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1. INTRODUCTION 

The study of the hot and dense nuclear matter has many important appli­
cations to nucleus-nucleus and ion-ion collisions, the early Universe, neutron 
stars and other stellar models. A major obstacle for the description of nuclear 
matter in the whole range of temperatures and densities is that a large variety of 
very complicated bound structures are favoured. A different.way to express this 
inherent problem is that many-particle correlations are very important, and so 
standard me.thods that systematically improve the mean..:field description are 
impractical. Indeed, it is necessary to invoke non-perturbative approaches. · 

For example, at low temperatures and densities the nucleons congregate 
into dusters embedded in a lower density nucleon fluid, which has been shown 
using phenomenological models [ 1,2] anci the canonical Metropolis simulations 
of nuclear matter at finite temperature [3 ]. In this case the clusters are formed 
of nucleons. 

Another limiting situation happens at high temperatures or densities when 
the nuclear matter passes into the quark-gluon state. Then, the hadrons them­
selves arc to be considered as clusters of th_e so-called partons, i.e., quarks and 
gluons. The temperatures and densities that can be reached in relativistic 
collisions of nucleons or nuclei amount to T"" 140 MeV and p ""5 p0, respec-

tively [ 4-7 ], where p O is the normal nuclear denstty. The disint~gration of hadrons 
into unbound quarks and gluons is called the deconfinement; and the process of 
clustering of hadrons, the confinement transition. As is clear, these processes 
also require non-perturbative approaches for their description, which up to now 
has not been achieved with the standard chromodynamic equations. This is why 
a number of statistical models [7-12] for describing the deconfinement­
confinement transition has been invoked. Another way is to resort to the Monte 
Carlo simulation techniques using a discrete space-time lattice [12-18 ]. How­
ever, because of computational difficulties, the latter approach has been applied 
solely to the matter with zero baryon density [19 ], while the statistical 
modelling, being much simpler, has no such limitation. Moreover, it is under­
stood [20] that statistical models are, and will be, necessary for interpreting 
computer calculations giving just figures .. 

Contrary to the case of low temperatures and densities, where there exists 
even more than qualitative agreement between phenomenological models [1,2] 
and computer molecular dynamics simulation [3] of clustering nuclear matter, 
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the situation at high temperature or density is hitherto controversial, if not: to 
say dramatic. This is because there is no statistical model which would fit, at 
least qualitatively, all predictions of the lattice simulations made for three 
known cases: the quarkless SU (2) and SU (3) systems, and the SU (3) system 
with physical quarks. Really, the majority of statistical models, following either 
Baym and Chin [9] or Kallman. (21 ], describe the deconfinement as a first 
order phase transition for all three types of the systems, quarkless SU (2), 
quarkless SU (3), and SU (3) with physical quarks. This has nothing to do with 
the results of the lattice simulation displaying the second order phase transition 
for the quarkless SU (2) system I 12 ], the first order transition for the quarkless 
SU (3) system [ 13-15 ], and a continuous crossover for the SU (3) system with 
physical quarks [16-18 ]. Note that under physical quarks one means the quarks 
with physically realistic values of masses. Another group of statistical models 
[12, 22-24] incorporates the postulate about the second order· deconfinement 
transition, which cari agree solely with the lattice simulation for the quarkless 

. SU (2) system, but contradicts the simulation results for the other two types of 
the systems mentioned. 

This inability of any of the statisticalmcidels tci describe ail three kinds of 
the deconfinement transition is caused; to all ·appearance, by the following fact: 
Each of the statistical models, to simplify the 'analysis, has limited the number 
of possible states so that the restricted space of states has characterized a sole 
kind of the existing deconfinement transitions. The behaviour of high-tempera­
ture systems could be much richer if one would take into account; in a consistent 
way, the possibility of cluster formation and desintegration, for instance as it 
has been done for low-temperature nuclear matter with nucleon I 1,2] and 
multiquark [25-27] clusters. The more so, as the recent lattice simulations [28] 
testify that hadron objects do exist simultaneously with unbound quarks and 
gluons._ 

One interesting attempt to construct a statistical model treating nucleons as 
three-quark clusters coexisting with unbound quarks has been accomplished by 
Clark, Cleymans, and Rafelski [29 ]. However, this model is too oversimplified: 
quarks are considered by means of perturbation theory, hadrons are presented 
solely by a nucleon gas in the excluded:..volume approximation; the thermody­
namic correctness of the model is not checked. It is, presumably, just this over­
simplification which has resulted in the conclusion (30] that such a clustered 
state cannot exist at high temperatures. 

In the present paper, we formulate a more elaborate statistical model that 
can describe a clustering matter of arbitrary nature. When constructing a cluster 
Hamiltonian or, generally, any effective Hamiltonian [31 ], it is extremely 
important to choose its form so that it would satisfy all thermodynamic 
ralations. For this purpose, in Sec.2 · we phrase the principle of thermodynamic 
equivalence yielding the conditions of thermodynamic correctness controlling 
the correct form of effective Hamiltonians. Note that the widely used 
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excluded-volume approximation· does not satisfy these conditions of thermo­
dynamic correctness although to some extent, but not always, the thermody­
namic incorrectness of the excluded-,volume approximation can be compensated 
by special restriction rules (31-33) used when differentiati'ng thermodynamic 
quantities with respect to volume or density. To check _the validi~y of our model, 
we have, firsi of all, to compare its predictions with 'the results' of lattice simu:­
lations well known for pure gauge theories and for systems with quarks in the 
case of zero baryon density. To this end, in Sec.3 we consider the dusteriiig 
gluon-glueball matter for the SU (2) and SU (3) systems, and in Sec.4 the chis­
tering quark-hadron matter for the case of zero baryon density. Comparing our 
calculations with the lattice-simulation data, we have found a very good 
agreement between them. The main is that our statistical model is a unique one 
being able to describe all three kinds of the deconfinement-confinement tran­
sition. Sec.5 contains the conclusion. Everewhere th_e system of units is used in 
whkh 1i = 1 = c. Some preliminary results of our approach have been reported 
at conferences (34-36 ]. 

2. THERMODYNAMIC EQUIVALENCE AND CORRECTNESS 

The necessity of introducing cluster Hamiltonians is explained by the fol­
lowing fact. It is always difficult to depict bound states in the many-body prob­
lem, and to do this in quantum chromodynamics seems practically impossible 
because of a great variety of possible clusters.When constructing some cluster, 
or in general, any effective Hamiltonians (31 ), one must be extremely cautious 
seeing to it that the use of these Hamiltonians would not disturb the known ther­
modynamic relations. An incorrect choice of an effective Hamiltonian having, at 
first sight, quite a reasonable form but breaking some of thermodynamic rela­
tions, can lead to wrong conclusions, especially for describing phase transitions. 
To avoid a distortion of thermodynamic rules helps the principle of thermody­
namic equivalence which we formulate below. 

Consider a system of particles that can form clusters. Let an exact Hamil­
tonian of this system be H = H(rp), where 1/-' is a set of field operators of these 
elementary particles. Being unable to solve the problem dealing with the Hamil­
tonian H(rp), we would like to separate out cluster degrees of freedom for const­
ructing a more treatable effective cluster Hamiltonian H = H (1/-' ) composed of 

C C C 

a set 

1/'c = { t/-'11 : n = 1, 2,.··} (l) 

of the cluster field operators tf-1 • A general connection of the latter with the field 
II 

operators of generic particles can be written as 
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11'n(l)= f A(l23 ... n+l)1/'(2)1/'(3) ... tp(n+l)d(23 ... n+l)+ 

' + + + ' 
+ f B (l 2 3 ... n +) 1/' (n + 1) .... rp (3) 1/' (2)d(2 3 ... n + 1) + C,1(1), 

where the numbers in the brackets signify the corresponding dependence on 
variables and A( .... ), B( .. . ), a~d C,

1
( ••• ) are nonoperator functions. , Quite 

often, the constructed effective Hamiltonian acquires the dependence on ther­
modynamics parameters, say, on temperature T and a set p = {P,·}of the 

, . · · C · I 

cluster densitiespn. Remember,.e.g., the density dependent interaction poten-

tials widely used· in nuclear physics or the excluded-volume and some droplet 
models. Thus, the cluster Hamiltonian, being a kind of effective Hamiltonians, 
includes, in general, the dependence on thermodynamic parameters: 

He= He (1/Jc; T,'pc); Pc= {P11 :n = l, 2, .. :.} · ' (2) 

The introduced cluster Hamiltonian H would correctly describe the thermo­c 
dynamics of the system under consideration provided it is, in some sense, ther-
modynamically equivalent to the initial Hamiltonian H. . 

By definition, two Hamiltonians, say H and H c' are thermodynamically 

equivalent if, and only if, in the thermodynamic limit their thermodynamic cha­
racteristics coincide, which requires that for any of the thermodynamic poten­
tials P( H), defined as 

F(H) = - T In Tr exp (-HIT) 

the following limiting equalities are true: 

lim i [F(H) - F(H)] = 0, 
v ➔ oo • 

lim ~ [dF(H) - dF(Hc)] = 0, 
v➔ oo 

(3) 

where Vis ihe volume of the system, and the limit V ➔ oo implies the thermo­
dynamic limit 

V ➔ oo, N ➔ oo, p =N IV➔ const, 
II II II 

N 11 being a number of n-particle clusters. Because of its importance, Eq. (3) can 

be called the principle of thermodynamic equivalence of two Hamiltonians. Let 
us emphasize that the principle (3) is to hold for any thermodynamic potential 
expressed through its natural thermodynamic variables. For instance, if for 
F( H) one takes the free energy, then 
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. F(H) = F(T, V, Ne); Ne= {Nn: n.= 1, 2, ... -}- ., 

Using the known thermodynamic relations (37] it is not too.difficult to show 
that the principle of thermodynamic equivalence (3) y'ields the validity of the 
conditions · 

iJHC iJHC <ar> = o, <ap > = o, 
II 

A 

in which the average of an operator A reads 

A TrA exp(-H/T) 
<A>= Tr exp (-HIT) • 

C 

(4) 

These conditions are very important for the practical construction of cluster 
Hamiltonians .which would satisfy all thermodynamic relations. This, is why 
these conditions (4) can be called the conditions of thermodynamic correctness 
of cluster Hamiltonians. '•• 

As has been emphasized above, the mean-field approximation is inappli­
cable to the initial Hamiltonian H since this approximation is unable to describe 
the appearance of clusters. However, when the cluster degrees of freedom are 
already separated out, the mean-field approximation can be applied to cluster 
Hamiltonian H which then has the form C • . . 

+ 
H = ~ · ~ . f 1/1 (i\ s) (K + U ) 1p (i\ s) d'? - B · V. , (5) 

C ~ ~ II n II II 
· II ·s 

Here n enumerates the clusters; and s; their internal degrees of freedom; 'un­
bound particles are treated as trivial clusters with n = I; K iSthe kinetic energy 

II 

being either K = - V2 /2 M or K = v - V2 + M 2 in the nonrelativistic or 
II. II II ./l 

relativistic cases, respectively, and M is a mass of the corresponding cluster; n . 
U = U (T, p ) is a mean field acting on an n-particle cluster. The nonoperator 

II II C . · · · 

term BVenters,into (5) because of the general rule (37] according to which the 
- _, i • ·A " . '.~ -

mean-field approximation applied to a product of operators A1 · A2 
is equivalent 

to the substitution 

AA AA A/'\. A A 

A1 ·A2 ➔ A 1 <A2> + <Ai> A2 - <A1> <A2>, 

so that a nonoperatoc term must always be included~ Besides, as we. will show 
below, the nonoperator term is necessary for the cluster Hamiltonian (5) to 
satisfy the conditions of thermodynamic correctness (4). This means that the 
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cluster Hamiltonian (5) is correctly defined in the sense of (3f only if it contains 
a function B = B(T, pc) allowing the correctness of conditions ( 4). 

The conditions of thermodynamic correctness (4) for the· ciuster Hamilto­
nian (5) write 

au as L II Pn --a- - -a-= 0, 
11 Pm Pm 

au
11 

a B 
L P ,1 a r - a r = o. (6) 
II 

If we assume, which is natural, that the functions U/T, pc) and B(T, p) are 

smooth functions of their arguments so that the derivatives with respect to tempe­
rature and densities commute, then differentiating the first of equating (6) with 
respect to temperature and the second with respect top and comparing the re-m 

suits ~e obtain 
a u

11 a T = O; ( V n). 

Therefore, the mean field u/1 = u,1 (p C) cannot depend on temperature directly 

but this dependence may enter only through densities. · 
Note that the widely used excluded-volume approximation yields effective 

Hamiltonians which do not satisfy the conditions of thermodynamic correctness 
(4). Consequently, this approximation is, strictly speaking, thermodynamically 
incorrect, and although it can be nevertheless used being supplemented by spe­
cial restriction rules [32,33 ], it can lead to a wrong thermodynamic behaviour of 
a system, especially around phase transitions. 

3. CLUSTERING GLUON-GLUEBALL MATTER 

After formulating the general principles of describing clustering matter, it is 
reasonable to demonstrate their applicability to relatively simple models. To 
this end we consider first the quarkless SU (2) and SU (3) systems consisting of 
gluons whose bound states are glueballs [38 ]. The latter can be considered as 
gluon clusters. The total density of gluons in a quarkless system is the sum 

p = p + " np . (7) g LJ II/ 

11j 

of the density pg of unbound gluons and of the densities p nj of n-gluon glueballs of 

aj type multiplied by n. The concentrations of the corresponding components can be 
defined as 

6 

"' 

;f ,.,_ 

~ 

'P 

Wg= :1:. WG=¼ ~- np11j°· 
II/ 

(8) 

The mean potential field acting on unbound particles having the property of 
the asymptotic freedom can be approximated (32-36] by the form 

U =Clpa. 0<.a<I 
g ' ' 

; ' (9) 

i~ which C is a constant in units of MeV3
a + 1: The system of unbound gluons 

that can cluster into glueballs is presentable, according to (5) and (9), by the 

Hamiltonian 

+ ➔ '( .-2 ) ➔ ➔ 
HgG= L f 11-'g(r,a) v-V +C/pa 11-'g(r,a)dr+ 

a 

+ ➔ ( 2 2 ) ➔ ➔ + "". ft/-' .(r,s) v-V +M .+ U. 1p .(r,s)dr-BV, (10) LJ LJ II/ II/ II/ II/ 
llj ·s · . . · . . .·'· · 
,.➔. . . . . • 

in which t/-' ·(r, a) is a Bose field operator representing an'unbound ·gluon (trivial 
. _g. '· . ➔ • .:·. ,· . . . 

cluster) in a quantum siate a, while tp . (r, s) is.a Bose field operator correspon-
' ·"· . " II/, . , , .,, ,, . 

ding to a glueball (n-gluon cluster) of a type j in a quantum states. 
The interaction pottmtials of dusters can be related with each other using 

the ~n~rgy-morrientu'~ conservat{on laws in the reactions of f~sion and decay of 
clusters. A straightforward consideration [36,39,40 J gives the connedion · . 

nm 
<1>11j, mi(r) = 4 <I>zz{r) 

(11) 

for the interaction potential of nj and mi clusters with the interaction potential 
<1>

2
z(r) :i: <1>

20
, 

20
(r) of the simplest nontrivial clusters which are the ground-sta'7 

te two:..gtuon glueballs; Using'.the Hartree approximation for . a pure glue­
ball system with the interactibn potentials (11) we have 

where 

lim U . = _n4 <I>zp, 
p ➔Q II/ 

g 

lim B = L<I> 2 
P ➔o 8 2 P 

g 

Ql
2 
= f ctl22 (r) il 

(12) 

(13) 
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The use of the Hartree approximation is known (41) to be admissible for those 
hadrons whose masses are much higher than the deconfincment temperature. 

The complete expressions for U . and B arc to be found from the conditions 
II/ 

of thermodynamic correctness (4) expressed in the form of equations (6). These 
equations, to give a unique solution, require boundary conditions. The latter are 
to be defined by the following natural agreement: when the concentration of the 
gluon component, given by (8), is negligible, i.e. wg - 0, we have a pure glucball 

system, and vice versa, if w0 - 0, we get a pure gluon system. In this way, we 

obtain 

U .= nC - nC n II/ a + - (p - ) ,t,. p (p - p t 4 pg '''2 , 
g 

B= ---Cp +--C p-p +- p-p cp. a I - a .a ( ) I - a I ( ) 2 
1-a I-a g 8 g 2 

(14) 

It is worth noting that speaking of pure systems, either glueball or gluon, we 
imply their• thermodynamk behaviour, that is the corresponding forms of their 
thermodynamic potentials. Analysing these two limiting situations directly in 
(14), Jc should use the foliowing substitutions. The passage to a pure glueball 
system, when. W· - O; is equivalent to the limiting transition p - O; then (14) g g 

returns to 02). Anbther limiting case, when ivG - 0, means that one comes to a 

pure gluon ~yst~~ in which there are no gluebaHs, so thatp, ~ p ; then from (14) . . . .. . ·, . . g . 

we have 

Jim B = __ a_• C p' ·-a 
w-+O I-a g 

G 

However, in the general case we have to invoke the total form of (14) letting the 
system itself to choose a more thermodynamically profitable state .. T,hen,-thc 
gluon and glueball densities arc defined by the equations 

I .+ - -
Pg= V L f ( t/'g (r, a) l/JgCr, a)) d7, 

a 

l ~I+ - - -P11j = V LJ ( l/1 11i (r, s) l/Jfli (r, s)) dr. (15) 

s 

The thermodynamics of the clustering gluon-glucball system is completely defi-:­
ned by its free energy 

F(HgG) = -T In Tr exp (- HgG/T), 

8 

'] 
1 

) 

which can be easily calculated fer the mean-field form of the cluster Hamiltinian 
(10). 

It seems to be clear that the main contribution to thermodynamics should be 
due to the lightest glueballs, which is also supported by the consideration of a 
model with restriction rules (32,33 ]. This is why among all possible glueballs we 
choose those five that have the lightest masses [42,43] denoted by M . where n 

II/ 

is the number of gluons bound into a glueball cluster, j enumerates the glueball 
excited states, corresponding to the ground state. The mimber of internal quan­
tum states for each of the nj-glueballs will be written as ~ni. Thus, we take into 

consideration three 2-gluon glueballs with 

M 20 = 960 ~eV, ~20 = 6; 

M21 = 1290 MeV, ~21 = 6; 

M 22 = 1590 MeV, ~22 = 6, 

and two 3-gluon glueballs with 

M 30 = 1460 MeV, ~30 = 11, 

M31 = 1800 MeV, ~31 ':- 39. 

°Th'ese values are in agreement with the lattice estimates [12;44 J for both SU (3) 
and SU (3) cases. The number of quantum states of unbound gluons for the 
SU ·(2) system is~ = 6 and for the SU (3) system is~ = 16. 

' - . g . . g 

, After specifying these data, we have i_n the model only three free parame­
ters: C, a and <1>2• Fixing the values of the latter, )Ye can calculate, all thermo-

dynamic characteristics. In lattice simulations. one usually considers the relative 
internal energy e/eSB and pressure P/Psir where eSB and PSB are the 

Stefan - Boltzmann energy density and pressure, respectively. Our results for 

Fig. I. Relative internal energy E!E:s8 
and pressure PIP SB versus temperatu­

re for the quarkless SU(2) system: the 
solid curves present our calculaltions 
as compared with the lattice data ( o 
and o ) taken from Ref.12 
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tOOr------------------==~ 1 E/Es8 ,SU13l ·_.--a-a___,,, Fig.2. Values qJ di:
58 

and P/P58 versus 

temperature for the quarkless SU (3) system: 
the solid lines show our results as.compared 
with the data of lattice simulations taken 
from Refs. 13-15 ( o and /),. ) and from 
Ref.I 9 ( o and ◊ ) 
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el e SB an~ PIP SB in the case of the SU (2) system with 

a= 0.62, cll(3a+ l) = 175 MeV, and <1>
2 
= 5·10-3 MeV-2 are shown in 

Fig.1. The deconfinement occurs as a,. second order phase transition at 
Tdec = 210 MeV, were the specific heat has the chatact~risticsingularity. Figure 

2 displays our calculations for the internal energy and pressure in the case of the 

SU(3) system with a= 0.62, C ll(3a +I)= 225 MeV, and , <1>2 = 

= 2· 10-3 Mev-2• Here the deconfinement is a first order phase transition, 
with the latent heaf l:le/e SB:::: 0.23, occurring at the temperature 

Tdec = 225 M.eV. In ho.th cases ourresults coincide with the lattice:simulation 

· data [12-15] within the accuracy of the latter being about 10%.~ Belo'w Tdec.the 

system is almost complete in a clustered state of glueballs, and
1
Above Td. h . ec 

predominantly consists of unbound gi'uons. The existence of cl~stered 'sta'tes as 
well as of unbound ones around the deconfinement temperature is also in agree­
ment with the results of lattice simulations [28 ] .. 

4. CLUSTERING QUARK-HADRON MATTER 

Consider now the SU (3) system with quarks, when the total density of the 
matter is 

P =Pg + L Pa + L n P nj; . (16) 

a 11j 

here p is the gluon density; p is a density of unbound quarks of a kind 
g a 

a = u, u, d, d, .: .. ; p nj is a density of the quark clusters. 

10 

The mean-field potential of unbound particles is again taken in the form 
(9). By analogy with ( 11), we find [36,39 ], using the energy-momentum con­
servation laws, the interaction potcr:itials of multiquark clusters 

<I> ( ) = nm <1> ( ) 11j, mi r 9 33 r (17) 

expressed through the nucleon-nucleon interaction potential. 
Following the general way, described in the previous sect"ions, of construe.:. 

ting correct cluster Hamiltonians satisfying the conditions of thermodynamic 
correctcnss (4) and (6), we come to the Hamiltonian 

+ ➔ ( -2 a) ➔ ➔ 
He= L J t/'g(r,a) v-V +C/p. t/'g(r,a)dr+ 

a 

+LL J 1/Ja(r,f) v-V +ma+C/p t/•a(r,s)dr+ + ➔ ( 2 2 a) ➔➔ 
a s 

+ " " f ; . (~s) (v- V
2 + M 2

. + U ·) X LJ LJ II] II] II] 
11j s 

X t/' . (~ s) i"/...c. BV, (18) 
II] 

➔ ➔ , ' 
in which 1/J (r, a) is a gluon field operator, t/' (r, s) is a quark field operator, and g a 

➔ . • •. 1/J . (r, s) is a cluster field operator; the following expressions are true: II] 

where 

u,,j = n; _ ( nC ) a + 
p p-pg- ~· Pa 

+ !!.(p-p - "p) <I> 9 g LJ a 3' 
u 

aC l-a aC ( " )I-a B=---p +-- p-p - £.JP + 1-a 1-a g a 
a 

<1>3 2 

+ 18 r -Pg - ~Pa) , 

<1>3 = f <1>33 (r) d"!: 

(19) 

(20) 
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In the Hamiltonian (18) we consider the light quarks: u, I;, d and d with the 
physical masses m = 7 MeV and the number of quantum states ~ = 6. The a _ . a 

strange and other heavier quarks are thermodynamically less important. Owing 
to the same fact that only the lightest clusters give the main contribution to ther­
modynamic characteristics (32,33 ], the following lightest hadrons are included 

into the Hamiltonian 08): n-mesons, K+-:- and K- -:mesons, K°- and K°-me­
sons, .11-mesons, p-mesons and w-mesons. The masses M . and the numbers of . ' . ~ 
spin-isospin states~· . for these two-quark clusters are 

llJ • . 

M
20 

= 140 MeV, ~
20 

= 3 (n-meson), 

M
21 

= 494 MeV, ~
21 

= 2 (K+ - and K- -meson), 

M
22 

= 498 MeV, ~
22 

= 4 (K°- and K°-meson), 

M
23 

= 549 MeV, ~23 = 1 (11-meson), 

M
24 

= 765 MeV, ~
24 

= 9 (p....;meson), 

M 25 = 784 MeV, ~
25 

= 3 (w-meson). 

Taking)or the nucleon-nucle9n potential <1>
33 

(r) the Bonn potential (45 I 
averaged over spin and isospin states (33,39 ), we get for the parameter (20) the 

value <1>
3 

= 4.1 · 10-5 Mev-2• The number of gluon quantum states for the 

SU (3) system considered is ~g = 16. In order that eliminating quarks, we'could 

return to the quarkless SU (3) system of the previous section, we put here the 

same parameters a= 0.62 and C 1!(3a +I)= 225 MeV as in Sec.3. 
In this way, all parameters of the Hamiltonian (18) are fixed. Calculating 

the corresponding thermodynamic characteristics, we find that the 
deconfinement transition now becomes a continuous crossover in the vicinity of 
uoL,e/Ese Tdec= 150 MeV. The relative 

100 
[ 2.P/Pse C ...... ~ internal energy eh SB and 

080 

0.60 

OLO 

0.20 

0 f ,e-:: 
0 

12 

pressure Pl P SB are shown in 

Fig.3. Relative internal energy eles8 and 

pressure P/PSB versus temperature for the 

SU(3) system with physi~al quarks. As we 
have checked, the limits eles

8 
➔ I and 

1 

• 

1 

O(Me~I I Pl PSB ➔ I hold as temperature tends to in-

200 J 00 LOO 500 fi II ity 

Fig.3. Thus, the inclusion of quarks. with physical masses into the quarkless 
SU (3) system lowers the transition temperature by about 75 MeV and changes 
the first order phase transition of the_ quarkless system to a continuous crossover. 
These results are in striking agreement with the lattice simulation data 
displaying the same qualitative and quantitative change of the behaviour when 
passing from the quarkless SU (3) system (13-151 to that containing physical 
quarks (16-18 ). '· 

5. CONCLUSION ·, · · 

Constructing effective cluster Hamiltonians, it is necessary to take in~o 
account the conditions of thermodynamic correctness (4) following from the 
principle of thermodynamic equivalence (3). This allows us to find correct forms 
of the cluster Hamiltonians for which all thermodynamic relations are true. 

The application of this approach to the clustering matter of quarks and 
gluons shows that at Iow'temperatures these particles are clustered into hadrons 
and at high temperatures the_ matter transforms into the plasma of 'unbound 
quarks and gluons. The deconfinement-confinement transition is nothing but 
the declustering-clustering transformation. . . . 

Within the framework of the same statistical model of hot clustering matter 
one can describe all three known types• of the deconfinement transition: the 
second order phase transition in the· quarkless SU (2) system, the first order 
phase transition in the quarkless SU (3) system, and a continuous crossover in 
the SU (3) system with physical quarks at zero baryon density. The behaviour of 
all thermodynamic chracteristics is in quantitative agreement with the available 
lattice data of Monte - Carlo simulation techniques.· 

The system with the non-zero baryon number density can also'be treated 
by using this approach. Some predictions for high baryon densities have been 
published elsewhere [39 ]. These predictions carinot be compared with the 
corresponding lattice data as far as an accurate lattice simulation at finite 
baryon density is yet an unsolved problem. 
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lllaHeHKo·A.A., lOKanoBa E.rf, lOK.aJioB B.I1. 
. CTatHCTHlfecKoe onucattue ropSI4eit u nJIOTHoit 

E2-92-378 

KJiacTepu3y10meticS1 MaTep1rn . .. 
TTocTpoeHa CTaTHCTlllfecKaSI MOAe.rih, TpaKTy10maS1_ aApOHhI KaK KJiacTepb1, 

coCTOSII.UHe H3 3JieMeHTapHbIX 061,eKTOB, rJIIOOHOB H KBapKoB. Mo;:i:eJih ocaoBa­ml Ha 3qJQ)eKTIIBHOM KJiaCTCpHOM raMHJlbTOHIIaHe. C¢opMyJinpoBaH IlplJHU,Hil 
TepMOAHHaMnlfeCKOii 3KBIIBaJieHTHOCTH raMHJibTOHHaHOB, i:I03B0JISl!Ol.UHH 
KoppeKTHO onttchrnaTb TepMoi:t:nHaMni1ecKne CBOttCTBa cncTeMbI c 3QJQJeKTHB­
HhIM raMttJihTOHitaHoM; .3TOT np1rnu,nn npnB0J:IHT K cooTHOlllem~SIM, iia3BaH- . 

'HbIM yCJIOBHSIMH TepMOJ:IHHaMHlJeCKOtt· KOppeKTHOCTH, KOTOpb!C 
KOHTPOJIHPYIOT BbI6op KJiaCTepHblX raMHJibTOHHaHOB. KJiaCTep1i3au,nsi, npn . 

' . .# • ' • ' ' 

HH3KOH TeMnepaType H nJIOTHOCTH, napTOHOB B ai:ipOHbl COOTBeTCTBYCT, KOH-
' qJaiiHMeHTY, TOl'i:t:a KaK o6paTHhlH npou.ecc:pa.cnai:ia KJiaCTepoB COOTBe~cTByeT 
.· i:ieKOHcpaiiHMeHTy. ,lI,JISI npoBepKn npaBIIJibHOCTH MOAeJin npOBCACHbl BbllJHC­

JICHHSI, R o6Jiacrn uyJieiioii 6apitonttoii nJiornocTu, i:t:JISI KOTopott H3BeCTHhI 
aKKypaTHhJe KOMnh10TepH1>1e pac4CTbI ua perncTKe. Pe3yJihTaThI uarneii Mo;:i:e­
Jii-I HaXOJ:ISITCSI B npeKpaCHOM corJiacmt C pellleT04HblMH ;:i:aHHbIMH. 

· Pa6oTa BhmOJIHCHa B Jia66parnpmueopcrntJecKoii QJII3HKH OI151J1. 

Coo611le11ue 061,e)1HIICIIIIOJ1) HIICTl1TYTa HJ1CPHLIX IICCJ1e1wnam1f1 . .lly611a 1992 

• Shanenko A.A.; Yukalova E.P., Yukalov V.I. E2:..92-378 
. Statistical Description of Hot and Dense Clustering Matter 

A statistical. model is constructed by treating hadrons as clusters. of ele-
mentary objects, gluons and quarks. The basis of the model is an effective 

-cluster Hamiltonian. The principle of thermodynamic equivalence for Hamil-· 
. tonians is formulated, which makes it 'possible to describe all the thermo­
dynamics of the system with im effective Hamiltonian in a completely correct 

· way. This principle yields restrictions, called the conditions of thermodynamic. 
correciness, controlling the choice of the cluster. Hamiltonians. The clustering, 
at low temperature and density, of partons into hadrons means the confinement 
while the inverse process of the cluster disintegration corresponds to the 

- deconfinemcnt T.o check the accuracy of the model, detailed calculations for 
the region of zero.bary'on density have'been made for which computer simu­
lations on the lattice are known. Our results are.found to be in a beautiful., 
agreement with the lattice numerical data. / 

The investigation lias been performed at the Laboratory' of Theoretical 
Physics,JINR. . . . . .· . 
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