


1. INTRODUCTION

The study of the hot and dense nuclear matter has many important appli-
cations to nucleus-nucleus and ion-ion collisions, the early Universe, neutron
stars and other stellar models. A major obstacle for the description of nuclear
matter in the whole range of temperatures and densities is that a large variety of
very complicated bound structures are favoured. A different way to express this
inherent problem is that many-particle correlatlons are very important, and so
standard methods that systematically improve the meéan-field description are
impractical. Indeed, it is necessary to invoke non-perturbative approaches.

. For example,. at low temperatures and densities the nucleons congregate
mto clusters embedded in a lower den51ty nucleon fluid, whlch has been shown
using phenomenological models [1,2] and the canonical Metropolis simulations
of nuclear matter at finite temperature [3] In this case the clusters are formed
of nucleons.

Another limiting situation happens at hlgh temperatures or densities when
the nuclear matter passes into the quark-gluon state. Then, the hadrons them-
selves are to be considered as clusters of the so-called partons, i.e., quarks and
gluons.. The temperatures and densities that can be reached in relativistic
collisions of nucleons or nuclei amount to T = 140 MeV and p = 5 p,, respec-

tively [4-7], where p,, is the normal nuclear density. The disintegration of hadrons
into unbound quarks and gluons is called the deconfinement; and the process of
clustering of hadrons, the confinement transition. As is clear, these processes
also require non-perturbative approaches for their description, which up to now
has not been achieved with the standard chromodynamic equations. This is why
a number of statistical models [7-12] for describing the deconfinement-
confinement transition has been invoked. Another way is to resort to the Monte
Carlo simulation techniques using a discrete space-time lattice [12-18 1. How-
ever, because of computational difficulties, the latter approach has been applied
solely to the matter with zero baryon density [19], while the statistical
modelling, being much simpler, has no such limitation. Moreover, it is-under-
stood [20] that statistical models are, and will be, necessary for interpreting
computer calculations giving just figures. -

Contrary to the case of low temperatures and densities, where there exists
even more than qualitative agreement between phenomenological models [1,2]
and computer molecular dynamics simulation [3] of clustering nuclear matter,
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the situation at high temperature or density is hitherto controversial, if not: to
say dramatic. This is because there is no statistical model which would fit, at
least qualitatively, all predictions of the lattice simulations made for three
known cases: the quarkless SU(2) and SU(3) systems, and the SU(3) system
with physical quarks. Really, the majority of statistical models, following either
Baym and Chin [9] or Killman.. [21 ], describe the deconfinement as a first
order phase transition for all three types of the systems, quarkless SU(2),
quarkless SU(3), and SU(3) with physical quarks. This has nothing to do with
the results of thelattice simulation displaying the second order phase transition
for the quarkless SU (2) system [12], the first order transition for the quarkless
SU(3) system [13-151, and a continuous crossover for the SU(3) system with
physical quarks [16-18 ]. Note that under physical quarks one means the quarks
with physically realistic values of masses. Another group of statistical models
[12, 22-24} 1ncorporates the postulate about the second order deconfinement
transition, which can agree solely with the lattice simulation for the quarkless

. SU(2) system, but contradicts the s1mulatlon results for the other two types of
the systems mentioned. B '

“This inability of any of the statlstlcal models to describe all three kinds of
the deconfinement transition is caused, to all. appear'mce by the following fact:
Each of the statistical models, to simplify the analysrs has limited the number
of possible states so that the restricted space of states has characterized a sole
kind of the existing deconfinement transmons The behaviour of hrgh tempera-
ture systems could be much richer if one would take into account in a consistent
way, the possibility of cluster formatlon and desmtegratnon for instance as it
has been done for low-temperature nuclear matter with nucleon [1,21 and
multiquark [25-27 ] clusters. The more so, as the recent lattice simulations [28 ]
testify that hadron objects do ex1st srmultaneously with unbound quarks and
gluons.. -

One interesting attempt to construct a statlstlcal model treatlng nucleons as
three-quark clusters coexisting with unbound quarks has been accomplished by
Clark, Cleymans, and Rafelski [29 ). However, this model is too oversimplified:
quarks are considered by means of perturbation theory, hadrons are presented
solely by a nucleon gas in the excluded-volume approximation; the thermody-
namic correctness of the model is not checked. It is, presumably, just this over-
simplification which has resulted in the conclusion [30] that such a clustered
state cannot exist at high temperatures. -

In.the present paper, we formulate a more elaborate stat1st1cal model that
can describe a clustering matter of arbitrary nature. When constructing a cluster
Hamiltonian or, generally, any effective Hamiltonian [31], it is extremely
important to choose its form so that it would satisfy all thermodynamic
ralations. For this purpose, in Sec.2 we phrase the principle of thermodynamiic

equivalence yielding the conditions of thermodynamic correctness controlling -

the correct form of effective Hamiltonians. Note that the widely used
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excluded-volume approximation' does not satisfy these conditions of thermo-
dynamic correctness although to some extent, but not always, the thermody-
namic incorrectness of the excluded-volume approximation can be compensated '
by special restriction rules [31-33 ] used when differentiating thérmodynamic
quantities with respect to volume or density. To check the validity of our model,
we have, first of all, 1o compare its predictions with the results of lattice’ snmu-f
lations well known for pure gauge theories and for systems with quarks in the
case of zero baryon density. To this end, in Sec.3 we consider the clustering
gluon-glueball matter for the SU(2) and SU(3) systems, and in Sec.4 the clus-
tering quark-hadron matter for the case of zero baryon density. Comparing our
calculations with the lattice-simulation data, we have found a very good
agreement between them. The main is that our statistical model is a unique one
being able to describe all three kinds of the deconfinement-confinement tran-
sition. Sec.J contains the conclusion. Everewhere the system of units is used in
which # = 1 = ¢. Some preliminary results of our approach have been reported
at conferences [34-36].

2. THERMODYNAMIC EQUIVALENCE AND CORRECTNESSL

The necessity of introducing cluster Hamiltonians is explained by the fol-
lowing fact. It is always difficult to depict bound states in the many-body prob-
lem, and to do this in quantum chromodynamics seems practically impossible
because of a great variety of possible clusters.When constructing some cluster,
or in general, any effective Hamiltonians [31 ], one must be extremely cautious
seeing to it that the use of these Hamiltonians would not disturb the known ther-
modynamic relations. An incorrect choice of an effective Hamiltonian having, at
first sight, quite a reasonable form but breaking some of thermodynamic rela-
tions, can lead to wrong conclusions, especially for describing phase transitions.
To avoid a distortion of thermodynamic rules helps the principle of thermody-
namic equivalence which we formulate below.

Consider a system of particles that can form clusters. Let an exact Hamil-
tonian of this system be H = H(y), where y is a set of field operators of these
elementary particles. Being unable to solve the problem dealing with the Hamil-
tonian H(y), we would like to separate out cluster degrées of freedom for const-
ructing a more treatable effective cluster Hamiltonian H | = 'Hc () composed of

aset

y.=ly, n= 1, 2,...} A | ¢))

of the cluster field operators ¢, . A general connection of the latter with the field

operators of geuneric particles can be writien as



v, (1) = JAQ23.n+ D)y Q9 @)y +1)d23.n+ 1) +

3) J(z)d'(z Jon+l)+ Cu(l),

where the numbers 1n the brackets signify the correspondnng dependence on
variables and A( ) B( D, and C,(.-.) are nonoperator functtons _Quite

o+ fB(123...n'+)z/z(n,+1)...’.-:/;

often the constructed effectlve Hamlltonlan acquires the dependence on ther-
modynamlcs parameters say, on temperature T and a setp }of the

cluster densntnesp Remember, e.g., the density dependent mteractton poten-

tials widely used in nuclear physics or the excluded- volume and some droplet
* models. Thus, thé cluster Hamiltonian, being a kind of effecttve Hamiltonians,
1ncludes in general the dependence on thermodynamtc parameters

H, =H (qzc,Tp) p.= {pn =1, 2..‘.‘.}.‘ e

The introduced cluster Hamiltonian H_ would correctly describe the thermo-

dynamtcs of the system under consrderatton provided it is, in some sense, ther-
modynamlcally equivalent to the initial Hamnltoman H.
By definition, two Hamiltonians, say H and H, are thermodynamically

equivalent if, and only if, in the’ thermodynamic limit thelr thermodynamlc cha-
racteristics coincide, which: requtres that for any of the thermodynamrc poten-
tials F(H), defnned as R -

F(Hy=-=T In Tr*exp(—H/T) '

the following limiting equalities are true:

hm - [F(H) F(HL_)] ;0

hm 1 [dF(H) dF(H )] =0, = 3)

where Vis the volume of the system, and the limit V > implies the thermo-
dynamic llmlt .

Voo, N - o, p, =N, /V - const,
N, being a number of n-particle clusters. Because of its importance, Eq.(3) can

be called the principle of thermodynamic equivalence of two Hamiltonians. Let
us emphasize that the principle (3) is to hold for any thermodynamic potential
expressed through its natural thermodynamlc varlables For instance, 1f for
F(H) one takes the free energy, then
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- F(H)= F(T,V,N); . E{N':n=l‘2...}.a

Using the known thermodynamtc relattons [37 Jitis not too difficult to show
that the principle of thermodynamic equtvalence 3 ytelds the valtdtty of the
conditions

, ' 1))

OT ap”

in which the average of an operator a reads

Tr A exp (-H,/T)
='Trexp(-—H/'T)" . - S

These conditions are very 1mportant for the practlcal constructton of cluster
Hamtltontans ‘which would satisfy all thermodynamtc relations. This.is why
these conditions (4) can be called the conditions of thermodynamtc correctness
of cluster Hamiltonians.

As has been emphasized above, the mean-field approximation is inappli-
cable to the initial Hamiltonian H since this approximation is unable to describe
the appearance of clusters. However, when the cluster degrees of freedom are
already separated out, the mean-field approximation can be applied to cluster
Hamtltoman H, whtch then has the form

; . + a B
chg«z.fw,,tr*,s)<Kn+U,,>v’,,<f7 Ndr=B-v.. ‘5.?

Here n enumerates the' clusters ‘and s, their internal degrees of freedom un—
bound particles are treated as trivial clusters with n = 1; K, is the kmettc energy
being either Kn == vZ/2 M, or K = V- V% + Mn in the nonrelativistic or
relativistic cases, respectively, and M, is a mass of the corresponding cluster;
U,=U,(T,p.)isamean field acting on an n-particle cluster. The nonoperator
tertn BV enters-into (5) because of the general rule [37 1 accordmg to Wthh the
mean-field approxnmatton applied to. a product of operators A A is equlvalent

to the substitution

A0 A,-A Dp+<ApA,-<Ap<ay,
so that a nonoperator term must always be included. Besides, as we will show
below, the nonoperator term is necessary for the cluster Hamiltonian (5) to

satisfy the conditions of thermodynamic correctness (4). This means that the
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cluster Hamiltonian (5) is correctly defined in the sense of (3) only if it contains
a function B = B(T, p ) allowing the correctness of conditions (4).

The conditions of thermodynamic correctness (4) for the Ci‘us“ter Hamilto-
nian (5) write ’

au dB
> p, ot —5—=0
. n . " apm . apm
U, 9B -
%‘ PuaT ~ 5T .. ©)

If we assume, which is natural, that the functions U, (T, p ) and B(T,p ) are

smooth functions of their arguments so that the derivatives with respect to tempe-
rature and densities commute, then differentiating the first of equating (6) with
respect to temperature and the second with respect to P, and comparing the re-

sults we obtain

6U"
—ﬁ:—- 0; (v n).

Therefore, the mean ﬁeld'U" =U, (pc) cannot depend on temperature directly

but this dependence may enter only through densities.

Note that the widely used excluded-volume approximation yields effective
Hamiltonians which do not satisfy the conditions of thermodynamic correctness
(4). Consequently, this approximation is, strictly speaking, thermodynamically
incorrect, and although it can be nevertheless used being supplemented by spe-
cial restriction rules {32,331, it can lead to a wrong thermodynamic behaviour of
a system, especially around phase transitions. - ’

3. CLUSTERING GLUON-GLUEBALL MATTER

After formulating the general principles of describing clustering matter, it is
reasonable to demonstrate their applicability to relatively simple models. To
this end we consider first the quarkless SU(2) and SU(3) systems consisting of
gluons whose bound states are glueballs [38 ]. The latter can be considered as
gluon clusters. The total density of gluons in a quarkless system is the sum

P=p,+ X np, D
. nj 7
of the density p p of unbound gluons and of the densities p nj of n-gluon glueballs of

aj type multiplied by n. The concentrations of the corresponding components can be
defined as :

6

Pg ! \ o ‘ (8)
= =t S
g P Lo p‘njk ’ ; )

.. The mean potential field dcting on unbound particles having the property of
the asymptotic freedom can be approximated [32-36 1 by.the form -« . [ Lus

Lo 0<adl, e ®
U,=Clp®; 0<a | .

in thich C is a constant in units of MeV3¢+ ! The system of unbound gluons
that can cluster into glueballs is presentable, according to (5) and (9), by the
Hamiltonian :

+ _) . . a —> —>
Hyg= > v, (o) (»/- V2+C/p) P (r0)dr+
g

+ -> - 2 2 v -> ' —>_ A 10 -
+ > I} Vi (r, 5) (\/—V + M+ U"j) Y (r, .\.) dr BY, | ( ’ )
nj s . ‘ S S A T : o
in which ip;(r_-), o) is a Bose field operator representing a.nfUHbound gluon (t;mal
L Y . -.> > . Ly EE 8 e . . _
cluster) ina gyanturmﬂsﬂtakl‘e a, whllq‘yz,'j;(r,.s) is.a Bose field operator correspon-
ding to a glueball (n-gluon cluster) of a typejin.a quantum'state s. o
The interaction potentials of clusters can be related with each other using

PRE

the energy-momentum conservation laws in lhe'rgacti:qris' of fu’srion'a’nq.decay of
clusters. A straightforward consideration [36,39,40] gives the connection

L _nm 1
q)nj, llli(r)— 4 ?zz(r) . ab

for th'é interaction potential of nj and mi clusters with the interaction potential
D,5(r) = Py 4o(r) of the simplest nontrivial clusters which are the ground-sta-
te two-gluon élueballsl Using@the’ Hartree approximation .for\ ‘a pure ‘ glpg-'
ball system with the interaction potentials (11) we have 5 s

; =1
h‘To U“i T4 D0
/)g
lim B= -;3—‘(1’2 pz, , 12)
p,0
where - : o
D, = [ Oy (dr 13



The use of the Hartree approximation is known [41 ] to be admissible for those
hadrons whose masses are much higher than the deconfinement temperature.
The complete expressions for U”j and B are to be found from the conditions

of thermodynamic correctness (4) expressed in the form of equations (6). These
equations, to give a unique solution, require boundary conditions. The latter are
to be defined by the following natural agreement: when the concentration of the
gluon component, given by (8), is negligible, i.c. W, 0, we have a pure glucball

system, and vice versa, if w, - 0, we get a pure gluon system. In this way, we

obtain
nC nC
U.=——--—+——(p p)d)
"opt p-p)”
__ba: o l-a a _ ‘l—a l _ A2
B= ]_qCp == (p Pg) +8(p pg) ¢, (14

It is worth noting that speaking of purc systems, either glueball or gluon, we
imply their:thermodynamic | behaviour, that is the corresponding forms of their
thermodynamtc potentlals Analysmz, these two limiting situations dlrectly in
(14), we should use the following substitutions. The passage to a'pure glueball
system, when wg-> 0, is equivalent to the limiting transition Py 0; then (14)

returns to (12) Another lxmltmg case when wG -0, means lhdl one omes toa
pure gluon system in Wthh there are no glueballs sothatp ->p then f_rom_ (,14)

we have

= cpl—e.

lim b’=—-l_a 2

| RCa ) ,
However, in the general case we have to invoke the total form of .(14) letting the

system itself to choose a more thermodynamically profitable state. . Then,-the
gluon and glueball densities are defined by the equations ~ .. - - ...

. o+ - - -
pe=v T (0, (F0) vF o) dr,

Puj = Zf(w,,,(r,sw,,,(r 9ydr. A9

The thermodynamics of the clustering gluon-glueball system is completely defi-
ned by its free energy

F(H ;)= ~T In Tr exp (- H /T),

which can be easnly calculated Fcr the mean-field form of the cluster Hamtltlman
1og.

It seems to be clear that the main contrlbutton to thermodynamlcs should be -
due to the lightest glueballs, which is also supported by the consideration of a
model with restriction rules (32,33 |. This is why among all possible glueballs we
choose those five that have the lightest masses [42,43 ] denoted by Mn/. where n

is the number of gluons bound into a glueball cluster, j enumerates the glueball
excited states, corresponding to the ground state. The number of internal quan-
tum states for each of the nj-glucballs will be written as § . Thus, we take into

consideration three 2-gluon glueballs with

M= 960 MeV, £y =6

My, = 1290 MeV, £, =6
My, = 1590 MeV, &5, =6,

ttnd two 3-gluon glueballswith

—146OMeV 530_11
,—18OOMeV 531_39

These values are in agreement with the lattice estimates [12.44] for both SU (3)
and SU(@3) cases. The number of  quantum states of unbound gluons for the
SU(2) system 1s§ = 6 and for the SU@3) system 1s§ = 16.

Aftel specxfymg these data, we have in the model only three free parame-
ters C,a and D, thmg the values of the latter we can calculate all thermo-

dynamlc charactcrlsttcs In lattice slmulattons one usually considers the relative
internal energy e/s and pressure P/P gy Where e, and Pg, are the

SB
Stefan — Boltzmann energy density and pressure, respectively. Our results for
: 100 - : =
1.€/Es,S012) P e
2.P/P,  SU(2) o T
080} . _—d
o
: 7 // :
oeol /
f
Fig.1. Relative internal energy &/e,  owf
©
and pressure P/P, versus lemperatu- /
re for the quarkless SU(2) system: the ~ °20¢ /
solid curves present our calculaltions . J)
as compared with the lattice data (C 0 ' L
100 200 00 00 500
and g ) taken from Ref.12 o -0 - S(Mevl - ‘



1 €/Eg,y,SUI3) ‘Fig.2. Values of e/eg, and P/P, versus

2 F/Pgq,SUI3)
L0 X

temperature for the quarkiess SU(3) system:
the solid lines show our results as compared
with the data of lattice simulations taken
from Refs. 13—15 (' o and A ) and from
Ref.19( o and G ) - - . o

in the case of the SU(2) system with

a=0.62, C/G5*D <175 MeV, and ®,=5-10"% McV™2 are shown in

Fig.1. The deconfinement  occurs as:a-.second order phase transition at

T ;,. = 210 MeV, were the specific heat has the chatacteristic singularity. Figure

2 displays our calculations for the internal energy and préssure in the case of the
SU@ system with a=0062, c/C**D=225MeV, and @,=

=2-10" MeV~2 Here the deconfinement is a first order phase transition,
with. the latent heat™’ Aa/sSB =0.23, occurring at .the temperature

; Tdec

“data {12-15] within the accuracy of thye lattei' being about 10% -Below T dec the

= 225 MeV. In both cases our results coincide with the. lattice;simulziﬁ,on

system is almost complete in a clustered state of glueballs, and above 'T()ec it

predominantly consists of unbound gluons. The existence of clustered states as -

well as of unbound ones around the deconfinement temperature is also in agree-
ment with the results of lattice simulations [28 ...« - - s o

4. CLUSTERING QUARK-HADRON MATTER

Consider now the SU(3) system with quarks, when the total density of the
matter is '

7,0=,0g+ z pa+ z npnj; 4 16)
a o nj
“here Pg is the gluon density; p, is a density of unbound quafks of a kind

a=u, Z; d, E, o3 Py isa density‘ of the quark clusters. -

10

The mean—fie!d potential of unbound particles is again taken in the form
. B.y analogy with (11), we find [36,39], using the energy—moménlum con-
servation laws, the interaction potentials of multiquark clusiers. L

: nm o TN

q)nj, mi (r) = 9 q)33(r) 0 T ( 1;7.)k
expressed through the nucleon-nucleon interaction potential. -
- Following the general way, described in the previous sections, of construc-
ting correct cluster Hamiltonians satisfying the conditions of thermodynamic
correctenss (4) and (6), we come to the Hamiltonian

s

+ } ‘ > '—>
Ho= 2 [ 9,Ge) (V=24 Clp%) y, (o) i+

a s

+ _ , :
+ 32 ¥, (rs) (\/— V2+m2+c/p") ¢U(F,’s)dr"+

+ S
+ >3 Vi (r,5) (\/— v+ Mlzlj + U”.J .
nj s - g

va”j (r,8)dr—=Bv, - (18)
- - A i . ] > H
in ‘wl:ch z{)g (r,o)isa .gluon field operator, ¥, (ry s) is a quark field operator, and
Yy (r, s) is a cluster ficld operator; the following expressions are true: "

= nc nC N
1 a p
g (P‘Pg— 2P,
a
n .
+t9 (P I DY p,,) ®,, 19)
a R
- _ aC 1-a a -
B=—-1—2>p +l_a(p Py Zpa) ‘4
a
(i )]
D3 2
+ (p ~py- Zp,,) ;
a
where
(D3E f(l)33 (r)dr. 20)
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In the Hamiltonian (18) we consider the light quarks: u, E, d and d with the
physical masses m; =7 MeV and the number of quantum states §,=0.The

strange and other heavier quarks are thermodynamically less important. Owing
to the same fact that only the lightest clusters give the main contribution to ther-
modynamic characteristics [32,33 ], the following lightest hadrons are included

into the Hamiltonian (18): z-mesons, K" - and K -mesons, K% and Ko -me-
sons, 7-mesons, p~mesons and w-mesons. The masses M, and the numbers of

spin-isospin states EW. for these two-quark clusters are
My, = 140 MeV, &, =3 (;t—meson),
M, =494 MeV, &, =2 (K*— and K~ —meson),
M, =498 MeV, §p=4 (Ko— and Ko—meson),

M,, =549 MeV,

§y3=1 ‘(n—meson),

M,, =765 MeV, ‘524 =9 (p—meson),
M,s =784 MeV, 525 =3 (w-—meson). .

Taking_for the nucleon-nucleon potentialfb33 (r) the Bonn potential [45]
averaged over spin and isospin states [33,39 ], we get for the parameter (20) the
value <I) =4.1-10"5 MeV™2 The number of gluon quantum states for the
SU@3) system considered 1sl;' = 16. In order thatellmmatmg quarks, wercould
return to the quarkless SU(3) system of the previous section, we put here the

same parameters a = 0.62 and C 1/@a+ 1) = 225 MeV as in Sec.3. ’
In this way, all parameters of the Hamiltonian (18) are fixed. Calculating
the corresponding thermodynamic characteristics, we find that the

deconfinement transition now becomes a continuous crossover in the vicinity of

120¢ /e, Tdec= 150 MeV. The relative

P : . _
100 2F/Pgp /’_—> internal  energy e/eg, and

pressure P/PSB are shown in

a8o¢t
080t Fig.3. Relative internal energy E/ESB and
040 pressure P/PSB versus temperature for.the
SU(3) system with physical quarks. As we
g20f have checked, the limits e/esﬂ -1 and
;  6iMev] P/PSB - | hold as temperature tends to in-
] 100 200 300 400 500 finity
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Fig.3. Thus; the inclusion of quarks.with physical masses into the quarkless
SU(3) system lowers the transition temperature by about 75 MeV and changes
the first order phase transition of the quarkless system to a continuous crossover.

- These results .are in striking agreement with the lattice simulation ‘data

displaying the same qualitative and quantitative change of the behaviour when
passing from the quarkless SU(3) system [13 15] to that contammg physxcal
quarks [16-18]. . ; .

-

5. CONCLUSION

Constructmg effective cluster Hamlltomans, it is necessary to take into
account ‘the conditions of thermodynamic correctness (4) following from the
principle of thermodynamic equivalence (3). This allows us to find correct forms

of the cluster Hamiltonians for which all thermodynamic relations-are true.

The application of this approach to the clustering matter of quarks and
gluons shows that at low temperatures these particles are clustered into hadrons
and at high temperatures the matter transforms into the plasma of unbound
quarks and gluons. The deconfinement- confmement transmon is nothmg but
the declustering-clustering transformatlon :

Within the framework of the same statistical model of hot clustermg matter
one can describe all three known types of the deconfinement transition: the

second order phase transition in the quarkless’ SU®@) system, the first order
phase transition inthe quarkless SU®M) system, and a continuous crossover in
the SU (3) system with physical quarks at zero baryon density. The behaviour of
all thermodynamic chracteristics is in quantitative agreement w1th the avallable
lattice data of Monte — Carlo simulation techniques.: R

* The system with the non-zero baryon number density can also'be treated
by using this approach. Some predictions for high baryon d'ensities have been
published elsewhere [39]. These predictions cannot be compared with the
corresponding lattice data as far as an accurate lattice s1n1ulatlon at finite
baryon density is yet an unsolved problem. -
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'CTamcchcxoe OMHCaHUE ropaueu " rmomon!j SR e e
‘,Knacrepnay}omenca MaTepHH T A : ,
- TNoctpocua craTicTHueckas Monens, TpaKTyIOI.uZiH aupomﬂ KaK xnacrepbl :
| cocTostue n3 :mememapﬂbxx 06nLeKTOB, IIIOOHOB H KBapKoB. Mone/ib ocHOBa- -

: .‘;Ha Ha acb(bcxmsnom KnaCTepHOM ramunmonnaﬂe. C(bopmynupoaau npmmun

, Tepmommamnl{ecxou SKBHBAJICHTHOCTH * TAMM/ILTOHHAHOB, noanonmouum' 1
“KoppexTHo onncmsmb TepMOI(MHaMMlICCKPIe caoucma CUCTCMBI c acb(bexma-v

3 }!HblM FEIMHJIbTOHHZIHOM 9T0'r HpHHllHH anBOI[HT K coorﬂomeﬂuam Ha3BaH-

SHDBIM yc.nonnsmu : Tcpmonnnamuqecxou : KOppeKTHOCTH, .- KoTOphbIE - |
' KOHTPOJIMPYIOT Bb160p xnaCTeprlx ramnnb'rouuanoa. KnaCTepuaauml, npu “f
" HM3KOI TcmnepaTpr " nnomocm, napTOHOB B AXPOHH! COOTBeTCTByeT KOH-

: I(éKOH(baHHMCHTy Ing nponepxn npaBnanocm MOJIE/IH NPOBENCHBI BHIYHC- -

’,;nemm B o6nac1'u HyneBou 6apioHHoi IJIOTHOCTH, 171 KOTOPOi#t M3BECTHBI

o axxypambu. KOMHblOT(.prlC pacuersl Ha pemeTKe PeayanaTm Hameu mone-
m Haxonmcs{ B NPCKPACHOM COMIACHHM C PELIETOYHEBIMH AAHHBIMH.

e a60Ta BBIMOJIHCHA B Jla6opaTopnn Teopuuqecxo qmamm OI/IHI/I

C006nle|me 0(1.L11m|eunom e nTym ﬂ}leHblx HCLJIEIIOBI\HHH IlyGHa 1992

|- Shanenko A. A., Yukalova EP, Yukalov V.I. - E2-92-378
e Slallsucal Dcscrlpllon of Hot and Densc. Cluslermg Maller T

A stausucal ‘model is conslructed by m,almg hadrons as cluslerb of el(,-.,'k
\mentary objects, gluons and quarks The basis of the ‘model is an- LffCCtIVL
“cluster Hamlltoman The prmcnpk of lhc.rmodynamlc Lquwalcncc for Hamil- -

;k‘dynamlcs of the sysl(,m with an t.ffLCllVC Hamiltonianin a complctt.ly correct -
~way. This prmcnple yields restrictions, called the conditions of lhermodynamlc .

e ’ ’correcmcss controlling the choice of the cluster Hamlltonmnb The clustermg,v

at low u,mpcmturc and dcnsnty, of partons into hadrons means the confmemc,nt
-whllc ‘the: inverse process of the clusl(.r disintegration corr prOﬂdS to the
f ~~d(,conf|m,m(,nt To check the accuracy of the model, detailed c.llc.u]auons for-
: “the rc,glon “of zero. baryon density have been made for which computLr simu-
“lations on the lattice are known. Our. results are. found to b(, in a b 1uvt1‘ful._
agru,mcnt wnth lhc ]dlllC(, numerlcdl ddld. _1 7 e

o v?‘Th(, mv«.bll[,‘mon h.|:~, bccn pufornu,d dl th Labnmlory of ThLOI‘CllCdl
;Phy:ﬂcs JINR ’ s , :

: ) Cumm IlllLdII()ll nl' 1hc Jmnt |Il$lﬂlllb fur Nudc.\r Rcsc.mh Dllhlll 1992 L

"quauHM(.HTy, TOrRA KaK oépammn npouecc pacnana KJIACTCPOB. COOTBCTCTByeT |

~tonians:is. formulaled which makes it ‘possible to d(.SCl‘lbL all the thermo- |




