab also equals zero in this limit.
mn

5. FUNDAMENTAL SOLUTION TO THE POISSON EQUATION
IN THE LOBACHEVSKY SPACE
In the sphere of radius p at small values of p / k one
can approximately use the Euclidean deometry. The mass
density M lying at the origin of coordinates x, y, z (see
(17)) equals '

p=M3&(x)3 (y) s (2), (69)

where 8 (x) is the Dirac function as in these coordinates

VL o= 2, (70)
and at the origin of coordinates u = 1. The solution

satisfying the Poisson equation



bHDU=4my M8 (x) 8 (y) 8 (z) (71)
and the condition
lim U =0 (72)
p—bm
is called the fundamental one.
Lobachevsky has shown [2, p.159] that the "attractive

force" is directed towards the center and is reciprocal to

the area of the sphere; moreover, if the radius of the
sphere equals p, then its area equals 4nr’ where the
quantity r equals (3). Consequently, in thée spherical
coordinates the fundamental solution has the following
partial derivatives:

dU _ . -2 auU _ auU _

5 p AT T 70 T =0 (73)
where A is some constant. Integrating (73) we get

= - A L
U = i cth X + B, (74)

where B is the integration constant. From condition (72) it

follows that B = A. As in the small vicinity of the source
1

the function turns into the Newton potential U= - ¥ M p  ,
then A = » M . Consequently
- T M - y3
U = i (1 cth R ). (75)
Note that outside the source the fundamental
solution satisfies the Laplace equation
AU = 0. (76)
In accordance with (62)
au= -1 5 (vT " u. (77)
vi H v

In the spherical coordinates the operator (62) equals

14

W

-

F) 3 1 ER

-—1—2~a—r2—q—-+ i(-———1 —— sin6 — + > =)
r ép ap T sin 6 @6 36 sin“® dyp
] (78).
6. THEORY OF GRAVITY WITH TWO CONNECTIONS
In the Einstein theory of gravity, the principal
geometric object is the cometric
ab
g aa ab (79)
defined in space-time X. It is of normal hyperbolic type. In
the vicinity of every point x € X one can choose the
coordinates
x1 = X, x® = Y, x> = z, x? = t, (80) .

so that at the point x the quadratic form (79) becomes equal
to

-2

ab 3 8 +98_ 9 +08. 08 -c?a a8 ,
1 1 2 2 3 3 4 4

g*” 8, 98, = (81)
where c is the light velocity. Like ‘in the special theory of
relativity, the light velocity c is the Lobachevsky constant
in the space of velocities. But in the general case we
should now speak about the space of velocities of a particle
at the given point x € X.

The time tensor in the Einstein theory equals
-2
sab = —.c g, (82)

It is coupled with the cometric tensor by the condition
e g% =~ c? " . (83)

Another derivative geometric object of the cometric (79) is

the volume tensor

15



av,=c¢ dx*Adx"Adx"Aax", (84)

abmn

where
=c ! v= g ., (85)

and g is the determinant of the matrix (gab).
The third derivative geometric-object of the cometric
(79) is the Christoffel affine connection

r-= —- g (8 g _+906 g -9 g ), (86)

mn 2 m sn n sm s

through which one can determine the Riemann-Christoffel
tensor (51), Ricci tensor (56) and then the Hilbert scalar

R= g°” R (87)

ab

and the Einstein tensor

G =R - — Rg . (88)

The latter together with the mass tensor an enters into the
gravitational equations

G =8m7¥r M , (89)
mn .

mn

which are transformed into

R =8my (M - =— Mo ), (90)
mn 2 mn

mn

where
M=-c"g M . (91)

As 1is known, Hilbert derived gravitational equations
(88) independently of Einstein, taking the variation

16

sH=[G &g avV (92)
of the integral
H=RdV. (93)
Though independent'of the choice of the coordinate map,
the Hilbert integral does not contain any information on the

gravitational field energy. Therefore, Einstein substituted
it for the integral

E=[£2£dV, (94)
where
g=g"™(r2r’-rr?2 . o (95)

which satisfies the necessary condition

SE=38HMH. (96)
The Einstein integral (94) depends on the choice of the
coordinate map, and thus, it disadvantageously differs from
the Hilbert integral (91) but contains information on the
gravitational field energy. Based on this integral Einstein
determined the so-called pseudotensor of the gravitational
field energy which, like the integral that generated it,
depends on the choice of the coordinate map, which is in
disagreement with his requirement to formulate the laws of
Nature independently of the choice of coordinates. This
point is in the focus of aqseventy—year discussion.

The introduction of the energy pseudotensor cannot be
justified also from the point of view of the tensor analysis
unless one introduces one more object - the background
affine connection Fm: independent of the cometric tensor
gab. Having introduced this connection, let us substitute
the Einstein integral (94) for

6t =[¢£avVv, (97)

where
P, (98)

mb an sa mn



and Pm: is the affine deformation tensor (48). Variation of
the integral (97) at the fixed background connection equals

- _ _}_ mn
§ 1 =7 (S’nn 5 S gmn) §g dv, (99)
where .
= - L
Smn - Rmn 2 (ﬁmn + .ﬁnm) ’ (100)
s=g"s . (101)

( Here it is assumed that the background connection is
symmetric but not necessarily equiaffine). Therefore, the
gravitational equations (89), and correspondingly (90), are
changed by

S.. = T Sg = 8 myM (102)

or, which is the same,

S =8ny (M - = Me ) . (103)
mn 2

mn mn

As one can see, equations (89) are conserved provided that

R +Rk =0. (104)
But to return back to the Einstein case itself, the
background connection should satisfy a stronger condition
than (104). The fact is that the canonical tensor of the
gravitational field energy, given by the Lagrangian (98),
coincides with the Einstein pseudotensor provided that in a

given coordinate map the followingkequality holds:

P * o0, (105)
but then
BR* =0 . (1086)
mnb

on the contrary, if the condition (106) is fulfilled, then
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one can find such a coordinate map in which the coordinate
equality (105) is valid. '

So the theory of gravity with two affine connections
developed here includes the Einstein theory as a special
case with the condition (105).

Assuming that the action of sources of the
gravitational field is independent of the choice of the

background connection, we get the equality
Vs g M =0. _(107)

Therefore, from eq.(102) we dget the corollary

sm oo v ab M _
Vgt (R + R -gTR g )=0. (108)

ab
It is interesting that left-hand side of the last equality

can be transformed into

sm 4 ab
A -Pp) (g (R + K1 -9g" R ., (109)
where
P =P° . (110)
s sa
Therefore, if the background connection satisfies the
condition
¥V (R +R )=0, (111)
s nn nm

then according to (108) eq.(102) results in

(R +R )e" =0, (112)

mn nm
where
a _ _ sa _ mn a
o* = (Vs P) g =g" P> . (113)
The corollary (112) is of great interest in connection with

the discussion of harmonic coordinates as the condition of

harmonicity can be written as

o* = 0 . (114)



Therefore; the *vector ¢® will be called the anharmonicity
' vector.

7. CHOICE OF THE BACKGROUND CONNECTION

In the case when there is no gravity we assume that
r*=rx?2. (115)
mn mn
This is a trivial solution of the gravitational equations
(103). Indeed, in this case everywhere on the manifold the
mass tensor should be equal to zero, and consequently, these

equations should take the form

S =o0. .(116)

mn

The condition (115) means that the background

connection can be represented in the form of the Christoffel

connection. This connection should necessarily be
equiaffine. Consequently, eq.(116) should take the form
' R =%k . : (117)
mn mn

The theory expounded in sect.6 does not impose any
other conditions on the background connection and admits a
large freedom in choosing them.

Let us use this freedom and assume that in the absence
of gravity the metric takes the form ’

a b _ 2 2 3 B
9o dx dx =c¢c  dt LaB d x° d x" , (118)
where the components LaB are independent of the coordinate
x® = t and form the metric (1). Consequently, the background
connection 1is assumed to be equal to the Christoffel

connection,given by the metric (118), and we find it to be

equal to
voo_ o v
uy Luv ¢ T © o,
v o« v «a v 4 (119)
Fu4 =0, r4u =0, rmn =0

It is interesting that the 1light velocity c¢ didn’t enter
into the background connection in spite of the fact that it
explicitly enters into the metric (118). Therefore, the
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background connection (119) coincides with the previously
chosen one, i.e., with the connection (46) at U = const.
Correspondingly, the curvature tensor of the background

connection equals the tensor (59) at U = const ,i.e.,

kE* =0, R® =0, R =0, R* =0,
mnb 4nb m4b mn4
(120)
04 a 04 o -2
= L = (L 8§ - L & Kk
uvf uvf ( up v VR u)

The contracted curvature tensor of the background connection

equals the tensor (61) at U = const ,i.e.,

ﬁuv =-2%x°L, ., §44 =0, §u4 =0, §4v =0 . (121)
It is remarkable that the covariant derivative of the
tensor field (120) with respect to the background connection
(119) equals zero:
VB =o0. (122)

Therefore, the condition (111) is fulfilled and we have the
corollary (112) that in the present case means

L o =0 . ©(123)

As the determinant of the matrix (Lpv) is not equal
to zero, of four conditions of harmonicity (114) three of
them

o%* = 0 (124)

are corollary of the gravitational equations (103).
8. SOLUTION OF THE SCHWARZSCHILD PROBLEM

IN THE LOBACHEVSKY SPACE

Let us solve the equations

R = 0, R =0, R = - 2 K L , (125)
an m4 uv Uy

assuming - that



dx*dx®=v¥Pdt®?-F"dp®-Hdo, (126)

y

g

ab
where

d o’ =de°+ sin® 6d ¢*, (127)
and the functions V, F, H depend only on the coordinate p.

In this case, nonzero components of the connection (86)

equal

rd=v’ g—g- =r%; rl=r?v %—Z, (128)
r!=r" {}{;-, rl=-F%H {}%}-, r!=r! sin® e ;
r1§ = u? {}%} I}f, 32 = - sin © cos 8 ;

r1§ = Hill_g_%_ = ra?’ rzz = ctg 6 = raz

In the same coordinates nonzero components of the

background connection equal

Fi=-wken £oon £ Ki=tleito (129
flz = k! cth %%- = fzf, faz = - sin 6 cos 6 ;

3 -1 P _ w3 3 _w®3
fla = k cth x - *31' f23 = ctg 6 = f32

Hence, we find the anharmonicity vector

1 1 2 p d v H®
o' = —=—— [ K F V sh - ( ) 1,
V F H2 k d p F

o =0, ¢ =0, o'=o0

According to (124), eqgs.(125) result in the equality o' = 0,
which is equivalent to the equality

d -1 2y _ 2 p k
a7 (F " VH") =F V K sh “*x (131)

In this case, all nondiagonal components of the tensor
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Rmn are equal to zero, and nondiagonal ones satisfy the
condition
R, = R__ sin° 6 . (132) .
33 22
Therefore, of eqs.(125) it remains to satisfy only the

following three equations:
-2

= = - = - 2 P
R,, =0, R =-2Kk% R, 2 sh® 4. (133)

In this case we have

-1 -2 d H dvVv
R, =F'H*V 5= (+ 55
_. 1 d VH dH
R =1 vE ap ("F ap’ (134)
1 -2 2 _ dH 1 d(FV)  d°H
5 H(R +V"F R = g p VF dp a p?

According to (133) and (134) we get the following equations:

2
d” H H d H 1 d (F V)
- = , (135)
d pz k2 dp V F dp
d H® dv
a5 (7 oap) =9 (136)
a VH aH, _ 2p
ap (=5 o ) = F Vch = . (137)

Before solving these equations let us prove immediately
that they result in the condition of harmonicity (131).lLet
us consider the covariant divergence

V.G =9 G -T G +T b g° (138)

bs a

of the Einstein tensor
b _ sb _ 1 b
G =R _g - RS, (139)
which equals zero, as is known. In the considered case, the
tensor (139) is diagonal and independent of angles and time.

Therefore, the first component of the covector (138) equals
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d 1 b 1 1 L1 2 L2 3 .3 4 .4
dp G, + I-.111.(;1 i § Ty 6 - T, 6 - T, G, ,(140)
As in the considered case I' > = T 2, Gg® = @G?° , then
31 21 3 2
b _ d 1 2 1 2 4 1 4
Vb G1 = 95 G1 + 2 r21 (G1 - Gz) + F41 (G1 - G4) . (141)

Then, taking into account the next formulae for the

differentiable tensor

1 2 4

G1 = A - B, G2 = - A - C, G4 = - A - B, (142)
where
_ _1 _2 ” ré _1 I
A =H F [ H - H (FV) (F V) 1.,
B=V'F'H®(VHF'H) -H?, (143)
I ’
c=Vv*'F'H?Z Wrlv) |,
and the formulae
’ 2 _ -1 4 _ 1oy,
F21 = H H , F41 =V v (144)

for connection, one can easily be convinced that the
combination

7

)
'H (2A-B+C) +2V3v A (145)

b _ _ ’ -
Vb G = (A B) + 2 H
equals zero whatever the functions F, H, V be. If these
functions satisfy the gravitational equations (135),(136)
and (137), then

A=F?k?, B=2§H?

sh® £, c=0. (146)
Substituting these expressions into (145) we get

b PP FT VL (FTVE) -k FVsh 22

(147)
Since we have proved that (145) equals zero, we have also
proved the corollary (131).

A partial solution of the system of equations
(135),(136),(137) satisfies the condition

Fv=cC, (148)
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where C = const.

Indeed, it follows from eq.(136) that

H* —— =B F , (149)

dap
where B = const. Substituting into the latter the condition
(148) we get
d 1 2 -2
- — = C H”“. 150
T5 (5 V) =B (150)

Substituting the condition (148) into (135) we get the

equation

>~ Tz -9 © o (151)

whose general solution is

A
H:Pksh——p—%p—, (152)

where P and 6 .are the integration constants. Substituting
this solution into (150), we get

A
%v"‘:N—Bcp‘zk" cth—‘i-l—‘:-L, (153)

where N is one more integration constant.

We have to consider only eq.(137) but instead we can

consider the sum

d - d 1 2 .2 _ 2 p
-——[(FV)‘-—-—(—Z—VH)]_FVCh—k— (154)

dp dp

of equations (136) and (137), which is more convenient.
Substituting here the condition (148) , we get the following

equation:

2
d (L v2u?) =c®chn 22 . (155)

This equation is to be put in conformity with the above
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results (152) and (153) from which it follows that
)

1 2 2
Lovie? - (156)

A A LA
= 2 p+p _ P+ p p+ p
[ NP° K sh 5 B C ch —x ] k sh R

Differentiating this function we get its derivatives

HY) =NP ksh Z(p+P)-BCch Z(p+p),

(157)

=2NPch Z(p+P -2BCck sn L (p+p.

Comparing this result with eq.(155) we find that the

integration constants should satisfy the following

conditions:
2 2 P 2 P
2 NP ch—k—e—-zBCR"sh = =c,
(158)
A A
2 N P? sh zkp—ZBCk_lch2p=O
K
Hence, we find
2 D 2 2 5
2B=Ccksh =2, 2n8P =c’ch 5B (159)
Substituting this into (156) we get
2 .2 2 .2 ' + 5 -5
vV2H® =c®*x?*sh AL P sp R P (160)
K K
Hence, on the basis of (152) we get
2 2 2 -5 + D
vi=c?p?sh R_P yshn £LTP (161)
K K
and then on the basis of (148) we get
A A
F2=p>shnh P*tP , sp L P (162)

Kk K

It is interesting to verify that the condition of
harmonicity (131) is fulfilled. Indeed, according to (148)

it means that
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d 2 2y _ A2 2 p y
_d_p_A(v H®) = Cc° k sh =&, (163)
and according to (160)
2 .2 1 2 .2 2 p 2 6
V" H” = - C” kK" [ ch ~x - - ch e . (164)

Consequently, the condition (163) is fulfilled.
Thus, the metric (126), satisfying eqgs.(125), is found

in the form

C2pPp22dt?-P K {Z'de?+sh(e+a)do®}, (165)
where
E=%2§—E%%)y. E=p/ %k, a=p/k. (166)

At a large distance from the source, i.e. at large values of
€, it should asymptotically approach the metric (118), more
exactly the metric

c2dat?-x¥{ae+sh’egan®}. (167)

Hence, it follows that

C = ¢, P=exp{-a}. (168)

It remains to elucidate what is the parameter o equal
to. We find it from the condition that at large values of £
the connection (128) should tend to the connection (46). In
other words, all the components of the connection (128)
should tend to the background connection (129), except for
the component FA: , that should tend not to zero bﬁt to UI,
i.e.,

r,,— U =7 H (ksh £) 72 . (169)
Note that the latter includes the very "attractive force"
about which Lobachevsky wrote in 1835 [ p.159.]
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This condition can be fulfilled as

L]
F'F =—-u'H = ‘Elﬁ' [cth (€ + a) - cth (€ - &)1,
-1 ! -1
H " H =K " cth (€ + a),
(170)
HH =%k P2 sh (&€ + a) ch (£ - a),
! 1 2 2
VvV =—2-—kc sh2 a/[kP sh (€ + a)]
Comparing (169) with (170) we get that
{%- sh2a= ZH¥ (171)
2
Kk ¢

As the gravitational radius 7 M c™? is much smaller than the

constant k we can approximately put

o« = M p=o. (172)

K c

o
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“llcp}mxoa H. A

Fpamnauuonnhm pagnyc s npocrpaHCTBc Jlo6aucsckoro ‘ :

C(bopmy.nnponaum YPABHCHHS TSTOTCHUs B IPOCTPAHCTBC. .I[06aueBCK0r0 .
Pcmum 334343 O rPABHTALMOHHOM [10J1¢ TOUYCUHOH MACChl B NPOCTPAHCTBE

.| Jlobauceckoro. B HbloTOHOBCKOM (H(.pCJlﬂTHBHCTCKOM) cayuae 3Ta 3anaua Gbina

NOCTARICHA H pewcHa caMim JloGaucsckuM. B peasTuBnctckoM cayuac sagaua
COCTOHT B TOM, UTOGBl CHAUAA HAMTH AACKBATHBIC YPABHCHHS A/l MCTPHKH,
ONHCBIBAIOLICH FPABHTAUHOHHOC MTOIC, A 3TCM HANTH I PCLICHUC DTHX YpaBHe-
Hii. TAKHC yPABHCHHS HAACHBL ABTOPOM HA OCHOBC PA3paBoTaHHOI MM paHee

TCOPHH C ABYMSt CBA3HOCTSMH, OIHA H3 KOTOPBIX HAa3bIBACTCH Kpucrod)cbcm.nou,
.| a-BTopas — cbouoaou ﬂocncm{ml 334ACTCS YPABHCHHAMM [ABHXKCHHUSI CB06011-.

HOH MaTcpnaanou TOYKH B npoc*rpauc*rm, .I[O68‘H.BCKOI'0 Onua. HC BHBHCHT oT

,CKODOCTM CBLTI\ C. HaMIILHHZ\H 3IlLCb CTZ\TH‘ILCKZ\SI Cd)epll‘{LCKH Cl‘lMMCTpH‘{HZ\Sl

: —2 .
MLTpHKZ\ 3aBncuT OT omomuum rpamnauuounom pauuyca Y M ¢ Maccul M.
K Koucmmc k .Ho6aucacxoro U181 BHAMMOTO MHpA. B npcuc.m, k - OHa ncpc-»
-xonur B MBBLCTHyIO MCTpHKV U_lnapuumnhzm

aﬁom BBINOJIHCHA B Jlaﬁoparoplm TCOpLTH‘{LCKOH (buauxu OMS{M

‘ l]pulpmlr Oﬁm,umuluom umnn‘vm H'lellblx nccnulondmm ,Ll\6ua 1992

o ,~:'; FRRRE I RO N

kChc,rmkov N.A. ,
: Th(, Grdvnduonal Radlus in lhc Lobachcvsky Spacc

G _‘th5|c5 JINR Lt e :

,,E2-92;394  g

Equauons of gl‘dVlldllon in the: Lobachcvsky spacc are formulalcd Thc:

_'~pr0ble of ‘the gravitational flcld of point mass in the Lobacheévsky spacc is

solved. In the Newton (nonrclahvnbuc) casc, lhlS problem was poscd and solved

by Lobachc,vsky himsclf. lnlhc relativistic case, the problem consnslsmlhalonc,

should first-find adcqualc cquations for the metric describing the gravnatlonalf

“ficld and then find their solutions. These equations are found by the author on
|.the. ‘basis of the lhwry, developed by him, with two affinc. conncctions; one
c called Christoffel and olher, backg,round ‘The latter is glven by the equtions of

mollon of a free materiale parllclc in the Lobachcvsky spacc. It is mdcpcndenl

'of lhc ligth vclocny . Thc static, sphcncally 5ymmclr1c mt,ll‘lC found here’

dcpcnds on the ratio of the gravitational radius y Mco of mass. M lo the

&Lobachcvsky constant & for the visible world. In lhc Ilmll k - o it turns mlo lhc!
‘known Schwarzschild metric. ‘ f : :

‘The investigation has ban pcrfon mcd at lhc L'\boralory of Thgorcllcal»

v

e l' Lpﬂlll()f tlu Jomt lnslihm fnr Nmk .n Rv carch: l)thruil 1992 .




