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In more detail the title is: spin formalism and some consequences of using dy
namic amplitudes at high and low energies for any elastic processes. We will consider 
reactions with particles of any spin sk, masses mk, and helicities Ak: 

The conference participants are both theorists and experimentalists, and both 
particle and nuclear physicists, so I will try be simple as possible. On the other 
hand, because of the restrictions on the volume of the article I will consider in detal 
only points 1 and 2, much more shorter point 3 and will give just a survey (more 
exactly - an enumeration, and references) of some results that can be obtained on 
the basis of the suggested formalism. 

1. FORMALISM 

1.1. Helicity amplitudes 

We are interested in kinematic aspects in binary processes related to spin. For 
particles with a zero spin the process is described by one amplitude, A(s, t). This 
amplitude is decomposied in the polynomials in both invariant variables.For particles. 
with a nonzero spin, the process (1) can be described by helicity amplitudes of Jacob 
and Wick [1]. · 

The physical meaning of the helicity amplitudes is clear, the connection with 
physical quantities is simple. But conservation rules do impose definite restrictions 
on the helicity amplitudes. Besides they have the so coiled kinematic singularities. 
This is manifested in particular by the fact that the generalisation of partial-wave 
decomposition to spin-particle scattering is the decomposition in the Wigner rotation 
functions. But thise functions are not polynomials, they contain some singularities, 
just the kinematic singularities of helicity amplitudes. 

1.2. Conservation laws and dispersion amplitudes for any binary 
reaction 

The total number of helicity (or other) amplitudes for scattering of massive 
particles is 

(2) 

However, the conservation of the projection of angular momentum decreases the 
number of amplitudes for certain directions when the process has higher symmetry. 

Consider the reaction in the s-channel described by the helicity amplitudes 
J.\• .\ .\ .\ (s, t). Introduce the quantities A = >.1 - >.2 and µ = >.3 - >.4 • Their 
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meaning will be clear if we recall that two particles in the centre-of-mass system are 
moving in opposite directions and thus >. and µ are projections of the total spin on 
the directions· of motion prior to and after collision. Owing to the conservation of 
the projection of total angular momentum the amplitudes in the forward direction, 
o. -4 0, should vanish in all cases except for A = Jt. Analogoasly, for backward 



scattering, 0. -+ 1r , the amplitudes should vanish for the same reasons in all cases 
except for X = -µ. 

Thus, the binary processes involving particles with a nonzero spin may be de
scribed by N helicity amplitudes f~ .\ .\ .\

2
(s,t), which are constrained by the con-
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servation laws. 
For forward scattering we have 

f Jorward _ { f ,\3.\4,.\1 ,.\2, when ,\ = µ, 
(3) ,\3.\4,.\1,.\2 - . .0, when ,\ =I- µ. 

whereas for backward scattering 

fbackward _ { f,\3.\4,.\1,.\2, when ,\ = -µ, 
(4) ,\3.\4,.\1,,\2 - 0, when ,\ =I- -µ. 

Two questions arise: Can the helicity amplitudes be parametrized so as to satisfy 
the conditions (3) and (4) automatically? Can kinematic singularities of helicity 
amplitudes be found and separated in a simple way? The answer is "Yes". 

It is convenient to expand helicity amplitudes into a set of the Wigner rotation 
functions. In this decomposition the scattering amplitude in the c.m.system of 
the s-channel, J,\• , , .\ (s, t), is splitted into two parts; one part is defined by the 
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symmetry properties and enters into the Wigner functions d-{µ ( cos 0) that make the 
conservation laws of the angular momentum valid, and the other part has a dynamic 
nature and enters into the partial helicity amplitudes jf3,\,,,\1,.\2(s): 

n3,\4,.\1,,\2(s,t) = I)2J + I)ff3.\4,>.1,.\,(s)d'{µ(cos0). (5) 
J 

This decomposition is physically distinguished because the basis functions of 
the decomposition are eigenfunctions of the total angular momentum (which is a 
conservative quantitiy ). This is the kinematic part in decomposition, while dynamics 
is contained iri coefficient functions. 

In the group_ theory language this expansion in the physical region of the s

channel implies that the amplitude is expressed in terms of basis elements of an 
irreducible representation of the Poincare group. The rotation matrices dii.( cos 0) 
are representations of a small group of the three-dimensional rotation group 0(3) or 
its universal covering SU(2). According to the group theory [2,3), matrix elements 
of irreducible representations of the group SU(2) form a complete basis through 
elements of which any function quadratically integrable on a group manifold can be 
expressed. 

Expressing cos 0 in terms of s and t, one can represent the Wigner function as 
dimensionless factors which do not depend on the summation index multiplied by 
polinomials in the variable t [4): 

d'{µ(cos0) ~ Al.\-µIBl>.+µIPolino112(t). (6) 
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Where 

✓ £2 _ a2 -✓--1,2 +-a2 
A= -------,B = ------ , 

(1121 + 1122)(1123 + 1124) (m1 + m2)(m3 + m4) 

L2 = {[s - (1121 - m2)][s - (m1 + 1122)][s - (m3 - m4)][s - (m3 + m4)]}112 

a2 = 2st + s2 - s I: mr + (m; - m~)(m~ - mD (7) 

The mass factors in the denominators make A and B dimensionless without 
introducing additional singularities in the variable s . 

Using this property we can separate the common factors which do not depend 
on J and define dispersion amplitudes for any binary processes: 

J S ( t) - Al,\-µIBl,\+µIJ-· ( t) ,\3.\4,,\,,,\2 s, - ,\3.\4,.\1,.\2 s, • (8) 

For elastic processes (m1 = 1123 = p; m 2 = 1124 = m) we can introduce dispersion 
amplitudes, avoiding an additional singularity at s = 0 point by the equation: 

• ( ,;:::t ) 1,\-µI ( vV+sf) l.\+µJ -. 
I,3;,,,,,\,,.\2(s, t) = 112 + 

11 
(112 + Jt)2 h3,\,,,\,,.\2(s, t). (9) 

Under these parametrizations the conditions (3) and (4) are fulfilled automat
ically. All kinematic singularities in variable t and no false singularities in s are 
introduced. The amplitudes]{ .\ .\ .\ (s, t) suit well for studying the analytic prop-
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erties of amplitudes at fixed s becous they obey dispersion relations. Therefore, we 
call them the dispersion amplitudes [5). They still may have the kinematic singu
larities in the variable s. 

1.3. Dynamic amplitudes for gravitino-pion scattering 

Let us consider as an example a kinematically simple and physically interesting 
supersymmetric process, scattering of a gravitino on a spinless massive target [6). 

Independent helicity amplitudes in the s-channel c.m.system are taken to be 
!;

120
,
3120

( s, t) , the helicity-nonflip amplitude, and J;120,_3120(s, t), the helicity-flip 

amplitude. 
Dispersion and helicity amplitudes in the s-channel are connected by the formulae 

• (Jst + (s - m
2

)
2

)
3 

-. 
f3/20,J/2o(s, t) = m2 f3/20,3/20(s, t); 

J;120,-3/2o(s, t) = ( ~t) 3 

R120,-3/20(s, t). (10) 

The process in the t-channel is also decsribed by two amplitudes, and helicity 
and dispersion amplitudes are related as follows 

t -i () t ) (Jst+(s-m
2

)
2
)

3
-1 

fJ/23/2,oo(s, t) = fJ/23/2,00 s, t ; !3/2-3/2,oo(s, t = m.2 f3/2-J/2,oo(s, t). 
. (11) 
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Dispersion amplitudes of the annihilation channel can be expanded in polynomi
als in the variable s and are free of kinnematic singularities in this variable. In this 
channel, both for forward and backward scattering, the second helicity amplitude 
should turn into zero in accordance with conservation laws, which is provided by 
the corresponding factor in formula (11). 

Because of the massless gravitino and spinness the pion the crossing relations for 
helicity amplitudes are extremely simple this is one of the reasons we consider this 
reaction) 

J;;20,3/20( s, t) = afJ;2-3/2,oo( s, t), J;/20,-3/20( s, t) = /3 fJ/23/2,00( s, t ). (12) 

where a and /3 are constants of absolute value 1 (which are irrelevant for us). Owing 
to the crossing relations being simple we can easily separate the kinematic singular
ities of s-channel helicity amplitudes in the variables. Using the above formulae we 
derive the following crossing relations for dispersion amplitudes 

-. . -t (v-t) 3 
-. -t 

f3;20,3/20(8, t) = af3/2-3/2,oo(8, t); ----;:;;-- f3;20,-3/20( s, t) = /313/23/2,oo(s, t). ( 13) 

The s-channel dispersion amplitudes are free of kinematic singularities in t; in 
principle, they may have kinematic singularities in s. The t-channel dispersion 
amplitudes are free of kinematic singularities in s. From formula (13) it is seen 
that both the dispersion amplitudes for the process under consideration are free of 
kinematic singularities in s. Thus, we have found the dy'namic amplitudes that are 
free of kinnematic variables in both independent invariant variables. The dynamic 
amplitudes of the considered reaction coincide with the reduced amplitudes and are 
connected with helicity amplitudes in the following way 

s (Jst+(s-m2)2)
3 

s 
f3;20,3/2o(s,t) = m 2 D3/20,3/zo(s,t), (14) 

J;;20,-3/2o(s,t) = ( ~trD~;20,-3/2o(s,t). (1-5) 

1.4. Crossing and dynamic amplitudes 

During crossover from one channel to another in the case of helicity amplitudes, 
analytic continuation from a physical region of variables s and t of one channel to 
a physical region of another channel should be accompanied by transition from the 
c.m.system of the s-channel to the c.m.systcm of the t-channel with the use of the 
Lorentz complex transformation. The latter results in requantization of spins; and 
the amplitude is expressed in terms of the Wigner functions. 

The crossing relations between the s- and t-channel helicit._v amplitudes lock a.s 
follows [7-10] 

f>.,>.,,>.1,>.2 ( s, t) =· L ad~:1,1 (x1 )d~:1'2 (x2)d~~l'J (x3)d~:1,, ( \a :.r:,,1,, ,1•11•2 ( s, t ). ( Hi) 
1'11'21'31'4 

4 

,,._, 

V 

1,'I 

J 

\Vhen in a reaction particles with zpro masses arc involved, or the spin of the 
particle is sero, crossing relations get simplified. In such cases the cl-matrix reduces 
to the KronPckn symbols, and tlwn· is no sum in formula for corresponding indices 
[11]. 

For elastic processPs the crossing r<'lations between dispersion amplitudes are of 
the form ( >.' = /L1 - /L2, 1/ = /L3 - /14 ): 

- ( A )-l,\-11
1 (JJ2 + ~t)-1,\+µI 

h,.\,,.\ 1 ,.\,(s, t) = m + 
1 

(m, + 
1
) 2 L d~~ 1, 1 (xi)d~:"2 (x2) 

I I 1•1µ2µ,µ, 

ds' (rr +, )d•• (rr + \· )(At)I/21,\'+µ'l(B1)1/21.\'-µ'IJ-1 (st). (17) 
.\:3-1t3. ,·\ l .\4 Jl4 · 2 1t3µ4 ,µ1 µ2 ' 

1 J(t - 4m 2 )(/ - 1111 2 ) - 2s - t + 2(m2 + 11 2
) 1\ - __,_;___ __ :...:.__...:.._-'--------'-----...:.._-'--

. - (m+/1)2 
(18) 

1 J(t - •lm 2 )(t - 4112) + 2s + t - 2(m2 + /12) 
H = --'-------~------...;___;__. 

. (m + 11)2 
( 19) 

Crossing auglPs arP given by the formulae 

(s+/l2 -m2 )l . 2/l# 
COS\J = - ,sJn \J = --, 

Lrµ Lrµ 
(20) 

cos \2 = (s - 112 + m 2 )t . 2m# 
, Slll \2 = ---, 

Lr.,. Lrm 
(21) 

where 

<I>(s, t, u) + stu - t(m2 
- 11 2

), T1, = Jt(t - 411 2 ), Tm = Jt(t - 4m2 ), (22) 

As has been shown in the previous section for a kinematically simple process 
the crossing relations for dispersion amplitudes allow us to separate the kinematic 
singularities in s. In this wa.y we can determine the dynamic amplitudes for alastic 
processes [12]: 

t ( Ff )-l>--1,l(JL2+st)-1.1+,.I( /, )-2(,1-,,l 
J>.,.\,,.\1,>.,(s, ) = -+- ( + )2 ( )2 D,\,.\, 11 .,,(s,1). 

m µ m 11 m + 11 • • 

(23) 

2. OBSERVABLES 

From this point an account will he shorter aud more schematic. The observable 
quantities arc simply expressed via the helicity amplitudes. 

As we have already mc11tio1wd, I.he hclicit.y amplitudes have a clear physical 
meaning, and physical obscrvahlPs (polarization cross sections, asymmetries, etc.) 
are simply expressed via. them. As the connection betwPcn the hclicity and dynamic 
amplitudes is one-to-one, every helicit.y amplitude for elastic scattering is expressed 
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in terms of one dynamic amplitude. Hence it follows that all attractive features of 
the helicity amplitudes, a clear physical meaning, simple relations with observables, 
and equal dimensions, are also inherent in the dynamic amplitudes. The formalism 
of dynamic amplitudes is simple for low spins and remains such also for higher spins: 
the formalism is simple for any spins. 

The differential cross section for elastic scattering, when one measures the helicity 
of each particle expressed via helicity, invariant, and dynamic amplitudes has the 
following form: 

da 2 Tt(>-.3>q, ,\1>-.2) ~I h3,\4,)q,,,(s, t) I = 
N 

=IL a'.,3 ,x 4 ,,\,,\2 (s, t)An(s, t) 1
2

~ 

n=l 

- (s-m2)-2J(p)l"-1•l(Jst+(s-m2)2)l,\+µID' st 2 
-I m2 m m2 ,\3,\4,,x.,,,,( ' ) I · (24) 

Comments: 
- First line in outward appearance is simplest, but helicity amplitudes contain 

kinematic singularities and the conservation laws do not fulfill automatically - so 
kinematics and dynamics are not separated. Here we have one term. 

- In second line there is the sum of all invariant amplitudes. Here we have N 2 

terms. For the spins equal to 3/2 there are 65.536, and the spins equal to 11/2, there 
are more then 108 terms. In each term we have kinematic - dynamic separation, 
but there are so many such terms. To find such parametrisation is difficult for high 
spins. This variant is complicated - to definite one cross section with definite values 
of particle helicities one needs to know all invariant amplitudes. As in the previous 
variant, the consequences of conservation rules do not affect the parametrisation. 
As mentioned above, invariant amplitudes have different dimensions and have no 
physical meaning (the opposite will be much better). The nice point in using a set 
of invariant amplitudes is that they have no kinematic singularities. 

- The parametrisation via dynamic amplitudes is best in our openion. In this 
case in the above formulae we have no summation! The differential cross section 
is expressed only via one dynamic amplitude with the kinematical factors which 
contain all kinematic singularities. Just thesa factors ensure that conservation laws 
are fulfilled automatically. In this case we have the simple separation of kinematics 
and dynamics in the description of the spin particle elastic scattering. The dynamic 
amplitudes have a clear physical meaning and the same dimensions. We have only 
one term. 

For unpolarised reactions we have: 

da N 

dt ~LI h3>.4,,x,,x,(s,t) 1
2= 

,\; 

N N 

=LI I>~3 ,\4,>. 1 >.2 (s,t)An(s,t) 1
2= 

,\1 n=l 

6 

I~ 

J 
I· 

N ( 2)-2J( ")l,\-µl(V t + ( 2)2)1>.+µI = ~. I s - m ~s s - m n• (s t) 12 . (25) L 1n2 m m2 ,\3,\4,.\1,,\2 , 
,\, 

We have depending of parametrisation N, N 2 and N terms. Because of "kine
matic hierarchy" (see the next paragraph) at high energies we can reduce the number 
of terms, dominated in observables. 

Other quantities, such as P, Ann, Au, A., in terms of the helicity amplitudes have 
the form [13,14] 

I:cmnfmf: 

I: lfm 1
2 

(26) 

Here m and n represent sets of helicity indices. Cmn = ±1. The sum is taken for 
all values of helicities. For briefty we did not write the above quantities in terms of 
invariant and dynamic amplitudes. Obviously the expressions, as for (24) and (25) 
will be most convenient in terms of dynamic amplitudes. 

3. HI@H ENERGY BEHAVIOUR 

A( high energies it was often assumed the simple assumption that spin effects are 
died out, and consequently, the helicity amplitudes do not depend on spin. However, 
this cannot be assumed directly. Simplifications like that are not correct, as the 
obligatory kinematic conditions are not taken into account. One cannot neglect 
the kinematic factors or consider them to be all equal. In that case the helicity 
amplitudes could possess kinematic singularities, and the angular momentum would 
not be conserved, say, •for forward scattering "forbidden" amplitudes would not 
vanish. Besides the experiment gives that at high energies the spin effects are 
considerable. 

In study the binary processes at fixed scattering angles and high energies it is 
convenient to represent kinematic factors in the definition of dynamic amplitudes 
as functions of the scattering angle in the c.m. system 0 and invariant variable s. 
Kinematic factors,expressed in terms of 0 ands are factorizable, and we can write 

h,>.,,,x,>.2 (s, t) = P;.,,,\4,,\1>.2 (s )F,x,,x,,;,.1;,.2 (0)D,x3 ;,.4,,x1>.2 (s, t) 

As s -t oo we get the small kinematic factor 

p (s) ~ (m + µ)l(,\3.\4,>.1>.2) 
.\3,\4,.\1>.2 V5 ' 

For different values of helicities 

lmin ~ l(A3A4, A1A2) ~ lmax 

(27) 

(28) 

. (29) 

In observables, some of contributions of amplitudes are kinematically increased 
(such amplitudes will give leading contributions) whereas others are suppressed (and 
can be neglected in the first approximation). So we have the "kinematic hierarchy" 
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- the helicity amplitudes are divided into classes giving the leading contribution, 
the first corrections, second corrections , and so on. 

For nucleon-nucleon scattering we have five independent amplitudes. In the high
energy large-fixed-angle region the helicity amplitudes are splitted into three classes 
in the order of smallness determined by the kinematic factors. So we obtain [15,16] 

/1/2,1/2;1/2,-1/2 » /1/2,-1/2;1/2,-l/2 ~ /1/2,-1/2;-1/2,1/2 » /1/2,1/2;1/2,1/2 ~ !1/2,1/2;-1/2,1/2· 
(30) 

or, in terms of dynamic amplitudes: 

vs. 20 ·20 
2

m sm0D1/2,1/2;1/2,-1/2 » cos 2D1;2,-1/2;1/2,-1;2) ~ sm 2D1;2,-1/2;-1/2,1/2 » 
m2 m2 

» -2 D1;2,1/2;1/2,1/2 ~ -2 D1/2,1/2;-1/2,1/2· (31) 
p p 

where p = J s - 4m2 /2, "a » b" means that the contribution of b is suppressed 
relative to the contribution of a in the observables. 

The predictions of perturbative QCD, taking into account the helicity conserva
tion rule [17] may be written in the form 

!1;2,1/2;1/2,1/2 ~ !112,-1/2;1/2,'-1/2 ~ !1;2,-1/2;-1/2,1/2 » !1/2,1/2;1/2,-1/2 » !1;2,1/2;-1/2,1/2• 
. (32) 

For pp scattering at Oc.m = 90° we have from s - u crossing symmetry that 

!1;2,1/2;1/2,-1/2(90°) = 0, !1;2,-1/2;1/2,-1/2(90°) = !1;2,-1/2;-1/2,1/2(90°) (33) 

Taking into account dominated amplitudes we get for asymmetries 

A A 
2Reft;2,-1/2;1/2,-1;d;/2,-1/2;-1/2,1/2 

nn = ss = I 12 2 --t 1. 
ft12,-1/2;1/2,-1/2 + I /1/2,-1/2;-1/2,1/2 I 

(34) 

QCD gives for thise quantities the value 1/3 [18,19]. The massive quark model 

[20] gives Ann = 0.97; Ass = -0.01 
For experiment we have at 90°, for Ann(Pi(GeV)2) the following values [21] 

Ann(3.81) = 0.26; Ann(4.79) = 0.52; Ann(5.56) = 0.59. (35) 

For the masseless gravitino scattering on the nucleon we have 6 independent 
amplitudes and the following hierarchy from them [22]: 

ft;2,-3/2;1/2,-3/2 » !1/2,3/2;-1/2,3/2 » ft12,3/2;1/2,-3/2 » 
» !112,-3/2;-1/2,3/2 ~ !112,3/2;1/2,3/2 » /1/2,3/2;-1/2,-3/2· 

Two comments: 

(36) 

-We recomend for elastic scattering processes at high energies and large fixed 
angles first of all to measure dominating amplitudes. 

-The kinematic hierarchy gives connections between various asymmetry param

eters. 
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4. SOME APPLICATIONS 

4.1. Low-energy theorems 

The spin kinematics allows one to obtain the low-energy theorems for photon
hadron processes [23,2·1] and gravitino scattering on spin-0 target. For the latter 
process at low energies the helicity amplitudes up t.o 0(£3) a.re determined by their 
t-cannel I3orn terms with the photon exchange [6,22]. 

4.2. Model-independent inequalities 

The dynamic amplitudes, or more simply, the t-channel dispersion amplitudes 
can be used t.o prove model-i11dcpnHlcnt dispersion inequalities for the Compton 
effect on the pion and nucleon largPl, including the case of the polarised photon 
scattering [25,26]. 

4.3. Other applications 

Herc we only mention.other possible applications of dynamic amplitudes. These 
are the dispersion relations for individual hclicit.y amplitudes for any elastic scatter
ing and sum rules ( espesially dua.l sume rules) also for any elastic scattering. The 
dynamic amplitudes for inelastic JHOCPsses will be co11sidered separately. 

The author is greatful to V.G.l{adyslH·\·sky, D.V.Shirkov, A.N.Sissakyan and 
Ys.A.Smorodinsky for useful discussions. 
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lfaeneilweHnH M.n. E2-92-385 
CnHHOBble RBnBHHR B ynpyr~x npoLteccax 

' . -- - -
O6cy>KA810TCR CnHHOBble RBnBHHR B ynpyrnx npoLteccax. _KpaTKIIM_ o63op COCTOHT 113 SeTbl· 

pex sacTeii. . , 
1,._~QP~~,2!,1,._ CHasana Mbl paCCM8TpMB8eM 38K0Hbl COXp&HBHHR 11 npo6neMy p33AeneHHR 

K1<HeMaT11K11 11 AHHBMl1KH. 0cHOBHblM peJynbTar.oM nenneTCR _eBOAeHHe AHHBMHStlCKHX aMMH· 
TYA MA np0113BOnbHblX ynpyrnx npoLtBCCOB paccOAHHA. ·, 

i_HJ!£Q~!!.~.!.!I..:.. BblnHCblB8_1'M Bblp8"'eHHA Ha6n10A8eMblX eenHS_HH llOCpeA<;TBOM cri11panb• 
HblX, HHBapHBHTHblX H AHHaMHS6CKl1X 8MMHTYA H cpaBHHBaeM HX. 
. 3: Bi.1COK03H.!!£feTHsecKoe. 110a91l!H11e. nony,aeM KHHeMaTHSBCKylO 11epapXHIO BKI18AOB 
8MMHTYA B Ha6n10AaeMble. 8. K8"8CTBe npi,,Mepa. paccMaTpHeaeM npoTOH-flp0TOHHOe p8CCBA· 
HH8 np11 BblCOKHX 3HeprHAX 11 6onbWHX <!>MKCl1p088H~blX yrnax (~ 9D°) • . . 

4. HeKOTOpb1e nP!'..!'.!!~'!!'!'!!- O,BHb KPBTKO o6cy>t<A8eM HH3K03HepreTl1StlCKHe TeopeMbl, 
BKn10san cny,aH P8CCBAHHA cynepcHMMeTPH•HOH •aCTHllbl (rpaBHTHHO), nepe,11cnneM Apyrne 
B03MO>KHOCTl1 11cnonb30BaHHR . c!>opM8nH3M8 (MoAenbHO. HeJaBHCHMble HepaBBHCTea;. AHCnep-_ 

. CHOHHble CO0THOWBHHR, npaeHna CYMM HT.A.). . . 

Pa6on BblOOnHBHa B Ila6opaTOpHH TOOpeTH•BCKOH ¢,HJHKH O11Al1. 

OpenpHHT Om,e;u111e1moro imcimyrn 1u1ep11~1X HCC,1e~oeattuii. Jly611a 1'992 · 

! . 

Chavleishvill M.P. E2-92-385 
Spin Pheno_mena In Elastic Processes 

We will discuss spin phenomena in elastic processes. A short review consists of four paragraphs: 
1. Formalism. First we discuss conservation laws and the problem of separation of the kine

mati;;-.-a--;;idy;.;.k:s. The main result Is the Introduction of the Dynamic Amplitudes for any elastic 
scattering. · . . •. . • . : · ·. _.· . 

2, Observables; We write out expressions of observables quantities In terms of helicity, invariant. 
and dyn-;;;;k:-;.;;piitudes and compare them. . ' . . · 

__;3..:..!:!!91!..!!~.!IIL~!!!!Yl~!:: We obtain Kinematic Hierarchy of contributions of amplitudes in 
observables. As an example, we consider proton-proton scattering at high energies ani:1 large fixed 
angles (~. 90°). · · 

,1,_~!!'!.!ePJi.£8.!!!?!!~ We shortly discuss the low-energy theorems, Including the cas_e of SUSY 
particle- (gravitino) scattering. Some other possible applications of the formalism (model indepen
dent in<K1ualitles, dispersion relations, sum rules, arid so on) are expounded • 

. The investigation has been perfo~med at the Laboratory_of Theoretical Physics, JINR. 
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