


“In more detail the title is: spin formalism and some consequences of using dy-
namic amplitudes at high and low energies for any elastic processes. We will consider
reactions with particles of any spin s;, masses my, and helicities Ax:

a(my, 81, A1) + b(my, 82, A2) — e(ma, s3, Az) + d(my, 54, Ay) (1)

The conference participants are both theorists and experimentalists, and both
particle and nuclear physicists, so I will try be simple as possible. On the other
hand, because of the restrictions on the volume of the article I will consider in detal
only points 1 and 2, much more shorter point 3 and will give just a survey (more
exactly - an enumeration, and references) of some results that can be obtalned on
the basis of the suggested formalism.

1. FORMALISM
1.1. Helicity amplitudes

‘We are interested in kinematic aspects in binary processes related to spin. For
particles with a zero spin the process is described by one amplitude, A(s,t). This
amplitude is decomposied in the polynomials in both invariant variables.For particles .
with a nonzero spin, the process (1) can be described by helicity amplitudes of Jacob
and Wick [1].”

The physical meaning of the helicity amplitudes is clear, the connection with
physical quantities is simple. But conservation rules do impose definite restrictions
on the helicity amplitudes. Besides they have the so colled kinematic singularities.
This is manifested in particular by the fact that the generalisation of partial-wave
decomposition to spin-particle scattering is the decomposition in the Wigner rotation
functions. But thise functions are not polynomials, they contain some singularities,
just the kinematic singularities of helicity amplitudes.

1.2. Conservation laws and dispersion amplitudes for any binary
reaction

The total number of helicity (or other) amplitudes for scattering of massive
particles is

N = (251 +1)(2s2 + 1)(2s3 + 1)(2s4 +1). (2)

However, the conservation of the projection of angular momentum decreases the
number of amplitudes for certain directions when the process has higher symmetry.

Consider the reaction in the s-channel described by the helicity amplitudes
Sinaan(8:t). Introduce the quantities A = Ay — A and p = A3 — Ay, Their
meaning will be clear if we recall that two particles in the centre-of-mass system are
moving in opposite directions and thus A and p are projections of the total spin on
the directions of motion prior to and after collision. Owing to the conservation of
the projection of total angular momentum the amplitudes in the forward direction,
0, — 0, should vanish in all cases except for A = p. Analogously, for backward
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scattering, 8, — 7 , the amplitudes should vanish for the same reasons in all cases
except for X = —pu.

Thus, the binary processes involving particles with a nonzero spin may be de-
scribed by N helicity amplitudes f3,, 5, 1,($,t), which are constrained by the con-
servation laws.

For forward scattering we have

f forward f,\s/\h,\h,\z, ’LUhCTl /\ = i, 3
Aaddrdz = 0, when A # p. (3)

whereas for backward scattering

Jiogierd = { B (@)
AL 0, when A # —p.

Two questions arise: Can the helicity amplitudes be parametrized so as to satisfy
the conditions (3) and (4) automatically? Can kinematic singularities of helicity
amplitudes be found and separated in a simple way? The answer is ”Yes”.

It is convenient to expand helicity amplitudes into a set of the Wigner rotation
functions. In this decomposition the scattering amplitude in the c.m.system of
the s-channel, f3 ,, ,, ,(s,t), is splitted into two parts; one part is defined by the
symmetry properties and enters into the Wigner functions dA (cos @) that make the
conservation laws of the angular momentum valid, and the other part has a dynamic
nature and enters into the partial helicity amplitudes f},,, y,.1,(5):

Boserenn(8:8) = 37 + 1)f 5 (6L, (c05). 5)
J . :

This decomposition is physically distinguished because the basis functions of
the decomposition are eigenfunctions of the total angular momentum (which is a
conservative quantitiy). This is the kinematic part in decomposition, while dynamics
is contained in coeflicient functions.

In the group. theory language this expansion in the physical region of the s-
channel implies that the amplitude is expressed in terms of basis elements of an
irreducible representation of the Poincare group. The rotation matrices dfp(cos 0)
are representations of a small group of the three-dimensional rotation group O(3) or
its universal covering SU(2). According to the group theory [2,3], matrix elements
of irreducible representations of the group SU(2) form-a complete basis through
elements of which any function quadratically integrable on a group manifold can be
expressed.

Expressing cos 8 in terms of s and ¢, one can represent the Wigner function as
dimensionless factors which do not depend on the summation index multiplied by
polinomials in the variable ¢ [4]:

], (cos 0) ~ A= B+ Polinom(t). (6)

&

Where

7= a2 3 VIt a
(my +ma)(mz +mq)’ " (my +ma)(ms +my)’
L? = {[s — (my = ma)lls — (m1 + ma)][s — (ma — my)][s — (mg + ma)]}'/*

a?=2t+s*—s Z mi + (mf - m%)(mﬁ - mZ) (M

A=

The mass factors in the denominators make A and B dimensionless without
introducing additional singularities in the variable s . '

Using this property we can separate the common factors which do not depend
on J and define dispersion amplitudes for any binary processes:

Frsrenn (6:8) = Al'\—ulBlHulfL,\,.Al,Az (s, t). 8)

For elastic processes (m; = mz = y;m, = my = m) we can introduce dispersion
amplitudes, avoiding an additional singularity at s = 0 point by the equation:

V=i PA—ul m At .,
\3/\4,/\1,/\2(3 t)'

m+ p (m+p)?

Ll () = ( (9)

Under these parametrizations the conditions (3) and (4) are fulfilled automat-
ically. All kinematic singularities in variable ¢ and no false singularities in s are
introduced. The amplitudes fhl\‘ A (85 1) suit well for studying the analytic prop-
erties of amplitudes at fixed s becous they obey dispersion relations. Therefore, we
call them the dispersion amplitudes [5]. They still may have the kinematic singu-
larities in the variable s.

1.3. Dynamic amplitudes for gravitino-pion scattering

Let us consider as an example a kinematically simple and physically interesting
supersymmetric process, scattering of a gravitino on a spinless massive target [6].

Independent helicity amplitudes in the s-channel c.m.system are taken to be
F3120, 3/20(3 t) , the helicity-nonflip amplitude, and f§/20’_3/20(s,t), the helicity-flip
amplitude.

Dispersion and helicity amplitudes in the s- channel are connected by the formulae

JEEG=mN
*—“‘) f3/20,3/20(5’t)’

m?2

f§/20,3/20(3’t) = (
f§/20,—3/20(31t) = (\/‘t) f3/20 3/20(5 t). (10)

The process in the t-channel is also decsribed by two amplitudes, and helicity
and dispersion amplitudes are related as follows

'it‘(s—:ﬂ) f3/2 3/200(3 t).

f§/23/2,oo(31t) = f;/23/2,00(3’t)§f3‘/2—3/2,00(3at) = ( m?
-(11)



Dispersion amplitudes of the annihilation channel can be expanded in polynomi-
als in the variable s and are free of kinnematic singularities in this variable. In this
channel, both for forward and backward scattering, the second helicity amplitude
should turn into zero in accordance with conservation laws, which is provided by
the corresponding factor in formula (11).

Because of the massless gravitino and spinness the pion the crossing relations for
helicity amplitudes are extremely simple this is one of the reasons we consider this
reaction)

f§/20,3/20(3vt) = O‘fé/z—a/z,oo(sat), fas/zo,-a/m(sv )= ﬂf:ﬁ/%/z,oo(sa t). (12)
where a and # are constants of absolute value 1 (which are irrelevant for us). Owing
to the crossing relations being simple we can easily separate the kinematic singular-
ities of s-channel helicity amplitudes in the variable s. Using the above formulae we
derive the following crossing relations for dispersion amplitudes

3

= o N ) _
f3/20,3/20(3’t) = af;/z—a/z,oo(svt)§ (7 fa/zo,—a/zo(svt) = ﬁf;/23/2.00(37t)' (13)

The s-channel dispersion amplitudes are free of kinematic singularities in ¢; in
principle, they may have kinematic singularities in s. The ¢-channel dispersion
amplitudes are free of kinematic singularities in s. From formula (13) it is seen
that both the dispersion amplitudes for the process under consideration are free of
kinematic singularities in s. Thus, we have found the dynamic amplitudes that are
free of kinnematic variables in both independent invariant variables. The dynamic
amplitudes of the considered reaction coincide with the reduced amplitudes and are
connected with helicity amplitudes in the following way

st + (s — m?)?
m2

3
f§/20,3/20(37t) = ( > D;/20,3/20(37t)7 (14)

v=t\’
f§/20,—3/20(3,t) = (‘—T‘;{“ Dg/zo,—a/m(svl)» (15)
1.4. Crossing and dynamic amplitudes

During crossover from one channel to another in the case of helicity amplitudes,
analytic continuation from a physical region of variables s and ¢ of one channel to
a physical region of another channel should be accompanied by transition from the
c.m.system of the s-channel to the c.m.system of the {-channel with the use of the
Lorentz complex transformation. The latter results in requantization of spins; and
the amplitude is expressed in terms of the Wigner functions.

The crossing relations between the s- and t-cliannel helicity amplitudes lock as
follows [7-10]

f)\a)\h/\l.)\z(s7t) = Z ad;]”q (X])df\z;ug(X?)dia:glts(X:i)(l:;\:;q(\“\’ffln;u.u]u;(s’t)‘ (J())
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When in a reaclion particles with zero masses are involved, or the spin of the
particle is scro, crossing relations get simplified. In such cases the d-matrix reduces
to the Kronecker symbols, and there is no sum in formula for corresponding indices
[11].

For elastic processes the crossing relations between dispersion amplitudes are of
the form (A = ji; — pg, pt' = 13 — jra )t

e )—!A—:II(M)""*“'

-— a3
m+ pu (m + p)?

A1y (Xl )df\zm(XZ)

f\s,\h,\,,,\,(s,t) = (

B1u2uapg .
d:s\aalts(ﬁ + ,\"1)‘[?‘,..(7" + v\._z)(At)l/'Zl.\ +u !(Bt)l/zl.\ -u| “t‘whmm(s’t)' (17)
o Y= AmI = 7) = 25 — t 4 (m? 4 4?) (18)
T (m + )2 ’
Bt — V= Am2)(t — 4p2) + 25+t — 2(m? + 1) (19)
- m -+ ’
: ny .
Crossing angles are given by the forimulae
(s + [t2 - m’)t . ‘2;1\/6
cos \| = ————————,sin\1 = R (20)
! I/Tu ) LTu
: (s — (2 +m?t . 2m/® o
Sy = —————————, 2 = , 21
COS X2 I sin \'g T (21)

where

O(s,t,u) + stu —t(m? — p?), 7, = VIt — 4p?), T = VU(t — 4m?), (22)

As has been shown in the previous section for a kinematically simple process
the crossing relations for dispersion amplitudes allow us to separate the kinematic
singularities in s. In this way we can determine the dynamic amplitudes for alastic
processes [12]:

v )-u—ul(\/m)""‘*“'(( L

)=
Sraranna(syt) (m +u (m + u)?

—2(81~92)
_mT;t)_?) Dyjngn (s, 1)
(23)

2. OBSERVABLES

From this point an account will be shorter and more schematic. The observable
quantities are simply expressed via the helicity amplitudes.

As we have already mentioned, the helicity amplitudes have a clear physical
mecaning, and physical observables (polarization cross sections, asymmetries, etc.)
are simply expressed via them. As the connection between the helicity and dynamic
amplitudes is onc-to-one, every helicity amplitude for elastic scattering is expressed



in terms of one dynamic amplitude. Hence it follows that all attractive features of
the helicity amplitudes, a clear physical meaning, simple relations with observables,
and equal dimensions, are also inherent in the dynamic amplitudes. The formalism
of dynamic amplitudes is simple for low spins and remains such also for higher spins:
the formalism is simple for any spins.

The differential cross section for elastic scattering, when one measures the helicity
of each particle expressed via helicity, invariant, and dynamic amplitudes has the
following form:

Tk M)~ araanls, ) =

N
= Z aXoa i (50 8) An(s, B) *=
n=1

s—m2\ " IN\PH ot F (s = mE)T\ M
=l ( ) ( ) (—(2_)'> D3 (8:) 2. (24)

m? m m

Comments:

— First line in outward appearance is simplest, but lelicity amplitudes contain
kinematic singularities and the conservation laws do not fulfill automatically — so
kinematics and dynamics are not separated. Here we have one term.

- In second line there is the sum of all invariant amplitudes. Here we have N?
terms. For the spins equal to 3/2 there are 65536, and the spins equal to 11/2, there
are more then 108 terms. In each term we have kinematic — dynamic separation,
but there are so many such terms. To find such parametrisation is difficult for high
spins. This variant is complicated — to definite one cross section with definite values
of particle helicities one needs to know all invariant amplitudes. As in the previous
variant, the consequences of conservation rules do not affect the parametrisation.
As mentioned above, invariant amplitudes have different dimensions and have no
physical meaning (the opposite will be much better). The nice point in using a set
of invariant amplitudes is that they have no kinematic singularities.

— The parametrisation via dynamic amplitudes is best in our openion. In this
case in the above formulae we have no summation! The differential cross section
is expressed only via one dynamic amplitude with the kinematical factors which
contain all kinematic singularities. Just thesa factors ensure that conservation laws
are fulfilled automatically. In this case we have the simple separation of kinematics
and dynamics in the description of the spin particle elastic scattering. The dynamic
amplitudes have a clear physical meaning and the same dimensions. We have only
one term.

For unpolarised reactions we have:

do N 2
Tl D1 Harn(sit) =
Ai

N N
= Z | Za’im,m,(s,t)An(s,t) *=
Ag

n=1

m m?

) i (5 _n) (Ft)u_u'( T mz)z)MDim.A,.A,(s,t) P @)

We have depending of parametrisation N, N? and N terms. Because of "kine-
matic hierarchy” (sce the next paragraph) at high energies we can reduce the number
of terms, dominated in observables.

Other quantities, such as P, A,,, Ap, A,, in terms of the helicity amplitudes have
the form [13,14] '

&

[ 2 Cmnfmfr

9 - Sonaf 0
J > P 0
Y Here m and n represent sets of helicity indices. ¢, = Z1. The sum is taken for

all values of helicities. For briefty we did not write the above quantities in terms of
invariant and dynamic amplitudes. Obviously the expressions, as for (24) and (25)
will be most convenient in terms of dynamic amplitudes.

3. HIGH ENERGY BEHAVIOUR

At high energies it was often assumed the simple assumption that spin effects are
died out, and consequently, the helicity amplitudes do not depend on spin. However,
this cannot be assumed directly. Simplifications like that are not correct, as the
obligatory kinematic conditions are not taken into account. One cannot neglect
the kinematic factors or consider them to be all equal. In that case the helicity
amplitudes could possess kinematic singularities, and the angular momentum would
not be conserved, say, for forward scattering "forbidden” amplitudes would not
vanish. Besides the experiment gives that at high energies the spin effects are
considerable. ‘

In study the binary processes at fixed scattering angles and high energies it is
convenient to represent kinematic factors in the definition of dynamic amplitudes
as functions of the scattering angle in the c.m. system 6 and invariant variable s.
Kinematic factors expressed in terms of 8 and s are factorizable, and we can write

Frarennra(8:8) = Praganna (8)Faga an (0) Dagapana (85 1) (27)

As s — oo we get the small kinematic factor

m+
PI\J/\4.I\II\2(S) ~ (—s‘u)l(l\gl\h/\],\z)' (28)
For different values of helicities
‘ Imin < 1(Asha, MA2) < lnas (29)

In observables, some of contributions of amplitudes are kinematically increased
(such amplitudes will give leading contributions) whereas others are suppressed (and
can be neglected in the first approximation). So we have the "kinematic hierarchy” -




~ the helicity amplitudes are divided into classes giving the leading contribution,
the first corrections, second corrections , and so on.

For nucleon-nucleon scattering we have five independent amplitudes. In the high-
energy large-fixed-angle region the helicity amplitudes are splitted into three classes
in the order of smallness determined by the kinematic factors. So we obtain [15,16]

Frjaaszaja—y2 > fiz-yzz-2 ~ fyz-yz-pe > fipapaeae ~ hzapegzage
(30)

or, in terms of dynamic amplitudes:
s . 0 .20
%/T% sin0D1/2,1/2:1/2,1/2 > cos? §D1/2,-1/2;1/2,-1/2) ~ sin® EDx/z,-l/z;—I/Z.ln >
m? m2
> p—2D1/2,1/2;1/2,1/2 ~ —p‘{Dl/z,x/z;-l/z,x/z- (31)

where p = /s — 4m2/2, "a > b” means that the contribution of b is suppressed
relative to the contribution of a in the observables.

The predictions of perturbative QCD, taking into account the helicity conserva-
tion rule [17] may be written in the form

f1/2,1/2;1/2,1/2 ~ f1/2,—1/2;1/2,‘—1/2 ~ f1/2,—1/2;-1/2,1/2 > f1/2,1/2;1/2.-1/2 > f1/2,1/2-,-1/2,1/2-
(32)
For pp scattering at 0., = 90° we have from s — u crossing symmetry that
Fij2n/21/2,-172(90°) = 0, fija,—1/2:1/2,-1/2(90°) = fij2,-172-1/2,1/2(90%) (33)

Taking into account dominated amplitudes we get for asymmetries

2Re fi72,~1721/2,-1/2f 1 12— 12—
Apm = A /2,-12%1/2,~1/2)1/2,-1/2-1/2,1/2

38 — — 1. 34
| fijz—rpzaga—age P+ | fiyg-rzer2a2 2 34)
QCD gives for thise quantities the value 1/3 [18,19]. The massive quark model

[20] gives A"," = 0.97; A;; = —0.01

For experiment we have at 90°, for A..(p2 (GeV)?) the following values [21]
Apn(3.81) = 0.26; A,.,(4.79) = 0.52; A, (5.56) = 0.59. (35)

For the masseless gravitino scattering on the nucleon we have 6 independent
amplitudes and the following hierarchy from them [22]: '

fry2,-3p2172,-312 > firspz-ay23p2 > fiy2,372172,-372 2>
> fija~ajzm-172372 ~ fijzapeagese > fipasz-1/2.-32 (36)

Two comments:

~We recomend for elastic scattering processes at high energies and large fixed
angles first of all to measure dominating amplitudes.

—The kinematic hierarchy gives connections between various asymmetry param-
eters.

4. SOME APPLICATIONS
4.1. Low-energy theorems

The spin kinematics allows onc to obtain the low-energy theorems for photon-
hadron processes [23,24) and gravitino scattering on spin-0 target. For the latter
process at low energies the helicity amplitudes up to 0(E3) are determined by their
t-cannel Born terms with the photon exchange (6,22].

4.2. Model-independent inequalities

The dynamic amplitudes, or more simiply, the {-channel dispersion amplitudes
can he used to prove modcl-independent dispersion inequalities for the Compton
effect on the pion and nucleon target, including the case of the polarised photon
scatlering [25,26].

4.3. Other applications

Here we only mention other possible applications of dynamic amplitudes. These
are the dispersion relations for individual helicity amplitudes for any elastic scatter-
ing and sum rules (espesially dual sume rules) also for any elastic scattering. The
dynamic amplitudes for inclastic processes will be cousidered separately.

The author is greatful to V.G.Kadyshevsky, D.V.Shirkov, A.N.Sissakyan and
Ys.A.Smorodinsky for useful discussions.
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