
A. V. l(otikov 

OfibB.0.MHBHHblM 
MHCTMTYT 
R .0. e pH bl X 

Mccne.o.oeaHMM 

.O.YfiHa 

E2 - 92 - 361 

THE SMALL- x BEHAVIOUR OF PARTON 

DISTRIBUTION FUNCTIONS 

Submitted to 11 $1¢ 11 

1992 



1. Introduction 

Recently the small-x behaviour of the structure functions 

(SF) of deep inelastic scattering (DIS) was considered in 

connection with possibility of experimental studies on new 

powerful colliders HERA [1] and LEP*LHC [2]. Analysis of SF 

gives main information about the behaviour of parton (quark 

and gluon) distributions (PD) of nucleon. The knowledge of PD 

is a basis of the study of other processes. 

At present both the SF and PD cannot be calculated 

analytically but their Q2-evolution (for large Q2,where 

perturbation theory (PT) is applied) only. Perturbatively, 

both the leading order (LO) and next-to-leading order (NLO) 

of Q2-evolution are obtained from Gribov-Lipatov-Altarelli

Parisi (GLAP) equation [3] 

( 1) 

where f (x,Q2) is the distribution function of parton a (i.e. 
a 

q and g for quark and gluon, respectively), the symbol * 
denotes a convolution integral in the fractional momentum 

variable for the parton involved and the kerne1 1 >, 

P(x,a) = a P (x) + <XP (X) + ..• . [ ( 0) ( 1) ] 

is obtained from PT. 

GLAP equation is based on summing large logarithms of Q2 in 

any orders of PT. However in HERA. region ( 10-4 <x<10- 2) the 

summation of large up 1/x logarithms is important also. This 

problem was solved in the papers [4], where Lipatov-Kuraev

Fadin-Bali tsky ( LKFB) equation was obtained. Resently 

(see[5]) both GLAP and LKFB equations were solved 

numerically. It was showed that' these equations give similar 

results in large region of Q2 and small x: 

1 >Hereafter contrary to the standard one we use the coupling 

a(Q2) = <Xs(Q2)/4n. 
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10- 4 <x<10-2 and 10 Gev2<Q2<103 GeV2. 

Hence, the stan"-ard PD parametrizations ( see recent review 

[6]), which are based on GLAP equation, can be used in this 

region. 

2. Q2- evolution of PD moments 

In the present paper we analyse sea quarks and gluon 

distributions at small-x in LO and NLO of PT. We reproduce 

analytically the quality of the change of the small-x PD 

behaviour discovered in the paper [7]. We give the simple 

values of LO and NLO parts of the kernels P(x,a)ab(or rather, 

the anomalous dimensions (AD) of Wilson operators) of eq._(1), 

which lead to this change. 

We use our knowledge of the Q2-evolution of the PD moments
2

' 

M (n,Q2
) = 

a Jdx 
a 

n-1 
X f (x,Q2

). 
a 

· Actually, the GLAP equation for the moments (hereafter we use 

the following definition {a,b} = {q,g}) 

d 
dln(Q2/µ2) Ma(n,Q2) = •ab(n,a) Mb(n,Q2) (1a) 

· with 

7' (n,a) = a[,
10

>(n) + a , 11
'(n>] ab ab ab 

can be solved analytically by a diagonalization of AD matrix 

;(n,a) (see, for example, [8]) 3 > 

2 \' 2 M(n,Q)=L..M (n,Q), 
a l=± a, l 

Multiplicatively renormalizable parts M ( n, Q2) of the PD 
a, I 

moments have the following form 

2'we use PD multiplied by x. 
3 'we consider the singlet PD only, as the contribution of 

nonsinglet one is small when x>-+O. 

2 

t 

2 l I 2 M (n,Q) = ~ (n) M (n,Q ), 
a, l ab a 

b=q,g 

where for a -ct b 

~± (n) 
aa =(1+ 

(OJ( ) (0)( ) 
• aa n - • bb n ) 

± + 
7' - 7' 

n n 

and ~:b(n) = 
.:~' (n) 

± + 
7' - 7' 

n n 

with ~ ±(n) 
aa 

+ = 1- ~aa (n), 
~ ±(n) 

aa 

+ = ~bb I nl and 

,±= (,<a> (n)+ ,<oJ (n) ± 
n qq gg 

(,co>(n)- ,co>(n)) + 4,<o>(n),1o>(n) )12 [ 
2 ]1/2 

qq gg qg gq • 

Its Q2-evolution can be represented in the form [8] 

Mlpl (n, Q2 )/M<p> (n, Q2) = 
a, 1 a, l 0 

d I 

(p / Q2, Q~)) n { 1 (p) 2 2>} + C (n,Q ,Q
0 a, I 

(p=O for LO and p=1 for NLO, respectively)• 

where 

c<o>(n,Q2,Q2) = o 
a, 1 0 

and 

c< 1l (n Q2 Q2)= a (Q2) 
a,± t I Q 1 Q { z + (p (Q2,Q2)-1) + 

n, _ 1 O 

(d±-d+) 
Kial ([ (Q2 Q2)_1] n n 

n,± pl ' a 
pl (Q2' Q~))} 

with p (Q2 ,Q2) = a (Q
2
)/a (Q

2
) and p a p p a 

dt = ,1 /(2(3 ) 
n n o 

and also a (Q
2

) = 
p 

1 
(30 ln(Q2/A:) {1- L/Q2/A:)} 

2 lnln(t) 
with L

0
(t)=O and L

1
(t) = ((3

1
/130 ) --rncn 

:J 

( 2) 

(2a) 

(3) 

(3a) 



The NLO coefficients of eq.(3a) have the following form (for 

simplisity the inpex n is omitted here) 

z± = (,±±_ ,±~11~0> 12~0 

e+ +
K(q) = ,-+ 

n,± ,± - ,+ , K<gl 
n,± = 

K<ql 
n,± 

gg 

~ qq 

where 

0 11 = \' el 
0

(1l 
L · ab ba 

({i,j} = {+,-}) 
a,b=q,g 

,1 J " e1 ,<11 - ej ,<11 
L ag ga qq qq 

a=q,g 

ceJ + ej 1ej > 1'111 
gq qq qg qg 

for i "# j, 

(3b) 

(3c) 

Here ~
0

=(11CA-4TF)/3 and 

first two coefficients 

function. 

~ =(34C2 -20C T -12C T )/3 are the 
1 A A F F F 

of a-expansion of Gell-Mann-Low 

3. Small-x behaviour of parton distributions 

Assuming a Regge-like behaviour of the PD for x>-+0, we can 

obtain for them the following form (see[9-12]) 41 

f (x,Q2
) = xl-A M (;\.,Q2

) + 0(1), 
a a 

(4) 

where ;\. is the intercept of a pomeron. The value of ;\. 

determines the PD form for x>-+0. The "conventional" choice is 

;\. = 1. It leads to nonsingular behaviour ( see B
0 

fit from 

ref. [ 13)) of PD when x>-+O. Another value A= 1+o ~3/2>1 has 

been obtained in the papers [4] as the sum of leading powers 

of ln(1/x) in all orders of PT. We note, that for the latter 

choice there is the unlimited increase of PD, which leads.to 

a conflict with unitarity, i.e. too rapid s~Q2 /x dependence 

41 We use the PD parametrization for all x in the following 
1-;\. V -form~ x (1-x) (1-;x), 

4 
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:" 

·' 

of high energy cross sections (see B_ fit from ref. [13)) 

violates the Froissart bound [14). 
The PD behaviour for the value o=1/2 was analysed earlier 

(see [10,11)). We use o~0 following [7] - the paper, which 

stimulated this invistigation. We note also that this choice 

agrees to the present experimental data for pp and pp total 

cross-sections (see [15,16)) 5 > and model of Landshoff and 

Nachmann pomeron [17) with exchange of the pair of a 

nonperturbative gluons, yielding o=0.0B6. 

The values of moments M (;>,, Q2
) are singular when ;\.=1 (see 

a 

Appendix). To avoid troubles we can rewrite the eq.(4) in the 

form 

f (x,Q2
) = x 1 -A M (X,Q2

) + O(x), 
a a 

(5) 

where we include the terms ~(1) exactly. 

X=1+c depends on both A=1+o and x variables 

The new value of 

1/c = [1 _ re 1+v)r(1-o) o] r(1+v-o) x /o 

and is regular when o>-+0 

1/c = ln(1/x) - (~(1+v) - ~(1)) • 

Here r(1+v) and ~( 1+v) are Gamma- and Eulier 

functions,respectively. 

1. Let us give the analysis of Q
2 -evolution of PD in the LO 

of PT. The values of AD61 in the LO / 

,:~) O(c), ,<o> = -(16/3)T (1 - 13c/12) 
qg F 

, 101 = -BC (1/c - 3/4), 
gq F 

Teo> = -BC (1/c - 11/12) +(16/3)T 
gg A F 

lead to the following meanings of the parameters of eq.s (3) 

and (4) 

51 In ref.[16) one shows that the high energy pp data have a 

linear lns behaviour. 

6 >Hereafter symbol Xis omitted in moments with "number" X. 

5 



', 

f + = ( 2T /3C ) E; [< C /C ) f + f .] , f = f - f + 
q r A r A q g q q q 

f = ( C /C ) [< 2T /3C ) cf - f ] , 
g FA FA g q 

f ·= f - f g g g 

,•= -SC (1/c - 11/12) +(16/3)T (C -C )/C, ,- = (16/3)T C /C · A r Ar A rr A 

As one can see, the well-know rapid growth of the PD is given 

by"+" component. 

Let us begin our analysis with the gluon distribution. 

Indeed, a gluon distribution is much larger than the quark one 

for small x (see[7]). Hence, the gluonic part of eqs. (3)-(5) 

can be represented approxirnatelly as follows 

fCO) (X, Q2) 
g 

d• 
::: {fco>(x,Q2) + (C /C )fco>(x,Q2)}[P (Q2,Q2)] 

g O FAq O O 0 

d• 

:::< o l ( X' Q~) [po (Q2' Q~)] • ( 8) 

The situation for quark distribution is more complicated 

d+ d-

<o> (x, Q2)=<0> (x, Q~) (2Tr/3CA) c{ [po(Q2' Q~)] -[po(Q2' Q~)] } 

d- d+ 

+f:o>(x,Q~){[p0(Q
2

,Q~)] -(2TrCr/3c:>c[p0(Q
2

,Q~)] } 

The v~lue of c(1/p) 11 c is singular for c>--+0 and p<1 and gives 

the basic contribution. Hence, the quark distribution for 

Q2>Q2 has the simple form 
0 . 

f:o>(x,Q2)=(2Tr/3CA)c{f:
0

>(x,Q~)-(Cr/CA)f:
0

>(x,Q~)} 

d• 

[ 
2 2 ] CO) 2 P0(Q ,Q0) ::: (2Tr/3CA)c fg (x,Q ), (7) 

as .•«o and ,->O for small x. Thus, for small x the forms of 

quark and gluon distributions are close. This is confirmed 

numerically by the analysis of the paper [7]. 

6 
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2. For simplicity in the NLO analysis we confine ourselvef 

here by the basic (i.e. ~1/c) contributions only. The full 

contributions of the NLO coefficients can be found in 

the Appendix. 

The values of the NLO anomalous dimensions 

,ct)= -SC T (40/9)/c + 0(1), 
qq r r 

,ct>= -SC T (40/9)/c + 0(1) 
qg A F 

,ct>= -SC (C - 40/9T )/c + 0(1), 
gq r A r 

,<t>= (16/3)T (23C /3- SC )/c + 0(1) gg r A r 

lead to the following· meanings 

[ 8] ) 

of the "+" and "-" .AD (see 

• = ,<t) 
qq 

♦- ( 1) 
• = • gg 

(C /C );1
1l + 0(1) = 0(1), 

F A qg 
.-•= 0(1) 

- ,<t> - [(3C /2T )(1/c +1/6) - 1] ,<ll + 0(1) = qq A F qg 

-(3C /2T )/c , 11 > + O(1/c) = (160/3)(C
2
/c

2
) + O(1/c) 

A F qg A 

(8) 

, .. = ,<ll + (C /C );11 > + 0(1) = (16/9)T (23C -26C )/c + 0(1) gg r A qg r A r 

and the NLO parameters of eq.(3b) 

K!ql= O(c), K!gl= 0(1) 

Klql= -(20C /3c) + 0(1), Klgl= (40/9)(C T /C) + O(c). 
+ r r A + A 

The addition of NLO corrections changes the eqs. ( 6) and ( 7) 

(we take into account only the new variables, including terms 

~1/c): 

d. 

f 11 )(x Q2)={f 11 >cx Q2)+(C /C )f 11 )(x Q
2>}[ (Q

2 
Q

2
)] g ' g ' 0 f A q ' 0 pl ' 0 

{ 1 + [o: (Q2)-o: (Q 2)] z} 
1 1 0 + 

7 

(9a) 



f 111 (x,Q2 )=(2T /3C )c{f 111 (x,Q2)-(C /C )f 111 (x,Q2)} 
q f" tA g O f" A q 0 

{9b) 
d+ 

[p1(Q2,Q~)] {1 + [a {Q2)-a {Q2)] 
1 1 0 

z 
♦ 

- a1 (Q2)K:q1}. 

Following the paper [7] consider the change of Q2-evolution 

of PD with NLO corrections. We think, analogously to paper 

[7], that the PD in the LO and ones in the NLO are equal for 

. Q2=Q2. The LO coupling constant a (Q2) and NLO one a (Q2) can 0 0 0 1 0 
be connected· by two different ways: 

a) a ( Q2 
) = a (Q

2
) , 0 0 1 0 {10) 

as it was done in the paper [7], and 

b) A
0 

= A
1 

( 11b) 

that is close to the relation discovered by BCDMS group (see 

[18] and review [19]). 

Let us begin with the gluon distribution. The ratio of LO&NLO 

contribution and LO one depends only on coefficients 

calculated in PT and has the following form 

f111(x,Q2)/f101(x,Q2)= 
g g 

d+ 
[p1o(Q2,Q:)] {1 + [al{Q2)-al{Q:)] z.}, (12) 

where 2 2 2 2 2 2 
P 1 / Q ' Qo) = P / Q ' Qo) /Po ( Q ' Qo) · 

The latter term in r. h. s. of the eq. ( 12) reduces the LO 

contribution as Z >O and a (Q2)<a (Q2) for Q
2

>Q
2

• The former 
+ p p O 0 

term gives distinct contributions in each of two cases 

mentioned above. 

In case (a) the value p (Q2,Q2) has the following form 10 0 

2 2 2 2 
p 1 o ( Q ' Qo) = a 1 ( Q ) I a o ( Q ) · 

8 

1,) ,j 

J 
I 
.I 

l 

I 

Expanding the coupling constants a (Q2) up to ones 
k 

(k=O,1), we get 

( 
2 2 

Pio Q ,Qo) .= 
a1(Qo2) 

{1+a1(Q:)ln(Q2/Q:)[~0+~1a1(Q:)]} 

{1+~0a0(Q~)ln(Q
2
/Q~)} 

ao(Qo2) 

Using the eq. (10), we obtain that 

( 
2 2 

p 1 o Q ' Qo ) - l = 
-~ a 2(Q 2)ln(Q2/Q2) 

1 1 0 0 

{1+a1(Q~)ln(Q2/Q:)[~0+~1a1(Q:)]} 
= 

2 2 2 2 
- ~1a1(Qo)a1(Q )ln(Q ,Qo) 

2 
ak (Qo) 

is negative for Q2>Q~. Hence the former term increases the LO 

contribution as d+>O. Thus, the full NLO contribution reduces 

the LO growth of gluon distribution at small x (see paper 

[7]) weakly. 

In case (b) we get for value p (Q2,Q2): 10 0 

2 2 
Pio (Q • Qo) = 

ln(Q2/A2) 
0 1 

ln(Q2/A2) 
1 

[1-L(Q2/A2] ln(Q2/A2) 
1 0 -----

[1-L(Q2/A2] ln(Q2/A2) 0 1 0 0 

From the eq.(11) we obtain, that 

p (Q2 Q2) _ 1 = L(Q2/A2) _ L(Q2/A2) 
10 ' 0 0 1 1 

is positive for Q2 >Q~. Hence, the former term decreases the 

LO contribution as d+>O. The full NLO contribution reduces 

the LO growth of gluon distribution at small x strongly (see 

[19] and references of it) 

Analysis of Q2-evolution of quark distributions in the LO&NLO 

of PT can be given analogously. The difference of quarks and 

qluon Q2-evolutions, which has been discovered numerically in 

the paper [7], is given by the term "- o: (Q2)KCql,. from 
1 ♦ 

eq.(9b). The value of K1q1 is large and negative. Hence, the 
♦ 

second term of eq.{9b) can lead to enforce the growth of the 

9 



quark distribution. 

latter terms of 
• 

distribution. Such 

In case (a) both the former and the 

eq. ( 9b) lead to increase of quark 

an increase at x=10- 4 is about 30% ( see 

paper [7]). In case (b) these terms give contributions of 

opposite sign and can lead to weak dampening of LO growth of 

the quark distribution (see [19)). 

4.Summary 

In the paper [7] GLAP equation (1) has been analysed. As 

one has shown, the LO kernel functions P101 (x) and NLO 
ab 

ones P 111 (x) have the form 
ab 

2 
p<o>(x)=C 1+x + 

qq F 1-X 

P 101 (x)=2T [x2+(1-x) 2
] 

qg F 

< 1 l 20 P (x)=2T C 9 + ... 
qq F F X 

• < 1 l 20 P (x)=2T C 9 + ... 
qg F A X 

p 101 (x)=C [1+(1-x) 2 ]/x 
gq F 

(1) 20 P (x)=2T C (- 9 ) + C C /x + ... 
gq F F X F A 

(0) 1 1 P (x)=2C [- + -1 - ]+ ... 
gg A X -X 

< 1) 20 2 P (x)=2T [- 9 C + 3 C ]/x + ... 
gg F A F 

and lead to the following consequences: 

1) The NLO kernel functions P111 (x) and P111 (x) contain the 
qq qg 

singular 1/x terms whereas the corresponding LO kernel 

functions P 101 (x) and p 101 (x) do not. Hence, the evolution of 
qq qg 

the quarks distributions at small x will be completely 

one. The NLO dominated by the 

kernel functions 

terms and lead to 

x. 

NLO kernel 

P11l (x) and 
qq 

rather 
p< 1l (x) 

qg 

growth of the .quark 

2) The 1/x terms in p<ll(X) and 
gg 

than LO 

have the positive 1/x 

distributions at small 

p(ll(X) are large in 
gq 

magnitude and opposite in sign with respect to the 

corresponding terms in the LO kernel functions. Thus, the 

well-know rapid growth of gluon distribution at small x seen 

in the usual LO calculations will be dampened by the 

inclusion of NLO terms. 
The numerical analysis of eq. (1), which has been given also 

in the paper [7), confirmed the above conclusions. 
• (0) (0) 

It 1s well-know (see [8]),however, that only product 'qg 'gq 

10 

but not absolute values of AD , 101 and ; 101 (and the kernel 
(0) (0) qg gq 

functions P (x) and P (x), respectively) is essential for 
qg gq 

the physical quantities. So we can change the values of the 

LO AD keeping product ; 101
,

101 unchanged. For simple example, 
qg gq 

we make the replace 

• qg 

(0) 
>-+ - • qg 

( 0) • gq 
(0) >-+ - 'gq 

(0) 

and the same for corresponding NLO AD (and LO and NLO kernel 

functions p< 11 (x) and P111 (x)). All above results of our 
qg gq 

analysis do not change, while the singular part of the 

and the one 

new 

of kernel function P111 (x) becomes negative 
qg 

p< 11
(x) does positive. Hence, the simple conclusions given in 

gq 

the paper [ 7] (and considered above),which do not take into 

account the connection between gluons and quarks in GLAP 

equation, are not quite correct. 

As one can see from our analysis, only the NLO AD ,< 1 > and 
(1) • (1) (0) qg 

; (or rather, the ratio ; /, (see r. h. s. of eq. (3c)) 
gg qg qg 

give the basic contribution (whilest we use "conventional" 

form of PD) to PD Q2-evolution. The AD ; 111 is the basic part 
gg 

of the value Z and leads to decrease of the LO gluon 

distribution. T;e AD ; 111 gives two basic contributions: 
qg 

decreases the value Z and leads to large and positive value 

of KCql and, henc;, to increase of the LO quarks 

distributions. Thus, there is essential influence of AD ; 111 
gg 

and ; 111 on a quark and gluon distributions, respectively. As 
qg 

for ,c 11 and ,c 11 their contribution vanishes as the AD 
gq qq 

;
111 is absent in eq.(8) and the basic (i.e.cx1/c) 
gq 

contribution of AD ,<tl is canceled by one of AD ; 111
• 

qq qg 

The consequences 1) and 2) given above have been reproduced 

numerically only due to "good" numerical values of AD and 

"successful" choice of conventional ,<o> and ,co>. Indeed, if 
(1) qg gq 

the AD, were much larger its normal meaning.then both the gg . 

LO gluon and LO quark distributions would be dampened by 

inclusion of NLO terms. On the other hand, if an inequality 

;
111 2:9 0 <

1 > /4 were hold then both PD might be enforced by 
qg gg 

additional NLO contribution. 

We would like to pay attention also to the following fact. 

Rapid growth of the gluon distribution at small-x seen in the 

11 



usual LO calculations is dampened strongly by inclusion of the 

NLO terms in case bf close LO and NLO values of QCD parameter 

A. It's confirmed by present data. Such a dampening of the LO 

increase due to higher order effects competes with 

nonperturbative "saturation" effects (see [20]) and could 

replace (at least, partially) it. 

In conclusion, we note also, that we obtained the simple 

· form of the coefficients for "+" and "-" components of 

Q2 -evolution of PD moments using the new projectors ~± (n) 
ab 

•(see eq.s (2) and (3)). 

Appendix 

The values of NLO AD have the form71 

7~~
1
= scFcc4-2cF> [2c<3>-3cc2>+13/4] -

(32/9)[2c(3)-3C(2)+13/4] = 2.sss 

7
111 = / 11 + 16C T [-(20/9)/o + 317/54] = 
qq NS F F 

7~~ 1+ (32/3)f[-c20/9)/o + 311/s4] = c2s60/21>[-110 + 2.669] 

7 111 = -16T [c +c (c20/9)/o - 67/9 + (4/3)CC2>)] ~ 
qg F F A 

-24f~20/9)/o -7+ (4/3)CC2>)] = -160[110 - 2.163] 

7 111 = -BC [(c +(4~/9)T )10 - C (c(3)-(37/3)C(2)-4793/108) 
gq F A F A 

TF(1+(B/3)C(2)) + 2cF(3C(2)-2C(3)-9/2)] ~ 

-32[(1+(20/27)f)/o - (25/9)C(3) - (29/3)C(2) - s22s/1os 

- (f/6) (1+(8/3)((2))] = (2816/27) [110 + 36.28] 

7
111 = 16C 2 (4C(3)+(11/3)C(2)-773/108) + 16T 
gg A F 

71 The symbols~ and= transform SU(N) group coefficients to 

QCD (i.e. for N=3) and QCD with f=4 ones, respectively. 

12 

[c4 ((23/9)/o-B6/21) - cF(c2/3)/o-61/1s)] ~ 

16[9(4C(3)+(11/3)C(2)-773/1os) + f((67/1B)/o-455/1os)] 

= (2144/9) [110 + 1.094] 

and lead to the following"+" and"-" ones 

7--= 7
111

+ 16C T [(4/3)((2) - 47/54 + C /C +(23T )/(9C )-
Ns F F F A F A 

(SBC T /27C 
2
)] ~ 7

111 + (32/3)f[(4/3)C(2)-23/54+(389/1458)f] 
F F A NS 

= 123.5 

7-•= (16C T /C 
2

) [c 
2
+(2/3)T (C -2C >] ~ (32/81)f[9+f/9] FF A A FA F 

= 14.92 

7•-= (16C 
2
/o) [c10/3o)+2C(2)- 191/18 +(3C /2C )+T /(3C )+ 

A F A F A 

(14CFTF/9c/>] ~ (144/o) [<10/30)+ 2((2) - 179/18 + (41/486)f] 

= (1440/30) [110 - 1. 895] 

7••= 16 [c4
2

(4C(3)+(11/3)C(2)-773/1os) 

86/27) - cFTF(c26/9)/o+(4/3)C(2)-547/54) 

+ cATF(c23/9)/o-

- C 
2

T /C 
F F A 

+ (SBC 2 T 2 )/(27C 2
) 

F F A 

(11/3)((2)-773/108) + 

(2CFTF 
2
)/(3CA)] ~ 16 [9 (4C(3)+ 

f(<103/54)/o+(B/9)C(2)- 455/1os) + 

c10;21s1)f
2
]= (1236/27) [110 + s.os2] 

and to the following values of NLO coefficients of equations 

(10): 

Z = 6.826, 

K<ql= 0.6220, 

z. = 11.617 [110 + 1.022] 

K~gl~ -3 [1+f/B1] = -3.148 
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K~ql£;; -20 [1/0+(3/5)((2)-179/60+( 151/1620)f] ::: -20 [1/o'--1. 623] 

• 
K<gl£;; (80/27)f::: 11.852 

+ 

Note here, that the corrections cx0(1) to structures cx1/o 

are small for all NLO coefficients. The exception is AD 7
111 
gq 

However, it is contained only with factor o in all "+" and 

"-" parts of AD. 
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· Korn Kos A.B. E2-92-361 
noseAeHIAe napTOHHblX cpyHKUIAH pacnpeAenettlAH 
a o6nacrn ManblX 3Ha4eHHi1 6bepKeHoscKoi1 nepeMeHHOH x 

AaH aHclfll-13 napTOH~blX pacnpeAenetrni:i B 06~acr'1-1. Maflbl)( 3Ha4eHIAH 
nepeMeHHOH, 6bepKeHa x: noKa3aHO, KaKIAM ·o6pa_3OM' 0 2 ·3BOfllOUIAA 
napTOHHblX pacnpeAeneHIAH IA,3MeHAeTCA nplA BKfll04eHIAIA HeBeAYLUIAX 

: nonpaBOK K aHOMaflbHblM pa3MepHOCTAM oneparopOB B1t1nbCOHa. AnA 
CTaHA8PTHOrO, T.e. HeclAHrynApHoro nplA. X + 0, Bbl6opa napTOHHblX pac- -

. npeAefleHIAH 3TO IA3MeHeHIAe onpeAenAeTCA TOflbKO ABYMA (1,13 4eTblpex) . 

aHOMaflbHblMIA paJMepHOCTAMIA ·r'~J (n) IA 'Y/~;(n) . _ np1t1BeAeHbl TaK>Ke, 
6onee npoCTble Bblpa>KeHIAA, no cpasHeHIAIO co CTaHAapTHblMIA, AflA KO3cp
cf:>1t1UIACHTOB B ypasHeHIAAX 0 2 -aaBIACIAMOCTIA MOMeHTOB napTOHHblX pac-
np·eAeneH1t1i1. 

Pa6oTa BblnOflHeHa B na6oparnpl-'iwceepXBblCOKHX 3Heprni1 0111Alt1. 

flpenpmq Om.e,11111e11110ro HHCntryra 11:iepllblX HCC.1C;lOBam1if. Jly6Ha ·t992 '. · 

Kotikov A.V . E2-92-361 
. The Small-x Behaviou·r of Parton Distribution Functions 

. . 

The analysis of parton distributions· for the small-x region is given. 
It is shown how the inclusion of the next-to-leading corrections to the 

·anomalous dimensions of the Wilson operators changes the behaviour 
of 0 2 ~evolution of parton distributions. For "conventional'' (nonsingular 
for x + 0) choice of parton distributions this change is determined by the 
values of anomalous dimension_s _ r'~& (n) ·· and r'~ 1 (n) only. We obtain 

•, also the new simple form for -the coefficients of 0.2 -evolution. of parton 
. distribution moments.. . . 

· The. investigation has been performed at the Particle Physics Labora
tory JIN fl.· 
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