


1 The prehmlnarles

o Since the EMC eﬂ'ect was dlscovercd tcn years ago, an extensive study ol' the (le(‘p K
'melastlc scattermg of leptons on nuclei was carried out. llowcver, a short. rev iew of the E
: 'fexperlmental programs of the operating and forthcommg accelerators shows that the “

i mterest in leptononucleus deep melastrc reactions does not abate.

Flrst of all, we mean experlments at CERN where the renowncd EMC and BCI)MS

i .y collaboratlons have already obtarned a numbcr of rnterestmg results by means of nuclear -

2 targets Among the recent achrevements it is wmthwlulc to mention thc NMC preusc e

. data on. the F"/F," ratlo at small z extracted l'rom the comhmed proton deutcron

,w_‘y

- measurements

‘In vxew of the so—called spm cnsrs" tlle S'MC and NMb rcsults on the pD, /f’lle B

T reactrons wrth pOlal‘lZCd partrcles are antmpate(l 1mpatrently Next the research pro» i
ffgram of the new electron accclerator CEBAF mcludes the study of deep mclastlc scat— n
: termg of elcctrons on nucler near the boundary of the one-nucloon klnematlcs (;r ~i l) A

CIn the present contcxt the possrblhty of the dctectron of noutral an(l charged currents S

';‘on nuclear targets (such as the deuterori or even hcavxcr nuclel) at the HERA set up

i at DESY appears to be very lmportant Fmally, new ‘prospects in the mvcstlgatlon of S o

" the proccsses in questlon may emerge w1th the creatlon of hypothctrcal machmes lll(('“ e

i UNK or the 10- 20 Gev European pro_|cct

. Slnce the mformatlon about the ‘neutron structure lS predommantly obtamed by e
,' means of the nuclear processcs, the study of the hrgh energy lepton nucleus reactlonsiidk?’
is 1mportant not only for the mvestlgatrou of the nuclear QCD eﬂ'ects” (short NN-. '
drstance phenomena, shadowmg etc) but for the partlcle physrc<1 as wcll Both thcsc 7

e aspects produce lngh requlrements on the’ quantrtatwe descrrptlon of nuclear structure 2 :

effects in deep melastrc scattering. Consequently, therc isa need in an accurate methodk,b‘ o

‘ of taking into’ account such eflects. K

*The dlscovery of the EMC effect initiated a large variety of thooretrcal works clarlf_yf -

mg the gist of the detected phenomenon and the rolc of nuclear eﬂects in dcep mclastrc '

scattcrmg m general ’Ioday, after a decade or.'so tlns amount of modcls could be

: conventronally d1v1ded into two large classes being the two faces ol' the baslc idea of:

the change of nucleon propertics in the nuclear medlum ’Ihcsc are the well knmm

2 -rescaling [l 2] and Q’-rcscalmg models [3]-

The confiding parameters determining the EMC-like bchavror of thc A dependcn( e \b

. of the nuclear structure functlon were ﬁrst )dentrﬁed by Vagra(lov s group [l] au(l
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while later, by Birbrair et al [2]. These are nothing else but slight shift (~ 5% ) of the
nucleon mass and the Fermi motion, that together lead to the z-rescaling. Here we
mention that many authors utilized this fruitful idea [4, 5] and sometimes it happened
that the z-rescaling was "rediscovered”. We want to stress that despite the success
of this type models they are phenomenological and the problem of their consistent
theoretical investigation is still open. _

In the present paper, we propose a rigorous theoretical treatment of deep inelastic
scattering on nuclei. We consider the simplest nuclear system, the deuteron, within
the meson-nucleon model. We analyze the deuteron ground state and the interaction
operator in a consistent way [6, 7). Applying the operator product expansion method we
find the explicit form of the deuteron structure function moments. The inverse Mellin
transformation turns the deuteron structure functions in the convolution form into
terms of constituents relevant to determine the NN- potentlal [8]-[10] and the nuclear
structure, viz. nucleons and mesons. The nucleon part (with corrections caused by the
interaction) could be exactly reduced to the results of the a:—rescahng model and the
remaining part is corrections of the meson exchange currents.

. The calculations are made in the following approximations:

1. Upto the second order in the meson-nucleon coupling constant g, which corre-
sponds to the usual approximations in nuclear physics in deriving the potential

and Schrédinger equation, g*-approximation;

2. in the leading twist approximation, i.e. when corrections ~ m?/Q? are negligible,

"twist two”-approximation.

The results are extended to the scattering on heavy nuclei and formidable compu-
tations of the nuclear spectral function are avoided. The diagrams of the scattering on-
bound nucleons have also been computed numerically and the results conform to the

earlier z-rescaling calculations.

2. The z-rescaling model

The main idea of the z-rescaling model is based on the well-known fact that the
properties of quasiparticles, nucleons, differ from those of frée nucleons. In particular,
the bound nucleons have an effective mass depending on the shell energy. This leads to

the renormalization of the Bjorken scaling variable ¢ — m/m*z. The original formula
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of the model is ¥~~~ . »
FE) = / FNIA) - FY (2/v)dy, S (1)

thA(y) /(2 E de S(k,€) - (l+—) (y—[1+ +k3]> | A>2

(2)

£41P(y) = /(2 3 TRGR (1+’°)a( 2o B]) a=n

®

where M4 and m are the nucleus and nucleon mass; fN/4(y) is the "nucleon distribution ’

function” versus the ”10ng1tudmal fraction of the nuclear momentum”; S(k,€) and

Vp(k) are the nuclear spectral function and the deuteron wave function, respectively;
k and ¢ are the momentum and energy of the nucleon inside the nucleus. All the
nuclear structure effects in (1,2,3) are encoded in the definition of y via §-function.
The essential distinction of the model is that the nucleons carry out ‘only a part of

the total momentum of the nuclear target. In fact, to estimate the nucleus structure

behavior in the middle z reglon (:c ~0.3=0. 7) one could expand the integrand in (1)

near (y):'

B (2) ~ FfY(2/()dy, ~ O R

Where =0+ (s)/m + (k2)/m?) < 1 (vide supram /m ). The formula (4) makes . ° ',

clear the basic :c-resca.lmg idea, which is a shift of the « argument of the bound nucleon - - -

structure function in comparison with the free one.
In conclusion of the section note once again that the z- resca.lmg approa.ch gwen by
the relations like (1), (2) is consistent with the experimental data (see e.g. [4, 5]), but

to the point is phenomenlogical. However, it faithfully catches the essence of the effect:

3. The method

We start with the hadronic tensor W, that is the imaginary part of the forwa.rd ‘ :
Compton amplitude WD o ImTh. The a.mplltude Ty is gwen by the tlme—ordered :

product of two hadron currents:

T2(pa,0) = i [ a2 (oa | TULAO) [ a)s 6

1Here we omit detailed discussions, for details see e.g. [4, 5]
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where ¢ is the virtual photon momentum and p4, the momentum of the nuclear target.
To calculate the r.h.s (5), one needs a self-consistent model describing (i) the current
operator and (ii) the nuclear ground ste.te; both parts are to be treated within the
same approach. &

The most rigorous analysis of the product of two currents at high momentum trans-
fers is a.ccomplished by the Wilson’s operator product expansion (OPE) method.” For
the deep inelastic scattering the leading operators in the OPE are twist two and the

amplitude 7', can be represented in the form[11]:

2\ 2m,2%q,, . .
TApag)= 3 C“’( oo + 221 )——(—‘{;—;)——"—"—mlom #(0) [pa) 4 (6)
’ ain=24,. .

o0
Gulu } Gz \ 2ma2"qy, ... qq, n
+ 3 O (o — 20 Y (g, - e ) T 02 0) | ),

2 2\n—1
an=24,... q -q )

where a runs over the relevant interacting fields which are to determine both the twist
two opera.tors O#1-#n(0) and the nucleus ground state, m, stands for corresponding
masses, C are the Wilson coeflicients. We treat the nucleus in the framework of the
effective meson-nucleon theory, i.e. the nucleus is represented as a system of interacting
mesonic and nucleonic fields.

_The starting point of the consideration is the effective Lagrangian of interacting

meson and nucleon fields. As an example, we present below the calculations with the

“scalar mesons described by the theory with the Lagrangian:

L= N(0—m)N+ 3 ((99) - u20%) — g, AN®, )

where N(z) and ®(x) are the nucleon and scalar meson (o) fields, respectively; m
and g, are the corresponding masses. The generalization to arbitrary kinds of the
mesons (isoscalar, vector, etc) contributing to the nucleon-nucleon interaction potential

is straightforward.

For the unpolarized scattering within the theory with nucleon and scalar meson

fields the operators of 7 = 2 are:

.\ n—1 "2 —itn
Oli-tn (_’é) S {N(O)’y‘“ 9 ...8 N(O)} , (8)
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where & symmetrizes the subsequent operator and removes all traces in H1.onfin.

For a large momentum transfer ¢ OPE factorizes the amplitude (6) into pieces
depénding on short and long distance physics. The concrete scales are controlled by
the properties of the chosen model. For instance, in asymptotically free theories these
are perturbative and nonberturbatlve regions or the quark and hadron scales in QCD.
In the effective mcson-nucleon model the short and long dlstances correspond to the
hadron and nuclear scales. In (6) these two pieces are C{h?) and (pa | O¥1-4~(0) | pa),
respectlvely _ /

Further consideration of the amplitude (5) is based on the non-relativistic theoret-
ical field approach suggested in refs. [12, 6, 7]. The approach gives the procedure of
the non-relativistic reduction of the effective meson-nucleon théory‘" with the elimina-
tion of irrelevant antinucleon degreés of freedom and allows us to describe the nuclear
grouknd state and exchange effects with advantage. Besides, it gives a fit set of opera-
tors required in the OPE, hence the consistency of computations is maintained. -Some
technical details of computations are presented in Appendices A and B.

_In order to obtain explicit expressions of the operators (9), and calculate the matrix

elements (6) it is necessary, ﬁrst of all, to define the Hamiltonian of the system which -

has to provide 51multaneously the equation of motlon for interacting fields a.nd the

target ground states:

3 : T
7; V(@) = i[H, N(®)] (10)

HIA) = My |A). 1)

The Hamiltonian can be obtained from the Lagrangian in a conventional manner and

via the non-relativistic reduction we get:

H

3 [ @@ +8(@)b() + w0 @)0(e),
/d%{é%W‘(:)Vﬂ:) + mp*(2)p(z)} + ‘
+ 0 [ Ealwi@eEwE), a2

HY + H;,,

where m and p, are the bare nucleon and meson masses to be redefined by countert-
erms, 1 is the nonrelativistic nucleon field obeying the equation of motion (10) (see
Appendix A). The other notation in (12) is obvious.

Since the operator of the number of mesons commutes with the Hamiltonian, the

physical state can be represented as a superposition of states with bare nucleons and

6

a different number of free mesons, the Tamm-Dankoff method. For the deuteron one
gets:
| DY = /1~ Zppd | NNY + o2 | NNo) + o2 | NNoo) +--- (18) -

where Zp is the constant of renormalization of the wave function determined by the
condition {(D|D) = 1. An analogous expression could be written for the state with any
number of nucleons. The wave functions ¢; are defined through eq. (11) and details
could be found in Appendices A-B. :

We are now in a position to calculate the matrix elements given by (6). Note that in
contrast to the QCD the matrix elements of the operators (9) sandwiched between the
nuclear states (A.6) could be computed explicitly By direct computation of the matrix

elements over the bare states | N ) or | o ) one can easily show that the coefficients ciA)

“are identical with the moments of bare nucleons (¢ = N) or mesons (a = ®). Since the

coeflicients C( 2 are target-independent, the same quantities define the moments of

‘the physwa] nucleon and nuclear structure functions. Below the nuclear moments are

expressed in terms of the moments of the physical nucleons and the nuclear struéture
characteristics (such as the potential and kinetic energies, wave function, etc.), so that
the dependence upon the unphysical bare moments falls out throughout. With this aim

in mind we will separately compute the matrix elements for a physical nucleon and a

 physical nuclear target (the solutions to the system (A.7) for a physical nucleon and

a physical deuteron are given in Appendix B). As an example, we take the deuteron
as an exactly solvable nuclear model that allows us to derive analytic expressions in a
closed form and employ the well-known results of studies of its basic properties[§]-[10]
(wave functions, the potential of nucleon-nucleon interaction, etc.)

To present the results in a compact form, we define the reduced matrix elements
&gn:

(pp | O~ | pp) = pi ... Pl - @D, (14)

_ which are related with the structure function (e.g. F) moments and coefficients cl,

1 =1,2 by:

: 1
M. 1 (FP) = ZC(” Gy, with M(F)= /F(z)z"_ldz. (15)
0 -

a

The main problem here is to compute ﬁgn explicitly. We do this by nonrelativistic .
reduction of the operators (9) and averaging over the nuclear physical states (A.6). In

deep inelastic kinematics (¢ = (v,0,0,~v ~ Maz,)) it is convenient to operate with

; .



the convolutions of operators (8), (9) with respective kinematic factors:

Oy = Tasictn ogsn (%)H (2) #6043 + )" HO),
O = ———2"42‘1‘;2')§“°-" O-bn = (5) (2;’) 3(0)(Fo+ 5°8(0).  (16)

A subsequent transformation of the operators (16) is the transition to nonrelativistic
fields ¥ and computation of all the derivatives (50 + 53)" in accordance with the
equations of motion of fields (10). Upon quite cumbersome transformations, the resuit

of nonrelativistic reduction can be written as a sum of operators

O~ = OF + OF + Op*, ' an.
Og = 05 + 0% + 03", _ (18)

where the operators are written in the order of growth of the coupling constant g and

their explicit form is given in Appendix C. By sandwiching the operators (18) between
the state (A.6) for a deuteron target, ngn are expressed through the following matrix - .

elements

a8, = (1~ Zp)¥H¥Up(NN | Of | NN) + ¢P* oD (NNo | Of | NNo) +

+<pD+\IID( o| OF |NN)+\II+\IID( N|O¥ | NN) +cec.

a9

al, =P P (NNo | 05 | NNo)+ oPYUp(NNo | 05 | NN) +

+¢P¥ ¥ p(NNoo | 05 | NNY + U Up(NN | 03" | NN) 4 cc.

These matrix elements can be grouped as to separate different contributions to the

deuteron moments as is depicted in fig. 1. The diagrams a) denote the moments of
the physical nucleons moving inside the deuteron. As it is seen, they consist of the

morments of bare nucleons plus the self-energy corrections. The diagrams b) are the so-

called renormalization and recoil terms that cancel each other in the g*-approximation.: -

Next diagrams c) are the interaction corrections to the nucleons contribution. The re- o

maining diagrams d) are the pure meson exchange current.corrections. A special note

is to be paid to diagrams in the impulse approximation. Traditionally, when inclusive
processes of scattering of leptons on nuclei are examined within the impulse approxi- .

mation, there arises the problem with the amplitude of interaction of 'leptons with a. ’)

8

d)
Figure 1: The deuleron moments: a) - impulse appfozimqtion, b)
- renormalization and recoil diagrams c) and d) - meson exchange
currents. Closed and open circles denote the moments of a bare
nucleon and a meson, respectively; the vertical dasﬁ-lines separate

the operator and wave function in the corresponding matriz element.

nuclear nﬁéleon[]li]. Usually it is suggested that the difference between the amplitudes
of interaction with free nucleons and bound nucleons is small, and the nuclear effects
are considered only in kinematics. This assumption is verified "a posteriori” by.com-
paring numerical computations with experiment. As is seen from fig.1, diagrams of
the impulse approximation contain moments of a physical nucleon measured experi-
rhénta.lly. The nuclear structure is taken into account in terms of exchange diagrams ,
nucleon-nucleon interaction potential and binding energy. The corresponding explicit

form of the moments of the deuteron structure functlon is:

2(“f,j’) Ma(EP) = (20)
- M"(Fé")/(i';gl%(p) P+ B). <1+ +5’3—) + (1)
+ M,.(F;V)/dzzp<i)3;kw+u(p)v(k)q,l)(p+k)E [(1+2_k:;)n_ (1_2%;),.] .
- () | "(2'"1)“ B p(e +10 570 LG, (&)™, e

where ¥p = ¢f is the conventional deuteron wave function; w?(k) = (k2+ p2); V(k) is
the one-boson-exclhiange potential generated by the interaction term in the Hamiltonian

of the theory.
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Figure 2: Thé ratio of the deuteron and isoscalar nucleon structure fuﬁc-
tions.'Curv‘z}es: 1- the‘Feeri' motion of the "on mass shell” nucleons; 2
— the Fermi motion with takinb into account the boundness effects (full -
line); 3 - calculations on the basis of approzimate formula (26) (short
dash-line); -4 -impulse approzimation ([6, 7] (long dash-line); 5 - the
summary contribution of the impulse approzimation and meson ea_:change

currents obtained within present approach.

4. The nucleon contribution to the nuclear structure fu'nctions

The sum of terms (21) and (22) (diagrams a) and c) in fig. 1) is the contrlbutlon of
the Fermi motion of interacting nucleons. Applying the inverse Mellin transformatlon

to (21),(22) we reconstruct the nucleon contribution to the deuteron structure functions
in the convolution form (1) with fN/D fN/D + f‘N/D given by:

N/D( )= / (27‘_)3| \I’D(P) P (1 v Pz) 5 (y _ [1 " 2p22 + I’z]) (24)

N/D lpptf}k
mt ( )_ (21!')6

1o (v-

THE)V () Un(p + k) x

10

-sfep-s)

The distribution function f}i‘/D describes the Fermi motion of the on-mass-shell
nucleons and it is quite similar to the conventional formula of nuclear physics usually
referred to as the "impulse approximation”. Taking into account only this type of
»Fermi smearing” results in wrong nuclear structure functions. In particular, it breaks -
the sum rule for the four-momentum ({y) > 1) and does not give the EMC-like A-
dependence (see fig. 2, curve 1).

Instead of the modification of the impulse approximation by reasonable redefinition
of the variable y {1, 2] we get the pure interaction term (25) of the exchange origin,
FNID.

int - The sum of fN/ D and f,N /D gives a final result for the nucleon contribution to
the deuteron compared with the result of the earlier z-rescaling calculation [6] in fig.
2 (curves 2 and 4, resp.). Expanding expressions (24) and (25) around the " on-mass-
shell” y = 1 + p?/2m? + p,/m and formally keeping only the g?-terms we derive the

approximate expressions:

; N
%F:’/D FN/D(IA)—(—T‘;/} '(_iﬂ._= N/D(IA)_

ED — <T> dF.}’
——-———I . ——
dzx

dr ’ (26)

where F}'/P(IA) is the impulse approximation contribution computed by (24). The
structure function F;'/° obtained by means of (26) is given in fig. 2 (curve 3). As is
seen, the present result excelléntly fits the calculation by exact formulae (24) - (25).

Heavy nuclei. Notice that according to (26) the deuteron structure function is
determined with high accuracy by the momentum distribution of nucleons and mean
value of the potential (V). The Schrédinger equation allows one to express (V) through
the binding energy and well defined mean value of the kinetic energy of nucleons. Due
to this fact eq. (26) is straightforwardly extended to the scattering on heavy nuclei
and formidable computations of the nuclear spectral function are avoided. With the

two-body origin of N N—interaction in mind we have: -
V) =2(ea—(T))), (27)

where €4 & ~8 MeV is the binding energy of a nucleus per nucleon, (T}, is the
mean kinetic energy of a nucleon inside the nucleus. The structure function of 2C"
calculated on the basis of (26), (27) is shown in fig. 3 (curve 3). The function FNA(14)
and (T), has been calculated with the realistic momentum distribution obtained in
the coherent-fluctuation density model (CDFM) [5). This figure displays also"the
comparison of present calculations with the result of the z—rescaling model where the

spectral function has been taken from CDFM as well (curve 2) [5]. Both curves in
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Figure 3: The ratio of the carbon and isoscalar nucleon structure
functions. Curves: 1 — the Fermi motion of the "on mass shell”
nucleons; 2-impulse approrimation within CDFM; 8 ~ the Fermi
. motion with taking into account the boundness effects within the

present approach, Ezperimental data are taken from [14].

fig. 3 are in a reasonable agreement with the data. The slight discrepancy between two

curves is of the same origin as in the deuteron case.

5. The meson exchange corrections to the nuclear structure functions

The term (23) (diagrams d) in ﬁg. 1) is the contribution of the meson exchange cur-
- rents to the structure function moments of the deuteron. Applying the inverse Mellin
transformation to (21), (22) we reconstruct the mesonic correction to the deuteron

structure functions in the convolution form (1) with fM/D given by:

‘ Ppd®
P2) =~ [V 090+ 1)

x [k,-é(y—k;) O(k,) — k- 6(y+k)-0(—k,)].

In the g’-approximation this result is in agreement with that obtained earlier in ref.

(28)

[6]. However, in contrast with [6] the accurate taking into accoui}t the relevant g%-

terms leads to full self-consistence of the approach. For instance, the energy sum rule
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is exactly fulfilled in' accordance with (B.17).
The numerical calculation by formulae (1) and (28) is presented in fig. 2 (curve
5). As is seen, the taking into account the mesonic exchange corrections increases the

deuteron structure function at small z(z < 0.3).

6.  Examples of application: nuclear effects at small z and neutron struc-

ture function
The Gottfried Sum Rule.

Recently, the NMC data[15, 16] on the ratio F/F} have been applied to derive the
difference F¥ — 7} and to estimate the Gottfried Sum (GS) S¢ = [(FF — Fy)dz/z[17)
experimentally. Its value has been found to be below the quark-parton model expec-

tation of 1/3, namely: )
Sg = 0.240 + 0.016 (29)

Serious theoretical speculations have appeared as a consequence of this discrépancy,
e.g. the strong isospin violation in the proton sea-quark distributions.
Note that the experimental value of the GS is sensitive to the procedure of extraction

of the ratio Fy/F} from the combined data on the deuteron and proton. Since the

- deuteron is a more complicated system than a simple sum of two free nucleons, a number

of structure factors may change the ratio FJ'/F}. At least one should be careful while
considering the influence of nuclear effects discussed above, such as Fermi motion,
binding effects and mesonic exchénges in nuclei. Though in the integral characteristics
of nuclear structure functions these corrections are small, it is not evident that they
can be neglected in the procedure of determination of the neutron structure function
F3(z) from the nuclear data. Moreover, the analysis of BCDMS data on the proton and
the deuteron performed in ref.[18] has shown the noticeable influence of the deuteron
structure factors on the extracted nentron structure function and the ratio F3'/Fj. It
seems, the same corrections can also be expected for the NMC data.

In this section we estimate the typical value of the meson exchange corrections to
the neutron structure function extracted from the combined proton-deuteron data. In
particular, we demonstrate that in the présented theoretical approach it is possible to

extract the neutron structure function so that the obtained value of the GS doesn’t

“dramatically contradict the quark-parton predictions.

Since the structure functions have been measured not in the whole region of the

13



scale variable z, it is useful to define the z-dependent Gottfried integral:

Ig(z) + z2) = 7(Fp

zy

Frydz/z, (30)

and sepa.ra.tely evaluate it in the measured and unmeasured regions of z. Thus, the -

GS may be written as a sum of three integrals (30) corresponding to three regions

considered in ref.[15]:

SG = IYMC(0 = 0.004) + IFMC(0.004 +08) + IHMC(0.8 +1)

(31)
(0.240 + 0.016) (0.011 + 0.003) (0.227 + 0.014) ( 0.002+ 0.001 )

The second term in (31) has been estimated experimentally by using the F from
the fit of the published deuteron data and the ratio FJ/F? has been taken from the
‘unsmeared NMC experimental results[16]. The first and third terms correspond to the
unmeasured regions and have been estimated by extrapolation. Thus, in all these three

integrals the nuclear corrections have been missed.’ Let F ™) be the experimental

deuteron structure function (that obviously includes all the nuclear and other effects)

and F7**) the corresponding proton structure function. Then the unsmeared neutron

‘structure function defined by:
Fy = 2P _ pptem) @

is overestlmated due to the mesonic contrlbutrons to the deuteron structure function.

A more correct way to determme the neutron structure function is to solve the integral .

equation?:

Fp(z,Q%) = [2F£‘“”(x @ = 6P (@ Q") = 8 lc Q’)F”‘“’”( Q%) $1(a, @ )
(33)

_ Fz”("’(z,Q’)' 5

T TR (/v Q) p(v)dy’

for F(z). Here 6F**"(zx, Q’) is the inverse Mellin fransformation of the moments

(23), Swpp(v) = f1d " (9) + Fink " (9)-

2The present version of approach gives the description of the nuclear corrections cqmirig from

Sp(n)

the fermi-motion and meson exchange currents in the deuteron. A more complete analysis should
include also the shadowing as z — 0 and the contributions of other non-nucleon degrees of freedom

(multiquarks, A-isobar ...) as z — 1.
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To extract the neutron structure function by solving the integral equation (33), we
should parametrize the proton, deuteron and neutron structure functions in the full
region of z and experimental values of Q. At this moment we are free in the choice of-
the parameters and we can from the very beginning make them to obey the Gottfried
Sum Rule exactly. That kind of analysis has been done in[18] to extract the neutron
structure function from the combined BCDMS data[19]. From that analysis we can

compute the corresponding Gottfried integrals (31):

TECPMS(0 . 0.004) = 0.036

15°PMS(0.004 + 0.8) = 0.297
1ECPMS(0.8 + 1) = 0.0004 : ' (34)

Note that in eq.(34) the Gottfried Sum Rule is exa.ctly fulfilled. Compa.rrson of (34)
with (31) shows that here is a systematic difference in the NMC treatment of the
experimental data with the results obtained from BCDMS experiments. To achieve

the agreement between them, it is necessary to take into account the following:

i) In the region 0.004 < = < 0.8 for the moment we will neglect the role of the Fermi
motion and estimate the correction to the difference FJ — FJ* by adding the function
8F"**(z). As a result, the Gottfried integral in this region increases by -adding:

0.8

SIE™*(0.004 + 0.8) = / §Fe(z) dz/z = 0.03 % 0.002 (35)
; = o, .

004

To estlmate the mtegral I; (més. )(0 004--0.8) (35), we have used the numerical results
for the mesomc corrections computed in the present work. In ref. [6] it was noted that
numerically the mesonic contribution to the deuteron structure function SFe*(z)
was underestimated, owing to the approximate form of the current operator. This
circumstance was reflected in our earlier analysis[18] as a la.rge systematlc error £0.01°
in (35) However, the correct estimation of the absolute va.lue of 15™)(0.004 + 0.8)
was presented.

i) Besides, the meson corrections change the behavwr of F} —F7asz — 0.
Usually in the region z < 0.004 one assumes the "non- smglet” power beh.:rvror of the
difference F} — F7* as az*. The fit of the NMC data at small z (z = 0.004 — 0.15) gives
a = 0.21 £0.03, a = 0.62 £ 0.05 [15]). This yields Is(0 +0.004) as is shown in(ﬁl).
Upon taking into account the mesonic corrections to the NMC data the parameterS'
become @ = 0.1431+0.013, a = 0.423+0.048. This situation is shown in ﬁgk.4k where the
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Figure 4: The difference F(z) — F7(x). Solid lines: 1 - NMC data
fit[15]; 2 - parametrization from ref.[18]. Dashed lines and shadow area
- corrected NMC data fit with the taking into account of the mesonic
corrections (see text). Data: circles - NMC[15], squares - BCDMS[19)].

/ dé.shed lines corfespond to the new behavior of the'rdata and the shadow area displa‘ys“
the ambiguities in computation of §Fj***(z) obtained in ref. [18].

Thus, the part of the Gottiried integral computed with the new vparaméters a and
& becomes: Ig(0 <+ 0.004) = 0.0340 £ 0.010. ) ‘

iii) At last in the region 0.8 < z < 1 the mesonic contribution is negligible. Other
nuclear effects, viz. Fermi motion and binding effects, in this region may be significant
in the functional dependence of structure functions. However, since here the absolute
values of structure functions are small, it is clear that their coqtriButions to the integral
characteristics are insignificant. ‘

Gathering together the corrected integrals we obtain the corrected estimation of
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the GS instead of (29):
Se = (0.0340.01)-+(0.2270.014)+(0.03:0.002)+(0.0020.001) ~ 0.29:0.03, (36),

that is close to the quark-parton predictions of 1/3. »

Very important notice. Above we have neglected the Fermi motion effects in the
deuteron structure function. However, since the nucleon structure function is connected
with the deuteron one by the integral equation (33), the result for the extracted neu-
tron structure function depends upon additional constraints imposed to this function.
Examples of these constraints are the behavior as £ — 0,z — 1 or integral relations,
such as Gottfried Sum Rule ... Therefore, the ambiguities in the neutron structure
function extracted from the combined proton-deuteron data are of the nature of both

the nuclear and particle physics models.

Shadowing and mesonic conlribution at very small z.

As we mentioned above, the problem of determination of neutron structure function
is still more complicated because it is here necessary to solve the integral equation (33)
in F};, whose kernel depends on the model assumption and target structure and in-
this case it turns out that the sensitivity of the resultant structure functions Fy'; to
the model increases at boundaries of the kinematical region z: z — 1 and T —» 0{18].
Moreover, the shadowing effect in DIS of leptons off nuclear targets [20, 21] has been
firmly detected eﬁperimentally[22] for heavy nuclei. This important circumstance must

be kept in mind when examining recent experiments performed by the NMC group

[15] on measurements of the hydrogen and deuteron structure functions at very small -

z :z ~ 1073, As a result, the ratio FJ(z)/F](x) in the interval 10~3 + 10-2 was.
found to be about unity, i.e. at first sight tlere is no evidence of the virtual photon
shadowing and of the contribution of nuclear effects in the deuteron for z ~ 1073
Here it is worth reminding that one should be careful as in these experiments directly
measured in fact is the nuclear (deuteron), rather than neutron; structure function. So,
it is relevant to consider the nuclear ratio (FP(x)/F3(z) — 1) instead of Fj(z)/F2(x).
Accurate consideration of the nuclear effects, even though they are opposite in sign and
compensate each other, may lead to different conclusions. The mesc}nic contribution
to the deuteron structure function is positive (sec fig.2 curve 5) whereas the shadowing

contribution is negative[21]:
FP(x,Q%) = Iy P (2, Q%) + 683 (2, Q) = §F3™(2, Q%) (37)
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Figure 5: The ratio of the deuteron and isoscalar nucleon struc-
ture functions. Lincs: 1 ° the contribution of bound nucleons to
the deuteron structure function; 2 - the deuteron structure function
within the present approach: impulse approzimation+binding ef-
fects+mesonic corrections; 3 - the total deuteron structure function:
shadow area cormsponds to the uncertainties in the calculations; 4

- Fermi-motion of bound nucleons + shadowing effects

The estimations of the shadowing contribution to the deuteron structure function and
our calculations of the mesonic exchange contribution (diagrams c) and-d) in fig.1 and

curve 5 in fig.2) show that ’
SFPe*(2,Q%) ~ §F;"*(2,Q%), z—0.

For a more qua.ntltatxve comparison of these two effects we consider the ratio of the
deuteron and isoscalar nucleon structure functions, FP(z)/F}¥(z) which is less de-
pendent on ambiguities in the determination of the neutron structure function F3* and
whose behavior as a function of z is quite similar to the behavior of the (FP(z)/ F3(z)—
1). The mesonic contribution §F;***"(z) has been computed within the approach de-

_scribed above, and for §F5***(z) we use the parametrization:
§F3hsd(z) = 0.004 exp(—28z),

“which gives a rea.sonable fit to the calculation performed in ref. [21]. The result is
depicted in fig. 5 ( a shadow area corresponds to the uncertainties in the calculations of
the § F3**%(z)). One can see from fig. 5 that the shadowing and mesonic contributions

in the deuteron are opposite in sign and practically cancel each other, so that the

final deuteron structure function looks like there are neither shadowing nor exchange
effects in the deuteron. This quite qualitative analysis allows one to conclude that in
the experiments of the NMC group an evidence of the existence of both mesonic and .

shadowing effects has rather been detected than their absence in the deuteron.
7. Concluding remarks

1. We have proposed a quite rigorous theoreticai method that describes the nu-
clear structure effects in deep inelastic lepton-nucleus scattering and substantiates
the z-rescaling idea. The self-consistency peculiar to the method assures the energy-
momentum conservation, the role of the meson exchange currents being found to be
important. The explicit expression for the mesonic correction derived from (23) in
the g*-approximation coincides with the one presented in ref.. [6]. An almost model-
mdependent representation of the nuclear structure functions has been achieved.

2. The performed analysis of the structure function moments persua.des us that
there exist a tight relation between Q?— and z— resca.lmg models. Equatmg the nuclear
moments M, found in two approaches makes it possible to obta.xn the QCD motlvated
para.meters of the Qz—resca.lmg in terms of the nuclear structure. i

3. The study of the nuclear structure functions atz ~ 1 and beyond isan 1nterest1ng
theoretlca.l problem. Obviously, the nuclear structure effects are here predommant and
the application of our approach is rather a.pproprxate In thls reglon other degrees
of freedom become relevant (A—isobars[23], rnult1quarks[24], ...) and the OPE and
Tamm-Dankoff methods should merely be applled with taking into account such ﬁelds

4. The enlargement of the basis (9) of twist two operators by attachmg the ax-
ial operators (7s-terms) [25] allows us to extend our method to the consideration of

polarization processes and the spin-dependent structure functions of nuclei.

We would like to thank K. Kazakov for fruitful collaboration. “We also benefited

from stimulating discussions with S. Dorkin, A. Efremov and N. Krasnikov.
Appendix A. The Non—Relativistic' Field Theoretical Approach’ to the
Exchange Effects in Nuclei.[12, 6, 7 4 ' ’ '

The classical equation of motion for the theory with Lagra.nglan (7) has the form

by

(i —=m) N(z) = g,,Q(:c)N(z:), (A1)
(O + p2)®(z) = —g.N(z)N(z), (A2
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where the Dirac bispinor field N(z) could be determined in terms of big and small
components f(z), x(z).

Antinucleon degrees of freedom nonessential for the nuclear physics are eliminated
by a nonrelativistic reduction of matrix eq. (A.1). For this aim we employ eq. (A1) to

express a small component x(x) of the spinor field N(z) in terms of a large component

f(z):

x(z) = 5 70 f(2) | (A3)

Then in the first order of the expansion in powers of 1/m we obtain the following

nonrelativistic equation of motion for f(z):

i1(z) = mf(e) = 5= F(2) + 9:0(e) (). (A4)

Note thatthe.'expansion 1/m corresponds to the approximation in coupling constant,
¢* , accepted in nuclear physics in deriving the interaction potential and Schrédinger

equation. -

In principle, eq. (A.4) can be utilized for quantization and determination of physical -

properties of the system. However, it has been noticed [26, 12] that the fields f(z) do
not obey the conditions of normalization of the probability density and charge and
consequently cannot serve true second-qua.ntlzed fields. Usually, new fields, 1p(a:) =
'(I + F)f(:z:) are introduced where I is a unit operator The operator Fis defined
so that the ﬁelds P(z) should obey all the conditions for canonical second-quantized

fields. For the case under consideration of nucleon and o-meson fields we have:

)= (- —) fe) s

To compute any observable, one could first write the respective fully relativistic
expression, employ eq. (A.3) for small components and rewrite f(z) in terms of ¥ ()
through eq. (A.5). For instance, the H’arriiltonian} is found from the Lagrangian )

and is of the form (12).
Since the operator of the number of mesons commutes with the Hamiltonian, the

physical state |A) of A nucleons can be 1epresented as a superposition of states with

A bare nucleons and a different nuinber of free mesons (the Tamm-Dankoff method):

| 4), = VT= Zagh | Fr---Nadg+of | M- Nao)y + 98 | N Naoo)g+ -, (A6)

* where Z,4 is the constant of renormalization of the wave function determined by the

condition (A]A) = 1. Projecting (11) onto various components of the Fock space we
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arrive at the system of equations for the wave functions @7

(Ny---Na|(Ho= Ea)| Ny N+ [ (N1-+-Nao | Hine | N1+~ Na) P o3/ 21 =0,
Pf=(N1---Nyo | Hint | Nl "'NA)9961/A1 +0(g%), ‘ (A7)

©3=(N1---Ng00 | Hing | Ny+--Npo)(Ny---Nao | Hine | Ny Na)od |00+ 0(%),
where

Ay = (N -Nyo | Ho| Ny -+ Nao)~ Ea, (A.8)

AQ (N IVAU'U l II() I N] AGG)

In view of the approximation adopted when deriving the Hamiltonian (12) we retain -
in (A.6)-(A.7) only terms of oxdcr gt
Appendix B. The Nucleon and Deuteron Ground State.

Here we write the solution of (A.7) for nucleon and deuteron, determine the physical
nucleon mass and the trace of the energy-momentum tensor.
Nucleon.

The expansion (A.6) for a plysical nucleon (A=1) with momentum ¢ is of the form
| MYy = VI=Zwl) | N)y + ) | Ny + 6 [ Noo)g+--, (B

where @} =1, and the wave funclions 99’1‘_’2 in the'sys‘tem with ¢ = 0 have the form

1
\/ V2u(k) w(k)
‘ 2
1
Nk, ks) = L :
| k) = ) a(knks)”
where w(k) = \/k? + p2 and &y >~ —w(k), Ag > ~w(ki)~w(ks) . The rénormalization

constant Zy is given by

(k) = (B:2)

(B.3)

Bk gt
Zn= | L2 _Fo :
" / (2r)* 23(k) (B4)
We obtained a divefging integral. To remove divergences, integrals of that type should

be regularized and the corresponding counterterms are to be determined in the La-

_grangian; for instance, the mass term is written as

Mphys. = m + ém,
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where .

Pk g
(27r)3 2w2(k) )

fm = —

(B.5)

and regularization is assumed.

Equations (B.1)-(B.5) completely determine the states of a physical observable nu-
cleon. Let us, for example, compute the average trace of the energy-momentum tensor
over nucleon states. This operator plays an important role in the theory as it is propor-
tional to the operator O#1#2 in the OPE at n = 2. As it is obvious, we should obtain
the nucleon physical mase in its rest frame of reference.

The trace of the energy-momentum tensor of a system of interacting nucleons and

mesons in a cqvariant form looks as follows
0i(z) = smN(z)N(z): +: p2®%(z) ;. _ (B;.G)
Nonrelativistic reduction of (B.6) gives
1
0(e) = =t VHH)VHLa) s m s () V) 4P @) (B

and then the matrix element of (B.7) over the nucleon state (B.1) equals

where ; . . o . '
_ [k 5 . |
me=) (2r)> wi(k) / (2r)° wi(k) # ém.. (B.9)

At first sight, we arrive at the contradiction with (B.5), however, it is not difficult to
verify that the regularized expressions (B.5) and (B.9) coincide.

Deuteron. '

Below we determine basic observable characteristics of the deuteron and express
them in terms of the corresponding observables of ; realistic nucleon.

Following standard procedure we represent the deuteron ground state in the form
| D) = l—ZDLP(I))lNN)-*—LPPlNNJ)-{-LP?|NNUU)+"' (B.10)
In the system with ¢ = 0 it is convenient to redefine the wave function f as follows

oD (1, p2) = (27)89(p1 + p2)el (p1), (B.11)

and then it obeys the usual Schrédinger equation with the one-boson exchange potential

2- —————2: 3 (p) — @%ﬁvé’(p +k) = epeg (p), (B.12)

phys.
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where ep = Mp — 2myhys.,, and Mp is the deuteron physical mass. In what follows
we will use for the deuteron wave function ¢ another notation ¥p bearing in mind
that when other mesons (7,w,p... ) are included, ¥p will represent the well known .
deuteron function’computed by Paris or Bonn groups|(8, 9].

The wave functions 2, are given by the formulae

©1(P1, P2, K) = —\/-Tw——(g'—li)—w(‘k—)(%)aﬁ(s)(m +p2tk) (‘I’D(bl) - @D(Pz)) )

g

p2(P1, P2, k1, k) (2#)36(3)(;51 +p2+ ki + ka) x

x (¥p(pr+ki)— ¥p(p2+ki) + ‘I’D(Plj - ‘I’D(Pz))l- (B.13)

By a simple computation it is not difficult to verify that the renormalization con-
stant of the deuteron wave function is connected with the correspondmg nucleon con-

stant

Zp = 22y + Zp,
, . (B.14)-
5 _ Pkdp g2

Zp —(2—W)Tw3(k)‘1’5(P)‘I’D(P +k).

Note that the purely deuteron part of the renormalization consta.nt Zp is finite
and, as is seen from (B.13), it defines the total number of extra mesons in the deuteron
mediating the interaction between nucleons. '

Let us compute the matrix element of the operator of the energy-momentum tensor
over the deuteron state and verify that its total mass is expressed through the nucleon

mass and binding energy ep

d"‘p} - p o

s (m -2) vBPIole) +

d3P1d3P2
(27r)6. "(k)

where k = p; + pz. Now we rewrite (B.15) in the coordinate representation

(D100 D) =2 |
+2u2 ‘I’B(Pl)‘I’D(Pz) + 26me, (B.15)
(D|64(0)| D) = 2m+/d3r\llg(r) (—% + r;;V(r) + V(r)) Up(r)+26ms, .(B.16)

where V is the Yukawa potential of nucleon-nucleon interaction. Using the virial theo-

rem (rdV/dr) =2(T) ((T) = (p* /Miphys.) is the mean kinetic energy of nucleons in the
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deuteron) we get

Mp = 2mphy,+61_), . (B17)
(T) + (V).

€D

Thus, we see that basic characteristics of the deuteron in this approach (the mass,

interaction potential, wave funétion) are described in a self-consistent way.

Appendix C. The Non-Relativistic Twist Two Operators of Deep Inelas-
tic Scattering. '

Upon nonrelativistic reduction, the operators (17),(18) assume the form:

The nucleon operator (17):

. &Bp,d? ' ’
oy = / (I;lw)spzN(l)(phpz) -a*(p1)a(p2), ‘ (C.1)
o Bprdp; Bk
N = 0 | ~Grp Ty s 000 (paJalpa) (60 + (1), (C2)
I d®pydp; dPp3dk
o = / (2l7r)6 : (ga) ) ~a*(p1)a* (P2) (a(Pz - k) + a(pz + k)) a(ps),
(C.3)

where a*(p), a(p) and b+(k.),b(k) are nucleon and meson creation - annihilation op-
erators, respectively, and N.S')(k) equal:

N,sl)(Pl,pz) — 2m® (1 p] + pz + P1p2 + P+ P2z) %

8m? 4m? 2m
2 2 n-1
Pi+P; , Pt p2
1 z z
x[ T 2m !
n-1 n-1
NE(K 14 )T wa(k)
(k) = (k) ([ t om 1= ’

2m™"

202 (k) (K) |

([1 + w+(k)]n l [1 O] ALY <[1 + ﬁ]n—l - [1 ke "_l))
2m 2m k.2 2m 2m ’
where wi(k) = w(k) + .. |
Analogously, the meson operator (18) can be represented in the form:
a3k, d3k, 1
(27)° /20(ky)20(k,)

x (6% (kq)b*(k2) + b(k1)b(k2)) + 2M;t (K, kz)b+(k1jb(k2), (Ca)

MO0 =

03 =

M;(kl,kQ) X
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BpdPk, @k,

08 =9 | Try Vaatkd

« (o (p)alp — ka)b(ka) + a*(Pap + k)bt (k)  (C:5)

| d3k1d3p1 d kgd P2
onn = 'o-/ M(a) kq, k: X
* TISTS

xa*(p1)at(p2)a(pz + kz)a(pr + ka), (C.6)

(2)(k11 k2) X’

where M (K, k;) are as follows:

ME(kr,kg) = o (o (k) £ wi ()"

MP(ky, ko) = ((wa (k1) + wi (k)" + (Wi (K1) = w-(k2))" = 2(ws(Ka) + k2:)")s

L
2"w2(k2)
Ma(kr, ko) = m%w(_ki (2= (ki) +wi (k)] + - (k) — - (o)
Huwp (ki) = wi(ko)]* = dlwy (ki) = k2" + 4l = k2]")-
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~ Kantaps 1. n. , YMHUKOE A. 0. - L o E2:92-388 ¢
l‘nyﬁoxoueynpyroe pacceﬁHue nenfoHoe Ha ﬁnpax SRR -
oneparopHoe pasnomeHMe n Meaou HyKnOHHaH Teopun :

C HOBOM TOHKM 3peHMH paccmorpeuo rny60r<oueynpyroe paccemme
nenTOHoa Ha ﬁnpax - B 3cbcber<msuou ME30H -HY KNOHH O reopuu meTo- :
aoM oneparopHoro paanomenun uccnenoaauo rny60K0Heynpyroe ‘pac-
ceAHve 'Ha nempone Dan CTporVM BbIBOA ananmwaecxoro 8MA3 aMnu- -
Ty Al paccmarpusaemoro npou.ecca M npoaeneHo ne-ranbuoe nccnenoea-’ o
Hue - ﬂﬂeprIX CprKTyprIX 3cbcber<ros PaCCMOTpeHH KOHerTHbIe npu- -
no>KeHMﬂ METOAa Anﬂ aHanuaa 3Kcnepumeuranbumx AaHHbIX ’

A

', PaboTa BbimonHena B JlaGopatopuy Teopetudeckoit duankn OUAW. | .

1 Tlpenpuur OGLEAMHEHHOTO MHCTHTYTA SIEPHBIX uccieaosannii. ly6ua 1992

- ; Operator Product Expansmn and Meson Nucleon Theory

o cal Physncs JINR

Kaptarr L. P Umnlkov AYu, S B 52,'9,2'388g/f
Deep Inelastnc Lepton Scattenng on Nuclel G T

,t, . L N s

‘ A novel pomt of V|ew on the)t rescahng model in lepton nucleus deep |ne-“.;f

t|c scatterlng is suggested Uslng ‘the' operator product expansion method iy G
' wnthln the effective meson nucleon theory, we’ present a:rigorous consnde-;(’;
,‘ ratxon of the! scattermg on the deuteron We demonstrate that W|th the con:

trlbut;ons |nterpreted as the Ferml motlon correctlons the xrescahng idea ® .

is exactly reproduced The dlagrams of scattermg of. bound nucleons have_f-;'
: also been computed numencally An example of apphcatron of the method ca]
- viz, the problem of extractlon of the neutron structure fUnctlon from thef;

comblned proton-deuteron‘data ’lS consudered
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