


In our paper ([1] we have developed a geometric method

for reducing arbitrary Lagrangians of the form L(xl,...,x“,
wl,..., o, ai 9¥) depending on the finite number of scalar
functions o' = o (X', ..., X)), ou. , " =
" (x', ..., x™) and their first derivatives 9, ¢® to uniform
expressions of the first degree with respect to derivatives
a? =0 y* / 8 u' where {(y*) = (x',...,x", ¢',...0o"}) = y. The
guantities

u' = ut (%, .., x") (1)

are admissible variables of integration in the action

S=k L (x, ¢, 8 ¢) d x' ... dx" =

1 n

j‘i.(y,a?)du...du, (2)

where k 1is the dimensional constant. Scalar fields ¢ are
given in space-time X . In relativistic theories Xn is
Minkowski's space, and x are Cartesian coordinates in it.
The Lagrangian function L is invariant with respect to the
Poincare group. ,

Action (2) with a homogeneous Lagrangian defines the
measure of n~dimensional surface in the areal space [2]. Let
us denote this space by M (x, ¢) = M (x', ..., X%, o', ...,

n+m
p") = MN (y) where y denote both "usual" coordinates x and
field coordinates ¢. It follows from the principle of least
action that equations for the scalar fields ¢ in X coincide

with equations for n-dimensional minimal surfaces in MN (x,

¢) . In arbitrary integration variables u in the integral
(2) the minimal surface in MN can be written as

a 24 1 n

Yy =Y (m,..., u) , ' (3)

and in special integration variables x it is written as

n+m

Y =9 (X)) o0 Y = " (x). (4)

The actlon for the_linear scalar field in the Minkowski
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space Xn with the metric

d s = LA d x dx =
- (c dat)? + (@x®%+ ... +(dx"?, (5)

where ct = x! , is chosen in the form [3]
S=%k J{- —;—[nlk 8, ¢ o ¢+ m® 9°1} d x' ... d x", (&)
where Kk is the dimensional constant, nik is the tensor

inverse to the metric Minkowski tensor from metric (5), m =
m.c / h . From the principle of least action for (6) there
follows the Klein-Fock equation

'k al: p-m? p=-c? 52 o/ 8 t>+ A ¢p - m? e =0 . (7)
The functional (6) determines all basic’ properties of the
classical linear scalar field.

The dimensional constant k equalizes the dimension of
the left- and right-hand sides of eq.(6). The dimension of
the action S is known and the dimension of k is determined
by the field dimension ¢p. If the quantity ¢ 1is
dimensionless, the dimension of k equals [g cm® " s'l]..The
action (6) can be written in the form

S =k [ {- 5 [ 3, (b p) 5,(bp) +n’ (b p)?]}
dx' ...dx", (8)

where b is the dimensional constant chosen so that the
quangity b ¢ has dimension of cm, kl is a new constant equal
to k =k / b° . Then, we assume that kK = 1. Under this
condition the.dimension of the variable b ¢ coincides with

the dimension of the coordinates xl, , x" and it may be

thought of as one more coordinate y"*' = x"*! = b ¢ in some
areal space Mn+1 which is known to have the measure of

n-dimensional surfaces to be determined by the integral (8).
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In this integral the Lagrangian

o (b ) o, (b +m (b7 (9)

]
n
|
Nln—n

(n

is to be reduced to a homogeneous form [1]. The construction
of the space Mn+1 and determination of its metric or other
properties are the main problems of the areal geometry [2].
The form of the Lagrangian (9) shows that it does not

determine in Mn+ a nondegenerate metric tensor.
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Further, we assume that the nonlinear scalar field is

defined by an action of the Born-Infeld type [4] - [7]

s, = J{VvT+2L -1}dx ...dx (10)
or

S, = J{1-vT-2L}dx ...dx (11)

where L equals (9). Both expressions (10) and (11) are
equivalent. In the 1imit of weak fields (b — 0) they both
turn into the starting expression (8).
The term
. v = Jdx'...adx"
in expressions (10) and (11) will be further neglected as it
does not influence the properties of the scalar field which
are studied in the present paper. So from the action (10-11)

we pass to the action
S = fvTz2L dx ...dx". (12)

Denote
-g=14%201L. (13)
In the nonlinear Born-Infeld electrodynamics fields are
considered for which - g > 0. Identifying the action (12)
with the measure of the n-dimensional surface in MQ+1 we
can equivalently consider two cases g > 0 and g < 0.
Specific is the case g = 0. In the Minkowski space with the

metric (5) surfaces of that type are called spacelike,
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timelike and degenerate, respectively, [8] - (12]
L)
The measure of the surface (3) in the pseudo-Riemann
space with the metric

d s® = haB d ya d yB s 1 <a, B <n+ 1, (14)

has the form

_ 1
s=fve L Mg Tap

= [ Ve det ( gik) da x!

where € =% 1.

The tensor

g, = Nug (@ ¢ /8 x') (a yP /8 ¥ (16)
defines on the surface (3), imbedded in Mn+1 , the induced
metric , ‘

ds* = g, d x' ax* . (17)

The quantities J with complex indices in eq.(15) are minors
of the nth order in the rectangular matrix T= (& ya / 9 x').
In the pseudo—Riemann spaces with the metric form (14) whose
signature coincides with that of the form (5) for the
timelike surface € = -1 and for the spacelike surface € = 1.

Taking into account the above-said we can finally write
down the action of the Born-Infeld type [5, 6&] for the
scalar field in Xn as

s=j/|1i (' 8 (v o (b 9) + m° b? p°}|
' dx' ... dx". (18)

To express the actions (8) and (18) in the homogeneous

form one should multiply their integrands by gtoeen and
change &, (b ¢) by El where
El - Jl...i...n/Jl...n' (19)

1.

J is a nonzero left extreme minor of the rectangular
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matrix T of an order of n (n + 1) , and gleester™ s
derived from the previous minor Dby changing in it the ith
column by the last column of the matrix T

Now let us formulate the basic problem of the present
paper. It is required that the metric tensor haB of the
areal space Mn‘l(x, ) be found by the given action (18) for
the nonlinear scalar field and its physical treatment Dbe
given.

The following steps are needed to solve the problem
stated: 1) equating expressions (15) and (18) to form the
system of equations for determining components haB ; 2) to
solve this system, as far as possible; 3) to study the
obtained solutions.

First, we will sélve the above-stated problem for the
scalar field in the two~dimensiona1 Minkowski space with the
metric

ds®=- c?dt?+d ¥ = - (d x1)2+ (d xz)z‘. (20)
The action (18) in this case takes the form

AT N
cdtadx. (21)

In the homogeneous form eq.(21) is written as

s = [T VrI(le)z : [-(3°%)° + (3% « (n Db ¢ le)z]i
cdtdzx. (22)

We assume that the coordinates x1 = ct , x2 = x , and x3 = Db

¢ in the space M3 (x, ¢) are orthogonal. Then, the metric

form of this space is

2 1,2 2.2 3.2
ds® =h (@ x)" +h (a4 x7)° + h_, (d x7)°, (23)

and formula (15) is



33 11

= V/fi ¢ 12,2 32,2 13,2
s=[fVYIn, h, (I +n, h, (7)) +nh h (37|

2

d x' a x°. (24)
Equation for the surface with the measure (24) has the form
! =ct, x° = x , x> = b @ (xl, x%) . (25)

Comparing (22) with (24) we get the following algebraic
systems of equations:

for the upper sign in (18)

2—__
1) 1 + (mb )" = h11 h22 ,
-1=-h,Nh, , 1=~ h,, h, o
(26)
2_
2) 1 + (mbe" =+ h11 h22 )
-1=+h_h_, 1=+h_h
22 33 33 11
for the lower sign in (18)
2—__
1) 1 - (m b ¢)° = h11 h22 ,
{=~h_h_, -1=-nh_h_,
22 33 33 11
(27
2._
2) 1 ~ (mb ) =+ h11 h22
1 = + h22 h33 , -1 =+ h33 h11

Of two systems (26) the second has no solutions and the

first has two solutions. The form (23) for these solutions

becomes
Adsi=+vHE (-c2dti+ax’) +p2ade /VH (28)
Ads2=-VvEH (-c2ati+dx®) -pde s/ VH, (29
where

H=1+ (mbe? . (30)
The forms (28) and (29) have opposite signatures and spaces
of that type become identical. We assume that the space M,
(%, ¢) has the form (28). Note that this form is determined
for all values of the coordinates, b ¢ being the space
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coordinate. The signature of the form (28) coincides with
the signature of the form (5) at n = 3. Consequently, the .
metric tensor, given by that form, can describe the
gravitational field. The scalar curvature determined by that
tensor equals

R=mn’ {4+ (mbp? s2H"?. (31)
The Einstein tensor components determined by it equal

G =(mc)>/2H, G =-m/2H,
11 22

G, = - mn® b2 p® s 4 HZ. (32)

Under a specific choice of units the tensor GaB equals the
energy-momentum tensor TQB of the matter generating the
gravitational field {12]. In our case, the scalar field
serves as such a matter.

It is to be noted that the metric (28) is conformally
flat. In the limiting case of a weak scalar field (when b
—»- 0) the metric (28) is degenerate; however, neither the
scalar curvature (31) nor the Einstein tensor (32) vanish.
To study gravitational fields with the degenerate metric
tensor it is efficient to use both the relativistic theory
of gravitation [13] and the theory of gravitation with two
connections [14].

Now let us consider massless fields. At m = 0 the space
M3 with the metric (28) becomes flat and the action (22)
defines in it the two-dimensional surface. In this case, the

nonlinear equation for the scalar field
2 2
-9, (L +Dp 0)+2Db 9, 9 +

2 -_—
+ o (1-DP 9 ) =0 (33)
coincides with the equation of minimal surfaces in the
Minkowski space M, . Here the light velocity equals unity.
At b = O equation (33) turns into the d’ Alembert equation.
The scalar field with the action (22) and eq.(33) has first

.



been studied in papers [6, 7] not only on the classical
level but also on the quantum one.

Now we pass to the pair of systems (27). At (m Db ¢)2< 1
the second system has no solutions whereas the first has two

solutions, one corresponding to the fundamental form

4s2=vE(-c dtP+dx’)-b de s VK , (34)
where
K =1 - (mb w)z

On the contrary, at (m b w)z > 1 the first system has
no solutions and the second has two solutions, one

corresponding to the fundamental form
s vTER(-c2dtiP+dx’) +bp7dp’/ VK, (35

The second solution gives the form with the opposite
signature. Note that in this case the quantity b cannot tend
to zero. A '

Let us assume that the space M3 at (m b w)z < 1 has the
metric (34) and at (m b w)z > 1 has the metric (35). There
is a critical valué of the field (m b w)z = 1 at which the
metric tensor has a singularity. Passing over the critical
value the coordinate x> = b ¢ changes its meaning: from the
"timelike" in (34) it turns into the v"spacelike" one in
(35).

The scalar curvature determined by the metric (34)
equals

R=m?>{4-(mbe?s2K'?
The Einstein tensor components determined by it equal

2 _ .2
G11 =(mc)*/ 2 K, G oo™ m- / 2 K ,

G, = - m! p? p? s 4 K. (36)

The scalar curvature determined by the. metric (35)
equals

8

R=m’ {(mbe? -4} /2 (-K?
The Einstein tensor components determined by it equal

- _ 2 _ _ 2 _
G,=-(me) /2 (-K, G =m//2(K,

G =-nm"Db"e°/ a4 (- K)? . (37)
It can be assumed that the tensors (36) and (37) describe
the same gravitational field at different values of (m b w)?
From the physical point of view, of much interest are
the spaces M4 (x, ¢) and Ms(x, ¢) whose geometry is
generated by scalar fields of the Born-Infeld type given in
X3 and in X4 . Let us write down for these spaces some
formulae analogous to those for M3 (x, ¢) '
For the space M4 (x, @) metric we have the solution
2

d s° = H 2

173 3
(_

c2at+dax+dy’)+ BP0 a¢®, (38)
analogous to (28), and the solution described by a pair'of
formulae

Ads2 =K (-c?at®+ax’+ady’)-K?p®ay,

. (39)
d Sz _ (_K)l/a(_ c2 d tz + d Xz + a yz) + (- K)—2/3 b2 d wz,
analogous to (34) and (35).

At m = 0 the space M4 (%, ¢) with the metric (38)

becomes the Minkowski space X4 . A massless scalar nonlinear
field is described in it by the equation of
three-dimensional minimal surfaces. The latter may be both
timelike and spacelike.

For the space MS (x, @) metric we have the solution

174 3/4
(

ds®=H b° d ¢°,
(40)
analogous to (28), and.the solution described by a pair of

formulae

—cfdatP+daxP+dy’+a z%) + H™
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as® =K (- c%dt?+dx®+dy+dz®) - KV p®a
d s? = (—K)“4 (- c2at?®+4dx?+a y2 + 4 zz) + (41)
+ (_K)—3/4 b2 d ¢2 ,

analogous to (34) and (35).

At m = 0 the space Ms (¥, ¢) with the metric (40)
becomes the Minkowski space X5 . A massless scalar nonlinear
field is described in it by the equation of four-dimensicnal
minimal surfaces. The .latter may be both timelike and
spacelike.

Let us write down also analogous results in the general
case of the space Mn+1 (x, ¢) whose geometry is geherated by
a scalar field of the Born-Infeld type given in the
Minkowski space Xn with the metric (5). We have the solution

1

ds®=H""(n dx'adx*+H"!Dde? , (42)

ik

analogous to (28), and the solution described by a pair of

formulae
d sz = K1/n (nik 4 xi 4 Xk _ K1/n bz d-wz) ,
(43)
ds® = (- R {n,, d x' d ¥* + (-K)"' b% a %},
analogous to (34) and (35). As 1s seen, these are

conformally flat metrics.
The scalar curvature determined by the metric (42)

equals
R=m*{n-1+¢(n+1)H'} /nH'" (44)
The Einstein tensor components determined by it equal
2 -1 2
G,=(mc)*{n-2+(n+2)H }(n-1)/2n
2 -1 2
G =...=G =-mm{n-2+(n+2)H})(n-1)/2n",
22 nn
G = (mb)? (1 -H (n-1)/2n8H . (45)
n+l n+1
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Nondiagonal components Ga are equal to zero. The Einstein

tensor components determgzed by the metric (43) and the
scalar curvature have an analogous form.

Assume that under the action of a strong scalar field a

test particle moves along the geodésic of the space

ne1 (%X, p). The equations for the geodesics can be written

in the form [15]
o o

d x° _ « dp _ _ (o u v
A T - p s d T - r“V p p ’ (46)
where pa is a particle momentum, F“g is the Christoffel

connection, and <t 1is the proper time of a particle
determined in an appropriate way. The scalar square of
momentum is the first integral of eqs.(46). Within the sign
it equals the square of the rest mass M of a particle. In
the case (42)

2 1/n

_ 2 -1 .2 d ¢ 2
MO = BT { M) - B DT ()7}, (47)

where Mz is the square of the rest mass of a particle free
from the action of the scalar field .
Mz =-m, pi pk . (48)
In this case, the equations for the geodesics are easily
integrated as along with (47) there are n first integréls
‘ H1/n pl - ¢t (49)
The case (43) can be treated analogously.
Finally, we should like to note that at m = 0O nonlinear
scalar fields describe extended relativistic objects of the
type of strings and membranes in the (n + 1)-dimensional

Minkowski space [16, 17].
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YpasHerve anna—d’oxa MMHHMaanble nosepxuocm : ) ) )
n rpaamaunonnme nonA ’

. Paccmarpusae‘rcn Henuﬂeﬁnoe cKanapHoe  none. TWNa Sopna;Mud)em;an NHHEAHBIM auai
NOroM. KOTOPOro ABNAETCA CKanApHoe none noaunHeHHoe ypaBHenuio Kneima~®oka. Cro-
" MOLWLIO METOAS, pe:npaﬁorannoro 8 pabore’/, AeficTBMe ANA TAKOFO nonA npeacrasnaerca -
B BMAE MEDLI NNOWARH B PUMBHOBOM NPOCTPAHCTBE-BPEMEHN, METPHKA KOTOPOro MOANEMHT .

PR onpeaenenwio, B stom’ NPOCTPaHCTBE-BPEMEHU HApARY C OBLIYHBIMM KOOPAMHATAMA BbiCTYNaeT -

: nonesan nepemeunan ¥. YMHOXeHHAN Ha pasMepHyto KoHCTanTy b. Mlokaaano, 4TO ecnu Mcxoa- :
Hoe cxannpnoe none ABNAETCA Ge3MaccoseiM, TO HenuHedHoe none Tuna GopHa—Hudensaa, .

> coomercvayromee emy, OMHCLIBAETCA YPAaBHEHHAMM MHHHMANEHBIX noaeproC'rm B .NCEBAO-

- EBKNMROBBIX" NPOCTPAHCTBAX C Koopnuuaramu {ct, x, by). npu 3TOM KOOpAHHaTa by MoweT .
MMETL KAK NPOCTPaHCTBEHHBLIN, TAK W BPeMeHHOW xapakTep., Ecnu UCXoAHOE NoNe ABNAETCA
MaCcCHBHbIM, TO COOTBeTCTBYM0lee none Tuna Bopha—HWndenbaa onucuaaerca YpasHeuAMM
MMHMMN‘IbeIX NOBEPXHOCTE! B WCKPHRIEHHBIX NPOCTPAHCTBAX € Temu: we KOOPAHHATAMH

et x, by)) MoxHo cka3arh, 410 MacCHBHLI® NONA TUNA Eopna—HH¢enbaa HB]’IRIOTCH npom

- )KEHHI:IMM MC")‘!HHKBMM rpanmaunonﬂblx noneu

: /Paﬁora abmonnena B ﬂaﬁopampnu ﬂnepnbai npdﬁnem onAu.
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