


1. Introduction

Recently the small-x behaviour of the structure functions
(SF) of deep inelastic scattering (DIS) was considered in
connection with possibility of experimental studies on new
powerful colliders HERA [1] and LEP*LHC [2]. Analysis of SF
gives main information about the behaviour of parton (quark
and gluon) distributions (PD) of nucleon. The knowledge of PD
is a basis of the study of other processes.

At present both the SF and PD cannot be calculated
analytically but their 0°-evolution (for large 0°, where
perturbation theory (PT) is applied) only. Perturbatively,
both the leading order (LO) and next-to-leading order (NLO)
of 0®-evolution are obtained from Gribov-Lipatov-Altarelli-
Parisi (GLAP) equation [3]

d

S £ (x,0Q°) = P(x,a)_ % f (x,Q%), (1)
dln(Qz/uz) a ab b

where fn(x,Qz) is the distribution function of parton a (i.e.
g and g for quark and gdluon, respectively), the symbol x
denotes a convolution integral in the -fractional momentum
variable for the parton involved and the kernel'’

P(x,a) = « [‘O’(x) + aP (X)) + ;..]

is obtained from PT.

GLAP equation is based on summing large logarithms of"Q2 in
any orders of PT. However in HERA region (10 %<x<1072) the
summation of large up 1/x logarithms is important also This’
problem was solved in the papers [4], where Lipatov-Kuraev-
Fadin-Balitsky (LKFB) equation was obtained. Resently
(see[5]) ©both GLAP and LKFB equations = were solved
numerically. It was showed that these equations give similar
results in large region of 0° and small x:

"Hereafter contrary to the standard one we use the coupling
a(Q®) = o (Q%) /4n. '
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107%<x<10"? and 10 GeV’<@®<10%ceV?.

Hence, the standard PD parametrizations (see recent review
[6]), which are based on GLAP equation, can be used in this
region.

2, Qz- evolution of PD moments

In the present paper we analyse sea quarks and gluon
distributions at small-x in LO and NLO of PT. We reproduce
analytically the quality of the change of the small-x PD
behaviour discovered in the paper [7]. We give the simple
values of LO and NLO parts of the kernels P(x,a)ab(dr rather,
the anomalous dimensions (AD) of Wilson operators) of eq.(1),
which lead to this change. ‘

We use our knowledge of the Q®-evolution of the PD moments?’

1
M (n,0%) = Jax ™' £ _(x,Q%).

o]

" Actually, the GLAP equation for the moments (hereafter we use
the following definition {a,b} = {q,qg})

d 2 2 ’

—— M (n,Q%) = 7_(n,a) M (n,Q"%) (1a)
dln(Qz/uz) a ab b -

"with

7, (n0) = a[rig'(n) + o z‘::’(n)]

can be solved analytically by a diagonalization of AD matrix
7(n,a) (see, for example, [8])m

M (n,Q%) =) M (nQ%).
1=% 7’

Multiplicatively renormalizable parts H; l(n,Qz) of the PD
moments have the following form

?)We use PD multiplied by x.
?)We consider the singlet PD only, as the contribution of
nonsinglet one is small when x>-0.
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i 2 (2
M (n,Q%) =)  £,(n) M(nQD. (2)
! b=q,9
where for a # b

(0) _ (o
£ my =1+ ¥, (n) -7 (n)]
Eaa n) = 7 t _ 7n¢
" (2a)
)]
+ _ ab (n)
and £, (n) = —— %
¥ - 7
n n
¥ + _ F
with Eaai(n) =1- g tm, gaa (n) = gbb (ny and
t (0) (o)
= + n) *
el DA CORIEARCY
2 (0) (o) 12
(0), y_ (0) n n)] ]/z
[l - a0 s ar _
Its Qz—evolution can be represented in the form [8]
(p) 2 {p) 2 -
M7 (n,Q )/Ma,i(n,Qo)
a'’ ’
2 (p) 2 .2 3
(o, @ 0)) " {1+ e )} (3)
(p=0 for LO and p=1 for NLO, respectively) -
where
¢! (n,@*0)) = 0 and
a,l1 (3a)

¢! (n,@%, @)= «, () {zn,i [pl(Qz.Qz)—i] +
(af-d}) -

ke ([p@d1] " - o, @ 0D}

i
with pp(Qz,Qz) = ap(Qz)/ap(Qz) and a' = 7./(28)

n

1 2,,.2
and also ap(Qz) = {1- LP(Q /Ap)}

2 2
B, 1n(Q%/A%)

1nln(t
with L (t)=0 and L, (t) = (31/32) ‘ni'n'?n'(cj) ’



The NLO coefficients of eq.(3a) have the following form (for
simplisity the index n is omitted here)

z, = ("% 7%6,/8,) /28,

. (3b)
X ¥
K(q) = ¥ -, K(q) = K(q) qu
n,t Tt _ 7.+ n, n, ¢ E;
where 19
7‘“ - Z 1 (1) . .

- . Eab Tba {i, j} = {+,-})
a,b=q,g
(3c)

1) _ 1 (1) ] (1) 3
v = £ - + &) e (1)
Y - £ g+ gl el ) all

a=q,9g
for i # j-

. Here Bo=(11cA_4Tr)/3 and Bl=(34Ci—ZOCATF—IZCFTF)/3 are the
first two coefficients of a-expansion of Gell-Mann-Low
function.

3. Small~x behaviour of parton distributions

Assuming a Regge-like behaviour of the PD for x»>-0, we can
obtain for them the following form (see[9—12])4)

£,(x,0) = x'"* M (2,0%) + 0(1), (4)

where A 1is the intercept of a pomeron. The value of A
determines the PD form for x>-»0. The "conventional" choice is
A = 1, It leads ;o nonsingular behaviour (see B, fit from
ref.[13]) of PD when x>-0. Another value A= 1+3 =3/2>1 has
been obtained in the papers [4] as the sum of leading powers
of In(1/x) in all orders of PT. We note, that for the latter
choice there is the unlimited increase. of PD, which leads-to

a conflict with unitarity, i.e. too rapid s«Q°/x dependence

)
We use the PD parametrization for all x in the following
form o x'"*(1-%)Y(1-7x)-

of high energy cross sections (see B_ fit from ref.[13])
violates the Froissart bound [14].
The PD behaviour for the value 3&=1/2 was analysed earlier
(see [10,11]). We use 320 following [7] - the paper, which
stimulated this invistigation. We note also that this choice
agrees to fhe present experimental data for pp and pp total
cross—-sections (see [15,16])5) and model of Landshoff and
Nachmann pomeron [17] with exchange of the pair of a
nonperturbative gluons, y1e1d1ng 5=0.086.
The values of moments M (A,Q°) are singular when a=1 (see
Appendix). To avoid troubles we can rewrite the eq.(4) in the
form

£.(x,Q%) = x'" M (R,@) + 0(x), (5)
where we include the terms o«0O(1) exactly. The new value of
A=1+e depends on both A=1+8 and x variables

_ r(1+v)r(1-s) .8
1/5—[1——ﬂ—1mr_x]/5

and is regular when 3>-0
1/e = In(1/x) - ([#(1+0) - un)-

Here I'(1+v) and ¥(1+v) are Gamma- and Eulier

functions, respectively.

1. Let us give the analysis of Q°-evolution of PD in the LO

of PT. The values of AD®’ in the LO v
+° < o(e), #® = _(16/3)T_(1 - 13e/12)

qq qg F

29 = _gc (1/e - 3/4), 7% = -8C (1/e - 11/12) +(16/3)T

gq F gg A F

l1ead to the following meanings of the parameters of eq.s (3)
and (4) ’

S'in ref.[16] one shows that the high energy pp data have a

linear Ins behaviour.

¢)jereafter symbol A is omitted in moments with "number" A.
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= (ZTF/3CA)¢[(CF/CA)fq + fg], f'=f - f ‘»

T= (CF/CA)[(ZTF/:&CA)cfg - fq], fr*'=Ff -1

+

? = —8CA(1/€ - 11/12) +(16/3)TF(CA—CF)/CA, ¥ = (16/3)TFCF/C{

As one can see, the well-know rapid growth of the PD is given
by "+" component.

Let us begin our analysis with the gluon distribution.
Indeed, a gluon distribution is much larger than the quark one
for small x (see[7]). Hence, the gluonic part of egs. (3)-(5)
can be represented approximatelly as follows

+

d
O AN CI S I CRR LA e N XTI )

-

§

(xo)[p(o o)]- (8)

(0)

The situation for quark distribution is more complicated

+ -

d d
£ @)= (@ 2t /3c ) e{ [y (@0 )| - [po@ )]

a” a’
e 02 {[py(@% )] —(ate achrefpy (et )] } -

1/€

The value of e(1/p) is singular for €>0 and p<1 and gives

the basic contribution. Hence, the quark distribution for
Q2>Q§ has the simple form

££00 x, Q%) =(21, /30, ) e{r L (x, 02 /e (1, Q) |

[po(oz.oﬁ)]d

as 7#'«0 and ¥ >0 for small x. Thus, for small x the forms of

+

(o)

<2T /3c)e £ (x,0°%), (7

quark and gluon distributions are close. This is confirmed
numerically by the analysis of the paper [7].
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2. For simplicity in the NLO analysis we confine ourselves
here by the basic (i.e. «1/e) contributions only. The full
contributions of the NLO coefficients can be found in
the Appendix.

The values of the NLO anomalous dimensions
(1)

¥ '= -8C_T (40/9)/e + 0(1),
aq F F

(1) _

-8C T (40/9)/e + 0O(1)
qg9 A F

(1)

vgq = —SCF(CA— 40/9TF)/e + 0(1),
'Y= (16/3)T_(23C /3~ 8C_)/e + O(1)
99 F A F
lead to the following' meanings of the "+" and "-" AD (see
(81
y = Y - (c /e + o(1) = o), ¥ = 0(1)
qaq F' A" "qg

+- (1) (1) (1)

= - - - . 0O =
v L L [(3CA/2TF)(1/C +1/6) 1] Ty + 0(1)

(8)

)

-(3C,/2T,) /e 7;; + 0(1/¢) = ('160/3)(cf/e2) + 0(1/¢)

AR 7(1) + (C /C )T(l
g9 F' A" qg

 + 0(1) = (16/9)T_(23C,-26C_)/e + 0(1)

and the NLO parameters of eq.(3b)
k"= o(e), k'9= 0(1)

k{¥= -(20c,/3c) + O(1), k9= (40/9)(C T /C,) + O(e).
The addition of NLO corrections changes the egs. .(6) and (7)

(we take into account only the new variables, including terms
«1/€):

+

d
£ (x, @M -{t £ @ e(e e ad) o, 0 ) |

{t + 1o @ -a, (0" z,} L (o)



£ (@) -(2T, /3¢, )e{e (. Q- (c /e 1l (. d) }

(9b)

+

d
[p@d] {1+ teq@-a,@) 2z, - o @}

Following the paper [7] consider the change of Qz—evolution

"of PD with NLO corrections. We think, analogously to paper

[7], that the PD in the LO and ones in the NLO are equal for

-QZ=Q§. The LO coupling constant ao(Qi) and NLO one al(Qs) can

be connected by two different ways:

a) a (@) = « (), (10)
as it was done in the paper [7], and

b) A,o = A , (11b)

that is close to the relation discovered by BCDMS group (see
[18] and review [19]).

Let us begin with the gluon distribution. The ratio of LO&NLO
contribution and LO one depends only on coefficients

calculated in PT and has the following form

£ (x,0%) /1% (x,0%)=

g9 9
+

d
[pro@ ] {1+ 1@ -a @12} a2

where  p, (Q°.Q]) = p,(Q°,Q))/p (Q°,Q)) -

The latter term in r.h.s. of the eq.(12) reduces the LO
contribution as Z‘>0 and ap(Q2)<ap(Qz) for Q2>Qz. The former
term gives distinct contributions in each of two cases
mentioned above.

In case (a) the value plo(Qz,Qz) has the following form

2 2 2 2
P, (%, Q%) = « (0% /a (%)

Expanding the coupling constants ak(Qz) up to ones ak(Qz)
(k=0,1), we get

2
a (Q,7)
{1+ (Q2)1n(Q*/Q2) (B +8, @, (Q2) 1}

2 2
P,,(Q,Q,7) =

{1+8,0,(02)1n(Q*/Q2) }
@, (Q,%)

Using the eq.(10), we obtain that

-8, %(9,*)1n(Q*/Q})
{1+a, (Q2)1n(Q*/Q2)[B +8,a, (Q2) 1}

2 2 ‘
P, (@ Q))-1 =

- B8,a,(Q))a, (0°)1n(Q%, Q7))

is negative for QZ>QE. Hence the former term increases the LO
contribution as d'>0. Thus, the full NLO contribution reduces
the LO growth of gluon distribution at small x (see paper
[7]) weakly.

In case (b) we get for value p1o(Qz’Q§):

1n(Q}/A7) [1-L(Q°/AZ] 1n(Q*/A})

p,o(Q%Q)) =
0 1n(Q/AY) [1-L(Q2/AZ] 1n(QL/AY)

From the eq.(11) we obtain, that
p,,(Q%,0%) -1 = L(Q}/A?) - L(Q%/AD)

is positive for QZ>Q§. Hence, the former term decreases the
LO contribution as d'>0. The full NLO contribution reduces
the Lovgrowth of gluon distribution at small x strongly (see
[19] and references of it)

Analysis of 0*-evolution of quark distributions in the LO&NLO
of PT can be given analogously. The difference of quarks and
qluon Qz—evolutions, which has been discovered numerically in
the paper [7], is given by the term "- di(QZ)K:q)" from
eq.(9b). The value of K'¥

+

second term of eq.(9b) can lead to enforce the growth of the

is large and negative. Hence, the

9



quark distribution. In case (a) both the former and the
latter terms of eq.(9b) - lead to increase of quark
distribution. Such an increase at x=10"* is about 30% (see
paper [7]).
opposite sign and can lead to weak dampening of LO growth of

the quark distribution (see [19]).

In case (b) these terms give contributions of

4. Summary

In the paper [7] GLAP equation (1) has been analysed. As

one has shown, the LO kernel functions Pii’(x) and NLO
ones P(i)(x) have the form
2
(0) 1+X (1) 20
= — een ==+ ...
qu (x) CF == + (x) 2T C 9%
0
‘°’(x) =2T_[x*+(1-x)°] “’(x) =2T C, g—x + ...
PLﬁ’(x):CF[1+(1—x)2]/x (l)(x) 2T o] (— 3% ) + C o] /x +.
20
Lo (%)= =2 [ + 105 1+---  PL(w)=2T[- 52 c, +2c1/x ...
and lead to the following consequences:
1) The NLO kernel functions P(l)(x) and P(l)(x) contain the

singular 1/x terms whereas the corresponding LO kernel
functions P(O)(x) and P(m
the quarks dlstrlbutlons at small x will be completely
dominated by the NLO kernel rather than LO one. The NLO
Kernel functions P(“(x) and P(“
terms and lead to growth of the quark distributions at small

(x) do not. Hence, the evolution of

(x) have the positive 1/x

X.

2) The 1/x terms in (1)(x) and P

magnitude and opposite 1n sign w1th respect to the

(1)(x) are large in

corresponding terms in the LO kernel functions. Thus, the
well-know rapid growth of gluon distribution at small x seen
in the usual LO calculations will be dampened by the
inclusion of -NLO terms. ’

The numerical analysis of eq.(1), which has been given also
in the paper [7], confirmed the above conclusions.

(0)
It is well-know (see [8]),however, that only product 7 V¥

9qd

10

0} 0)

but not absolute values of AD 7
(0)

and 7 (and the kernel

(x) and P(O)(x), respectlvely) is essential for
the phy51ca1 quantltles So we can change the values of the

LO AD keeping product 7 7;?

functions P

unchanged. For simple example,
we make the replace

0) (0) (0) (o)
¥ - - 7 , v - - 7
ag ag 94 gq

and the same for corresponding NLO AD (and LO and NLO kernel

functions P;;)(x) and P(‘)(x)). All above results of our

analysis do not change, wh11e the singular part of the new

Kernel function P(”

(1)

(x) becomes negative and the one of
(x) does p051t1ve Hence, the simple conclusions given in
the paper [7] (and considered above),which do not take into
account the connection between gluons and quarks in GLAP

equation, are not quite correct.

As one can see from our analysis, only the NLO AD 7;;) and

7;;) (or rather, the ratio vt)/vgg) (see r.h.s. of eq.(3c))

give the  basic contribution (whilest we use "conventional"
form of PD) to PD Q°-evolution. The AD 7(”
of the value Z and leads to decrease of the LO gluon

distribution. The AD 7(” gives two basic contributions:

is the basic part

decreases the value Z+ and leads to large and positive value

of g'e and, hence, to increase of the LO (quarks

+
distributions. Thus, there is essential influence of AD 7(”

(1)

and qu on a quark and gluon distributions, respectively. As
for 7;;) and 7;:) their contribution vanishes as the AD
7;;) is absent in eq.(8) and the Dbasic (i.e.«1/g)

(1)

contribution of AD 7 aq “K

is canceled by one of AD 7

The consequences 1) and 2) given above have been reproduced
numerically only due to "good" numerical values of AD and
"successful" choice of conventional 7(0) and 7(0). Indeed, if
the AD 7;;) were much larger its normaf meanlng,then both the
LO gluon and LO quark distributions would be dampened by
inclusion of NLO terms. On the other hand, if an inequality
r;;’ “’/4 were hold then both PD might be enforced by
addltlonal NLO contribution.

We would like to pay attention also to the following fact.

Rapid growth of the gluon distribution at small-x seen in the

11



usual LO calculations is dampened strongly by inclusion of the
NLO terms in case bf close LO and NLO values of QCD parameter
A. It's confirmed by present data. Such a dampening of the LO
increaser due to ' higher order effects competes with
nonperturbative "saturation" effects (see [20]) and could
replace (at least, partially) it.

In conclusion, we note also, that we obtained the simple
"form of the coefficients for "+" and "-" components of
@°-evolution of PD moments using the new projectors Efb(n)
-(see eq.s (2) and (3)).

Appendix

The values of NLO AD have the form'’

i

T;;)_—_ 8CF(CA—2CF) [2C(3)—3C(2)+13/4] o

(32/9)[2((3)-3{(2)+13/4] x 2.558

I

1;;’_ 1;;)+ 160FTF[-(20/9)/5 + 31—,/_54}E
1;;)+ (32/3)f[—(20/9)/6 + 317/54] ® (2550/27)[_1/5 + 2.669]
1;;>= —16TF[CF+CA[(20/9)/6 - 67/9 + (4/3)C(2)]] =

—24f[(20/9)/6 —7+ (4/3)((2)]] % —160[1/6 - 2.163]

1;:’= ‘8CF[[CA+(4°/9)TFJ/5 - cA[c(s)—(37/3)c(z)-4793/108]

iR

- TF[1+(8/3)§(2)] + 2cF[3c(2)—2c(3)-9/2]]
—32[[1+(20/27)f]/6 — (25/9)C(3) - (29/3)C(2) - 5225/108
-,(f/6)[1+(8/3)c(2)]] = (2816/27)[1/6 + 36.28]

*P'= 16c 2[4c(3)+(11/3)(;(2)—773/108] + 16T,
99 A

) The symbols = and = transform SU(N) group coefficients to

QCDh (i.e. for N=3) and QCD with f=4 ones, respectively.
12

ESA[(23/9)/8—86/27] - cF[(zys)/a—si/ia]] =
16[9[4{(3)+(11/3){(2)—773/108] + f[(67/18)/8—455/108]]
~ (2144/9)[;/8 + 1.094]

and lead to the following "+" and "-" ones

T 16CFTF[(4/3)§(2) - 47/54 + C./C, +(23T,)/(SC,)~

(580FTF/27CA2)] = 7,0+ (32/3)f[(4/3)C(2)—23/54+(389/1458)f]

~ 123.5
7= (16CFTF/CA2)[CA2+(2/3)TF(CA—2CF)] = (32/81)f[9+f/9]
~ 14.92

T+-= (16CA2/8)[(10/38)+2C(2)~ 191/18 +(3CF/2CA)+TF/(3CA)+
(14CFTF/9CA2)] = (144/5)[(10/3a)+ 20(2) - 179/18 + (41/4as)f]
~ (1440/35)[1/5 - 1.895]

= 16 [FAZ[4{(3)+(11/3)§(2)4773/108]‘+ CATF[(23/9)/8—

86/27] - CFTF[(26/9)/8+(4/3)C(Z)—547/54] - CFZTI;_/CA

I

+ (58CF2TF2)/(27CA2) - (2CFTF2)/(3CA)] 16[9[4((3)+
(11/3){(2)—773/108] + f[(103/54)/a+(8/9)c(2)- 455/108] +

(70/2187)f2]x (1236/27)[1/6 + 8.082]

and to the following values of NLO coefficients of equations
(10): ‘ '

Z_ =~ 6.826, Z, ~ 11.617 [1/5 + 1.022]
( ‘
K'Y~ 0.6225, K= —3[1+f/81] ~ -3.148
13



K V= -zo[1/a+(3/5)c(2)—179/so+(151/1620)f] ~ —20[1/5;1.523]

K:g’s (80/27)f ~ 11.852

Note here, that the corrections «0(1) to structures «1/8
are small for all NLO coefficients. The exception is AD 1;;&
However, it is contained only with factor & in all "+" and

"-" parts of AD.
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KOTMKOBA B TR e S ,Q'VE2-'924-36‘1:"‘ »

e f‘loeep.euue napTOHHbIX cbyHKu.Mn pacnpeneneﬁuu

~B oGnacm Manle 3Ha‘-IEHMM GbepKEHOBCKOM nepC‘MEHHOM X

LT

D,aH aHanus napTOHHbIX pacnpeneneHMM 8 oGnach ManbiX 3HaueH i o

byf_napTOHHle pacnpep.eneHMM MSMBHHETCH an BKIIIO‘-IEHMM HeBEAYLLlMX :

" ‘nepemenHom EbepKeHa x. TokazaHo, -Kkakwm ~06pasom- Q? -3BONIOUMA

NonpaBoK. K: aHOManbHbiM paamepHocmM -onepaTopos. BunbcoHa. Ana -
: ;craHnapTHoro T.€. HECUHTYNAPHOro, NpK. X'> 0, BbIBOPa NAPTOHHBIX pac- -~
; .'.*npe.ueneHMM 3TO.U3MEHEHNE. onpe.uennercn TonbKo ABYMA (M3 qublpex)»“
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: nghe Small X Behavnour of Parton Dlstrlbutlon Functlons LA

The ana|y5|s of parton dlstrlbutlons for the small X reglon is g|ven -
It is shown how' the inclusion of the next-to- leadlng corrections to the
“~anomalous dlmenSIons of - the: Wllson operators changes the - behaviour
‘Vof Qz-evo!utmn of parton dlstnbutlons ‘For “conventional”. (nonsmgular
_for x * 0) choice of parton distributions this’ change is determined by.the
" values: of anomalous dimensions 7/(‘16 {n) “and 'y ! (n) only. We -obtain
.-,also the new simple form for. the coeff:cnents of 82

dlstnbutlon moments g :

The |nvest|gat|on has been performed at the Partlcle PhyS|cs Labora-"f i
-f_tory JINR : o ; :

-evolutlon of parton S




