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In our paper [1] we have developed a geometric method 

for reducing arbitrary Lagrangians of the form L(x 1 
, ••• ,xn, 

~
1 

, ••• , ~m, a
1 

~P) depending on the finite number of scalar 

functions ~ 1 
~

1 (x 1
, ••• , xn), ~m 

~m(x 1
, ••• ,xn) and their first derivatives a ~P to uniform 

I 

expressions of the first degree with respect to derivatives 
CX CX I CX 1 n 1 m a
1 

= a y /au where (y} = (x , ... ,x, ~ , ... ~} = y. The 

quantities 

u 1 u 1 (x1
, ••• ,xn) (1) 

are admissible variables of integration in the action 

s k f L (x, ~. a~) d x 1 
••• d xn 

k' f L (y, (2) 

where k is the dimensional constant. Scalar fields ~ are 

given in space-time X In relativistic theories X is 
n n 

Minkowski' s space, and x are Cartesian coordinates in it. 

The Lagrangian function Lis invariant with respect to the 

Poincare group. 

Action (2) with a homogeneous Lagrangian defines the 

measure of n-dimensional surface in the areal space [2]. Let 

us denote this space by M (x, ~) = M (x 1 
, ••• , xn, ~ 1 

, ••• , 
N n+m 

~m) = M (y) where y denote both "usual" coordinates x and 
N 

field coordinates~- It follows from the principle of least 

action that equations for the scalar fields~ in Xn coincide 

with equations for n-dimensional minimal surfaces in MN (x, 

~) In arbitrary integration variables u in the integral 

(2) the minimal surface in MN can be written as 
a a 1 n y =y (u, ... ,u), (3) 

and in special integration variables x it is written as 

n+l y ~1 (x), 

n 
X 

n+m ... , y ~m (X) • (4) 

The action for the linear scalar field in the Minkowski 

h ~•·· r•. 'r;"~·ft-Kt::nrrr,~·· 
U~tt.!IW1 \icc.1t.1ouvd 

6l1Sn~10TEHA - --



space Xn with th~ metric 

2 i 
d s = 7jlk d X d xk = 

(c d t)
2 + (d x 2

)
2 + ... + (d xn) 2 

where ct= x 1 
is chosen in the form [3] 

s = k I { - 2.... [ 7l1 k a 
2 I 

cp a 
k 

<p + m2 cp2]} d x1 ... d 
n 

X ' 

(5) 

( 6) 

where k is the dimensional constant, 7J 1
k is the tensor 

inverse to the metric Minkowski tensor from metric (5), m = 

m
0
.c I h. From the principle of least action for (6) there 

follows the Klein-Fock equation 

lk 2 2 -2 2 2 2 
7l a1 k cp - m cp = - c a cp / a t + fl cp - m cp = o . (7) 

The functional (6) determines all basic· properties of the 

classical linear scalar field. 

The dimensional constant k equalizes the dimension of 

the left- and right-hand sides of eq.(6). The dimension of 

the action Sis known and the dimension of k is determined 

by the field dimension cp. If the quantity cp is 

dimensionless, the dimension of k equals [g cm 4
-n s- 1 ]. The 

action (6) can be written in the form 

s = k' I {- -2
1 [7J 1

k a (b cp) a (b cp) + m2 (b cp) 2
]} 

I k 

d x 1 
••• d xn (8) 

where b is the dimensional constant chosen so that the 
I 

quantity b cp has dimension of cm, k is a new constant equal 
, 2 I 

to k = k / b Then, we assume that k = 1. Under this 

condition the.dimension of the variable b cp coincides with 

the dimension of the coordinates x 1
, x 0 and it may be 

thought of as one more coordinate yn+l = Xn+l = b cp in some 
areal space M which is known to have the measure of n+l 
n-dimensional surfaces to be determined by the integral (8). 

2 

"' 

~ 

·-, 

In this integral the Lagrangian 

L = 1 1 k 2 2 

2 [7J al (b cp) ak (b cp) + m (b cp) J (9) 

is to be reduced to a homogeneous form [1]. The construction 

of the space M and determination of its metric or other n+l 
properties are the main problems of the areal geometry [2]. 

The form of the Lagrangian (9) shows that it does not 

determine in Mn+l a nondegenerate metric tensor. 

Further, we assume that the nonlinear scalar field is 

defined by an action of the Born-Infeld type [4] - [7] 

or 

s
1 

= I { ✓ 1 + 2. L 1} d x1 

s = J {1 - v 1 - 2 L} d x 1 

2 

d x 0 (10) 

d x 0 ( 11) 

where L equals (9). Both expressions (10) and (11) are 

equivalent. In the limit of weak fields (b --> 0) they both 

turn into the starting expression (8). 

The term 

J 
I n 

V = d x ... d X 

in expressions (10) and (11) will be further neglected as it 

does not influence the properties of the scalar field which 

are studied in the present paper. So from the action (10-11) 

we pass to the action 

S = JV 1 ± 2 L d x
1 

••• d x
0 

Denote 

- g = 1 ± 2 L . 

In the nonlinear Born~Infeld electrodynamics 

considered for which - g > 0. Identifying the 

with the measure of the n-dimensional surface 

can equivalently consider two c·ases g > 0 

(12) 

(13) 

fields are 

action (12) 

in M· we n + 1 

and g < 0. 

Specific is the case g = 0. In the Minkowski space with the 

metric (5) surfaces of that type are called spacelike, 

3 



timelike and degenerate, respectively, [8] - [12) . 
• The measure of the surface (3) in the pseudo-Riemann 

space with the metric 

d s 2 = h a (3 a(3 d Y d y 1 < a, (3 < n + 1 , (14) 

has the form 

s = J /4 1 
n! ha (3 ••• ha (3 

Jal.·· an J (31. · .(3n d x1 ... d xn 
1 1 n n 

(15) 

= f ,/ c det ( g 
1 
k) d x 1 . . . d xn = J ,/ 191 d x

1 
. . . d xn 

where c = · ± 1 . 

The tensor 

g
1
k = haf3 (a Ya/ a x 1

) (a yf3 / a xk) 

defines on the surface (3), 

metric 

d s 2 = gik d X 

imbedded in M n+l 

i d X 
k 

(16) 

, the induced 

(17) 

The quantities J with complex indices in eq. ( 15) are minors 

of the nth order in· the rectangular matrix T= ( a ya I a x 1 
) • 

In the pseudo-Riemann spaces with the metric form (14) whose 

signature coincides with that of the form (5) for the 

timelike surface c = -1 and for the spacelike surface c = 1. 

Taking into account the above-said we can finally write 

down the action of the Born-Infeld type [ 5, 6] for the 

scalar field in X as 
n 

S=J/11± {T/lk a (b~)a (b~)+m
2

b
2

~
2 }1 

1 k 
d X 

1 
• • . d Xn. ( 18) 

To express the actions (8) and (18) in the homogeneous 

form one shou'ld multiply their integrands by J
1 

· · · n and 

change a 
1 

( b. ~) by E; 
1 

where 
E; = Jl ... 1 ••• n / J! ... n, 

1 
(19) 

Jl. • • n is a nonzero left extreme minor of the rectangular 

4 

.,, 

.. 

matrix T of an order of n ( n + 1 ) , and J 
1 

· · · 
1 

• • • n is 

derived from the previous minor by changing in it the ith 

column by the last column of the matrix T. 
Now· let us formulate the basic problem of the present 

paper. It is required that the metric tensor ha(3 of the 

areal space Mn+
1
(x, ~) be found by the given action (18) for 

the nonlinear scalar field and its physical treatment be 

given. 
The following steps are needed to solve the problem 

stated: 1) equating expressions (15) and (18) to form the 

system of equations for determinirig components ha(3 ; 2) to 

solve this system, as far as possible; 3) to study the 

obtained solutions. 
First, we will solve the above-stated problem for the 

scalar field in the two-dimensional Minkowski space with the 

metric 
d s 2 = - c 2 d t 2 + d x 2 = - (d x

1
)

2
+ (d x

2
)

2
'. (20) 

The action (18) in this case takes the form 

[ _ ( a ( b~) ) 2 + ( alb~ J ) 2 + 2 b 2 2] I 
s = ss /11 ± a( ct) a x m ~ 

c d t d x. (21) 

In the homogeneous form eq.(21) is written as 

s = II /j(J12)2 ± [-(J32)2 + (J13)2 + (m b ~ J12)2Jl 
c d t d x. ( 22) 

We assume that the coordinates x
1 

=ct, x
2 

= x, and x
3 

= b 

~ in the space M
3 

(x, ~) are orthogonal. Then, the metric 

form of this space is 

ds2 =h (dx1) 2 +h (dx2) 2 +h (dx
3

)
2

, 
11 22 33 

(23) 

and formula (15) is 
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S = JI lih h (J12
)

2 
+ h h (J32) 2 + h h (Jl 3) 2

1 11 22 22 33 33 1 1 

d x 1 d x
2

. (24) 
Equation for the surface with the measure (24) has the form 

Xl = C t , 
2 3 = b <p (x

1
' 

x2) (25) 
X = X ' X 

Comparing (22) with (24) we get the following algebraic 

systems of equations: 

for the upper sign in (18) 

- h 11 h 22 1) 1 + (m b <p)
2 

= 

1 = -. h22 h33 ' 1 = - h 33 h 
11 

+ h 
11 

2) 1 + (m b <p)
2 

= 

1 = + h22 h33 ' 1 = + h 33 

h22 
h 

for the lower sign in (18) 

1) 1 -

1 = - h 22 

2) 1 

(m b <p)
2 = - h h 

11 22 
h ' 

- 1 = - h 
33 

(m b <p)
2 

= + h 
11 

h 33 

h 
22 

11 

11 

1 = + h h 
22 33 

1 = + h 33 h 
11 

(26) 

(27) 

Of two systems (26) the second has no solutions and the 

first has two solutions. The form (23) for these solutions 

becomes 

d s 2 = + v H ( - c 2 d t 2 + d x
2

) + b
2 

d <p
2 

I v H 

d s 2 = - vH (- c 2 d t 2 + d x
2

) - b
2 

d <p
2 

/ vH, 

where 
H = 1 + (m b <p)

2 

(28) 

(29) 

(30) 

The forms (28) and (29) have opposite signatu~es and spaces 

of that type become identical. We assume that the space M3 

(x, <p) has the form (28). Note that this form is determined 

for all values of the coordinates, b <p being the space 

6 

~ 

] 

coordinate. The signature of the form (28) coincides with 

the signature of the form (5) at n = 3. Consequently, the 

metric tensor, given by that form, can describe the 

gravitational field. The scalar curvature determined by that 

tensor equals 
R = m2 {4 + (m b <p)

2} / 2 H
3

/
2 

. 

The Einstein tensor components determined by it equal 

Gl 1 
= (m c)

2 
I 2 H 

G = 33 

G 22 
2 

= - m 

m4 b
2 

<p
2 

I 4 H
2

• 

/ 2 H , 

(31) 

(32) 

Under a specific choice of units the tensor Ga~ equals the 

energy-momentum tensor Ta~ of the matter generating the 

gravitational field [12]. In our case, the scalar field 

serves as such a matter. 
It is to be noted that the metric (28) is conformally 

flat. In the limiting case of a weak scalar field (when b 

-->- O) the metric (28) is degenerate; however, neither the 

scalar curvature (31) nor the Einstein tensor (32) vanish. 

To study gravitational fields with the degenerate metric 

tensor it is efficient to use both the relativistic theory 

of gravitation (13] and the theory of gravitation with two 

connections [14]. 
Now let us consider massless fields. At m = O the space 

M
3 

with the metric (28) becomes flat and the action (22) 

defines in it the two-dimensional surface. In this case, the 

nonlinear equation for the scalar field 

- <p ( 1 + b 2 <p <p ) + 2 b
2 

<p <p <p + 
tt X X tX t X 

+ <p ( 1 - b 2 <p <p ) = 0 ( 33) 
xx t t 

coincides with the equation of minimal surfaces in the 

Minkowski space M
3 

Here the light velocity equals unity. 

At b = 0 equation (33) turns into the d'Alembert equation. 

The scalar field with the action (22) and eq.(33) has first 
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been studied in papers [ 6, 7] not only on the classical 

level but also Jn the quantum one. 
Now we pass to the pair of systems (27). At (m b ~)

2
< 1 

the second system has no solutions whereas the first has two 

solutions, one corresponding to the fundamental form 

d s 2 = v K ( - c d t 2 + d x2
) - b

2 
d ~

2 
/ vK , 

where 
K = 1 - (m b ~)

2 

(34) 

On the contrary, at (m b ~) 2 > 1 the first system has 

no solutions and the second has two solutions, one 

corresponding to the fundamental form 

d s 2 = v--==----i< (- c 2 d t 2 + d x 2) + b
2 

d ~
2 

/ ,/---=-7(, (35) 

The second solution gives the form with the opposite 

signature. Note that in this case the quantity b cannot tend 

to zero. 
Let us assume that the space M at (m b ~)

2 
< 1 has the 

3 

metric (34) and at (m b ~) 2 > 1 has the metric (35). There 

is a critical valu~ of the field (m b ~)
2 

= 1 at which the 

metric tensor has a singularity. Passing over the critical 

value the coordinate x 3 = b ~ changes its meaning: from the 

"timelike" in (34) it turns into the "spacelike" one in 

(35). 

The scalar curvature determined by the metric (34) 

equals 
R = m2 {4 - (m b ~) 2} / 2 K

3
/~ 

The Einstein tensor components determined by it equal 

Gl 1 
= (m c)

2 
I 2 K G 2 2 = - m

2 / 2 K 

G = - m
4 

b
2 

~
2 

/ 4 K
2 

33 
(36) 

The scalar curvature determined by the metric (35) 

equals 

8 

R = m2 {(m b ~) 2 
- 4} / 2 (- K)

3
/~ 

The Einstein tensor components determined by it equal 

G = 
11 

(m c)
2 

I 2 (- K), G = m2 
I 2 ( - K) , 

22 

G = 
33 

m4 b2 ~2 / 4 (- K)2 (37) 

It can be assumed that the tensors (36) and (37) describe 

the same gravitational field at different values of (m b ~)~ 
From the physical point of view, of much interest are 

the spaces M
4 

(x, ~) and M
5

(x, ~) whose geometry is 

generated by scalar fields of the Born-Infeld type given in 

X
3 

and in X
4 

Let u_s write down for these spaces some 

formulae analogous to those for M
3 

(x, ~) 

For the space M4 (x, ~) metric we have the solution 

d s 2 = H1 / 3 (- c 2 d t 2 + d x2 + d y2) + H- 2/ 3 b
2 

d ~
2 

, (38) 

analogous to (28), and the solution described by a pair of 

formulae 
d s2 = Kl/3 (- c 2 d t 2 + d x 2 

+ d y
2

) 
- K-2/3 b2 d ~ 2 

(39) 

d s 2 = (-K) 1
/

3(- c 2 d t 2 + d x2 
+ d y

2
) + (- K)-2/3 b2 d ~2. 

analogous to (34) and (35). 
At m = O the space M

4 
(x, ~) with the metric (38) 

becomes the Minkowski space X
4 

• A massless scalar nonlinear 

field is described in it by the equation of 

three-dimensional minimal surfaces. The latter may be both 

timelike and spacelike. 
For the space M

5 
(x, ~) metric we have the solution 

d s 2 = H1 / 4(- c 2 d t 2 + d x2 + d y2 + d z 2) + H-
3
/

4 
b

2 
d ~

2
• 

(40) 

analogous to (28), and the solution described by a pair of 

formulae 

9 



d 2 Kl/ 4 ( 2 d t2 d 2 d 2 d 2 ) K-31 4 b2 d 2 S = -C• + X + y+ Z - <p, 

d s 2 = (-K) 1
/
4 (- c 2 d t 2 + d x2 + d y2 + d z 2

) + (41) 
+ (-K)-314 b2 d <p2 

analogous to (34) and (35). 

At m = 0 the space M
5 

(x, <p) with the metric (40) 

becomes the Minkowski space X . A massless scalar nonlinear 
5 

field is described in it by the equation of four-dimensional 

minimal surfaces. The latter may be both timelike and 

space like. 

Let us write down also analogous results in the general 

case of the space Mn+l (x, <p) whose geometry is generated by 

a scalar field of the Born-Infeld type given in the 

Minkowski space Xn with the metric (5). We have the solution 

d s 2 = H1
/n (7) d xi 

l k 
d xk + H- 1 b 2 d <p 2

) , (42) 

analogous to (28), and the solution described by a pair of 

formulae 

d s 2 = Kl/n (7). d xi d xk - Kl/n b2 d-<p2) 
1k ' 

d s 
2 = (- K)l/n {7) d X i d xk + (-K)-1 b2 d <p2} 

l k 

analogous to (34) and 

conformally flat metrics. 

The scalar curvature 

equals 

( 35). As 

determined 

is seen, 

by the 

R = m2 {n - 1 + (n + 1) H- 1
} / n H !In 

these 

metric 

The Einstein tensor components determined by it equal 

G = (m c) 2 {n - 2 + (n + 2) H-
1

} (n - 1) / 2 n2 
11 

G = 
22 

G n+l n+l 

= G = m2 { n - 2 + ( n + 2) H- 1
} ( n - 1) / 2 

nn 

· 2 · 2 = (m b) (1 - H) (n - 1) / 2 n H . 

IO 

(43) 

are 

(42) 

(44) 

2 n, 

(45) 

Nondiagonal components Ga~ are equal to zero. The Einstein 

tensor components determined by the metric (43) and the 

scalar curvature have an analogous form. 

Assume that under the action of a strong scalar field a 

test particle moves along the geodesic of the space 

M (x, <p). The equations for the geodesics can be written n+l 
in the form [15] 

d xa a 
d1: = p 

a 
d p = 
d1: 

ra µ lJ 
µlJ p p (46) 

where pa is a particle momentum, r µ~ is the Christoffel 

connection, and L is the proper time of a particle 

determined in an appropriate way. The scalar square of 

momentum is the first integral of eqs.(46). Within the sign 

it equals the square of the rest mass M of a particle. In 

the case (42) 

M2 = Hl/n { M2 _ H-1 b2 ( ~) 2} 
. o d L (47) 

where M2 is the square of the rest mass of a particle free 
0 

from the action of the scalar field 
M2 _ _ i k 

0 - 7)ik p p (48) 

In this case, 

integrated as 

the equations 

along with (47) 

for the geodesics are easily 

there are n first integrals 
Hl/n pl = Cl (49) 

The case (43) can be treated analogously. 

Finally, we should like to note that at m = 0 nonlinear 

scalar fields describe extended relativistic objects of the 

type of strings and membranes in the (n + 1)-dimensional 

Minkowski space [16, 17]. 
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.<l>eAopoe <l>.1-1., WaeoxHHa H.C. 
YpaBHet-tHe Kn81Ha-4>oKa, MHHl1M8nLHble noeepXHOCTH 

H rpaeHT34HOHHble nonA 

E2-92-377 

PaCCM3TPHB3eTCA Hen11HeHHoe CKanRpHoe none THna 6opHa-'°1H¢)em,Aa, nHHE!liHblM aH8-

noroM KOTOporo ABnReTCR CK311ApHOe none. nOA'tHHet-tHOe ypaeHettHfO KneHHa-¢.loKa. C no­

MOUU,IO MeTOAa, p83p86oTaHHOrO 
0

8 pa6ore111, AllMCTBHe AJIR T8KOrO nOnR npeACTaenAeTCA 
8 BHAe Mepbl nnoLLt8AH B PHMlliOBOM npocrpaHCTB8-Bp8MeHH, MeTPH~I KOTOporo OOM8>KHT 

onpe,qeneHHIO, 8 3TOM' npocrpaHCTBe-epeMeHH H8pAAY C O6blSHblMH KO0pAHH8TaMH BblCTynaer 
~OneeaR nepeM,et-tHSA r.p, YMHO>t<ettHBA tta p83MepHyto KOHCT&Hry b. !°lOKBlattO, t.tTo ecnH HCX04· 1 

HOe CK811APHOe none AEnAeTCA 6"3M8CCOBblM, ,TO HenHHei<H'oe none THna 6opHa-1-1Hq>enl,/la, 
coorBerCTBYtoLltee eMy; OnHCbleaercA ypaBHf!HHAMH MHHHM'anbHblX nosepxHOCTE?\1 B nceeno• 

eeKnHAOBblX' npocrpaHcreax C KOOpAHHaraMH (ct, X, bop) - np'!__3TOM K0OpAHH8T8 I>;,' ;.,,o;..er 
HMeTb K8K npocrpaHCTeeti'HblH, TB)( H epeMet-tHOH xapaKTep. EcnH HCXO,Q,Hoe none RBnAeTCA 

M8CCHBHblM, TO COOTBeTCTBYIOLllee none THna 6opHa-l-1H<!>enbAa onHCbleaerCA ypaBHl!HHAMH 
'MHHHManbliblX noeepxHocrfM e HCKPHBnet-tHbtX npocTpaHCTeax c: TeMH >Ke KOOPAHHaTaMH 

(ct, x, !>;,). Mmt<HO CKa3arl,, STO MaCCHBHble nonA TH."a 6opHa-l-1H<l>811bAa RBnAIOTCA npOTA· 
""'eHHblMH HCTO'tHHK8MH rpaeHT8ijHOHHblX noneM. 

Pa6ora BbononHeHa e na6oparopHH AAepHbox npo6neM OHRl-1. 

'CTpenp1rnr:06bc,lHHCHirnro HUCntryra Q.'.ICpHblX IICC.1C,lOBaHH,il. Jly6Ha 1992 
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A nonlinear scalar field of the Borri-lnfeld type is considered whose linear.analog is t.~e 
scalar· field obeying the, Klein-Fack equation. By the method· devel~ped in paper11 1 the ac-' 

, tion for such a field is represented as a measure of the area In the Riemann space-time whose 
- metric Is to be determined, -In this space-time, along with the usual coordinates there appears 

a field variable ,p multiplied by the dimensional constant b. It is show~ that ii th~ initial scalar 
field is massless, a nonlinear field of the Born-lnfeld type correspording to It is described by 
the equations of minimal surfaces in pseudo-Euclidean spaces with the coordinates er, x, I>;. 
The coordinate ,p may be have both space-like and time-like minire. If the initial field is massive, 
the corresponding field of the Born-lnfeld type is described by the equations of minimal sur­
faces in curved spacet wi!h the same coordinates ct, 'x, !>;,. We can say that massive fields of the 
Born-lnfeld type are extended sources of the gravitational fields. , 
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