


1 INTRODUCTION ;

The problem of go1ng beyond the scope of perturbat1oni
theory in the quantum theory is. now one of the most 1mportant
fproblems. There are a lot of d1fferent approaches for thlS‘

"»problem. Some authors  try to.sum the ser1es .of perturbat1on

"'theory [1,2] -.using: the, 1nformat10n about .its, asymptotic
:behayior [3,4]. Others build up;thelexpans1ons¢notvconnected,
*‘With the coupling constant. This eXpansions are derived from
~ the action, in which the contributions -are redistributed -
kv'betmeen' the free and 1nteract1on parts [5 6] Bes1des,}
o var1at1ona1 methods are extens1ve1y used [7 9] But they dox
'Jnot allow to est1mate thewprec1s1on of the result obta1ned 1ny
/"1ntr1ns1c terms. To overcome th1s shortcom1ng, S1ssakyan and
‘1,Solovtsov are developlng var1at1ona1 perturbat1on theory [10]:'
3'(1n this paper one. can f1nd a: more complete rev1ew ofa;
;references) Nevertheless,i the problem of nonperturbat1ve
‘_calculat1ons 1s not yet solyed . ,
: » We here propose a new method of computat1ons 1n quantum“
‘p:theory that does not requ1re the coup11ng constant to be
'sma11.

Evolut1on of a quantum—mechan1ca1 system 1s determ1ned

“;ij the evolut1on 'operator U(t’ t) exp{ 1H(t’—t)/h},‘ where,l
‘7‘H =p /2m+V(q) is the Ham11ton1an Calculat1ng the evolut1on ’

operator kernel or Green funct1on (1et us cons1der the one—~7

3 d1mens1ona1 case for the sake of s1mp11c1ty) <q t |q,t>—
"-<q |U(t’ t)lg> in the _path. 1ntegra1 formallsm [11] 'one;f
‘;starts with the express1on for the. kernel for At t’Qt known -
“"with a precision of the f1rst order 1n At':
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‘{‘Here V(q’,q) is the expression derlved from the potent1a1 by'
'“symmetrlzatlon in q’, q. For finite time intervals the kerne1'

" can be_obtained as a limit '
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,“consequence of (3)

G e :
<q',t'|q,t>=1im,j<q'=q;.t’=tn|qn_1,tn_1>dq5 X

n-o@

“x<q )t la L.t >dq

n-1" n-1 n-2 n-2

This. is the path integral.

‘produce the functional “integration,” but seek the kernel -

"either directly: from the equation '

<.t g, t>= j<&”;t”|d',t’>dq’<q’;t'[q,t>;” @

jwh1ch 1s called the Smoluchowsk1 equat1on 1n the stat1st1cal
phys1cs, or from the Schrod1nger equat1on, wh1ch really 1s a

It is poss1ble to use for th1s purpose
the representat1on of k1nd (1), in wh1ch bes1des the term of

the f1rst order 1n At all further terms of the expans1on in

~the powers of At are present Th1s way for solut1on of the"h
“evolutlon equatlon 1s close to the space of small “time method"'
:(wh1ch is a vers1on of - the asymptot1c method of funct1onal‘17‘
7parameters) developed by Cherepenn1kov for the problems of:

‘°class1cal mechan1cs 1n [12, 13] (see also references there1n)
The expans1on in At was used in [14]

fact cons1dered the harmon1c osc1llator Aand 4the lowestdfﬁ

'correct1on terms only were calculated
7\ The method suggested can be eas1ly transferred to quan-
~tum f1eld theory Th1s leads to a new vers1on of the latt1ce

;f1eld theory that 1n sp1r1t 1s s1m1lar to the Ham1lton1an‘

approach developed by Barnes et al. [15 17]
“The article is organ1zed as’ follows
method of solution the quantum mechanical problems is des—
f’crlbed .The anharmon1c osc111ator is cons1dered .here as an
example

‘f1eld theory is exam1ned

.;:dq;<ql,ti|q6=q,to=t>.7(2)

:Nevertheless; 'we ‘may do ‘not’

‘But’ there was in:

In Section 2 ‘the

In Sectlon 3 a poss1ble generallzat1on to quantuml

NP 7 )
o

‘Here the only coefficients a

fexternal field,

‘tat1ons

AU(a// v a, t” t) JM e-a a U(a”*,al

2 QUANTUH HECHANICS
2. 1 Square Lagranglans

For problems with square Lagrangians: equat1on (3) may be-

- solved by the substitution
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. : -im ) m(q’-q)°
<q’,t"|q,t> = , exp{ i — -
S 2nhAt 2hAt
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~are-. different‘from zero . for -
which k+1<2. .Calculating the Gauss1an 1ntegra1 in the r1ght—
hand side of (3) .we get-the. system .of . equat1ons for d ' Thef

l.representat1on -(4): becomes fully determ1ned .after.. solv1ng
‘th1s system.

in this manner ‘a number of well known expressions for .
the kernel [11] was .rederived: for the part1c1e 1n the con—7
stant external f1eld for the free': harmon1c osc111ator, for

f»the harmonic osc1llator _1n the t1me depend1ng homogeneous

for the charge in the constant homogeneous

o magnetic' f1eld Cons1derat1on of "'the : osc111ator can ‘be pro—l»'

ih,duced both 1n the coord1nate ‘and 1n the holomorph1c represen—

W=t )U(a’ ¥, a,t -1,

2n1‘

- ?}_.;,> 1,,,V.‘(5):

/But' in -this wady we cannot :solve:(3) - (or . (5))..for: non—~

‘*square Lagrangians because in:this .case: the ‘integral.in.: the<
“;r1ght hand side of the equat1on cannot be’ calculated exp11—

c1tly, and the term by term 1ntegrat1on of an expans1on for B
\ the exponentlal leads to a d1vergent serles

For the latter we shou1d use,'lnstead of (3). the
',”equat1on for the kernel U(a ,a) (notat1ons are standard) !



2.2 QUantdm“meChanics in‘one'dimension
. Let us seek the solutlon of (3) 1n the form (4) Here
‘and further we w111 use the ‘notation’ ‘

D(At,q’,q)= Z (1At) P (q »q)= Z L (iat)"q’ “q d (6‘)5

on=1 : nlk,l'

The function P
(we consider not depend on the time

explicitly).

~that V(q) does

anow1ng ‘the . potent1a1 V(q)

: Let ‘us consider (4) when V(q)ro»fihe<7the'free’partioie'
The kernel is’ singular when At50..
fexpressed through ‘the s-function and its der1vat1ves'

T ~im L .
- <q”,t”|q t’ >= {‘ ] ‘ exp>{fi

~2hAt-

ma-a®)
2mhAt

=6(q”_ql)+z Izn
ISR E R s ‘m=1-:'n! e
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- Subst1tut1ng the kernel <q” t”|q t > 1n the form (7)-u
1nto (3) we can obta1n after ‘some mathemat1cs the Schrodlnger‘

equation

18 o m8® o V(q)

L —=<q’,t |q,t>= — ————<q , v’ lq,t> - ——;——<q ,t’ Iq,t>.‘ (8)‘ﬁ

iat - . 2m aq

Let us ‘seek the solutlon of - (8) in the form (4)
L We get the sequence of equatlonsf LU e g ’

. ep. (q q)
P (q q)+(q —q)——
aq”:

8P (q’,q)
nP (q’,q)+(q'-qQ)——— =
n . aql

should satisfy the condition P (q,q)=V(q)/n

The problem is" to find all functions P (q ,q) '
or, which 1is the same, functlon D(At q q) using - (3) and:-‘

“This s1ngu1ar1ty may be'

6(q q RE ey

‘For P ‘*
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"ficients‘dia;'which*allows~us*toﬂfind‘a11"d

. then subsequentiy all dn

Here'Y (q',q)=P (q’,q).

8P_,(q’,q) 8P__, .(q",q)

=___—___ ) et T (10)

I3
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Equation (9) with the condltlon P (q q) V(q)/h determlnes

unamblguously the way of symmetrlzatlon of ‘the potentlal in

‘,q 5 .q. Equations (10) allow ‘us. to obta1n recurrently any P .

To do this we should expand P ~in powers of q' and q (see

(6)). Then we have for the coeff1c1ents d (whiqh are sym-

- metric in k, 1)

d. = d ’ /+d y (11)
kit k+1 kzlo '# k1,11 '
: n 1 i E h . ) 'n—l
dk,l [(k+1)dk+l 1-1 +~£;(k+1)(k+2)dk+2,l

n+k

-2 k+1 L ‘;;/.v:“; n”~1 :>1>k%;1 A
; N ’ / B B k- .',- 7 ® . v
Z 2 z;bk:(k_k.fz)dk{,l'dk k' +2,1-1 ] , (12?%
. The polynomiaanotentiaf V(q) determines non zero coef- .
~from (11) and;]'

from (12) “That' determlnes the{

' functlon D(At, q ,q) as a series 1n _powers of ‘its arguments

‘It may occur that itis conVenlent for technical reasons

kto seek the solutlon of the Schrodlnger equatlon (8) 1n the

form Lo ' TR Ve 3 ; ~'_:\‘.‘,,,‘;;v«~”"_7’,, :;:1;({'*‘7 ‘]"‘_’P ~>v" o

—im
<q t'Iq,t>—; . exp
n ZhAt

2hAt

e e iR e e} S et s L e
x 41 = ¥ (ia)°Y (q’,@pe - oo . - (13)

x'n=1 »»(t‘wtl". Li t””:,} 7 T n " B é‘.'
’Then:wefget”for Y (nSl)

ny (q L+’ -q)— S
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el ot e S Y 1(q{;q)' S ooy
==Y, (qa",q")Y__ (q )+ — > - T(14)
o o 2m - aq’ :
If”Yﬁ is represented by the expansion
Y (@,o=Fqdw,, 0 (15)
o k.1 -~ - . . :
_then for u:l'we have (n>1)
: w: 1o L [(k+1)w 1,121 7T 2—(k+1)(k+2)w::; 1
t n+k ' L. 2m : : !
: . 1 n-1 .
—Mklzl[wkl,ll wkfk’=1’,1~]f . .(16) 2
‘The ‘'sequence of equations (16). 1is really linear in w"

gl PR 1 . e e s
because the coefficients LA are-given initially.

2 3 Anharmonlc osc111ator .

Let us apply the equatlons obtalned to; the anharmonic
. osc111ator w1th ‘the. potent1a1

[ T s S ‘ e
V(x)= mﬂ—z— + ax®. TR e (1T)

2

‘We’ introduce dimensionless variables q=x/vh/mo, T=w(t’<t);

a=ah/m°w’. In this case the solution of (11) gives

L Ll i
zo_doz—d11*1/6' 9,079,474,

. —>1 _1_ e
d _d13'd22_u/5'

It is obvious that the coeff1c1ents d
tlons of o They can be represented as
a’ =Y ok’ -,

X ™

k1l s

~where k"
mk 1

k1

.are polYnomial func;

‘are numbers, and D can be treated as a function of

e deta11 in a. subsequent paper..

and .at every positive T,

g1/51n(T)
“hope that the 1nformat10n about per10d1ca1 character of the

~classical solution (which is expressed through the Jacobi-

7

‘four arguments T; a;‘q»}:q,i»““'t

I S . :
D(T,q’,q,a)= Y ¥ (1T) P q q nm

n=1 m,k, 1

% PR T

from (12)

It is easy to obtain the equations‘for~x:i;
n _ 1 2
Km,k’l — [(k+1):cm ket 1-1 T+ (k+1)(k+2)x k‘z'l
1;n-2 S m k1 Vsl R
T D T T S k (k-k’ +2)x o TR T ‘]
(c‘xrzw':jf ﬂf‘?f,.'f: SRRRIN ;];.\_>’;%smf T (19)f,
;In1t1a1 values are n620~n;11=1/6, K:40=K:31_£:2§_1/5 Calcu—":

1atlon of the coeff1c1ents K me1

:hus to determlne ‘the functlon D(T q’ q,a) 1n the reglon of'
- convergence of the series (19) A

Convergence of the expan51on (18) w111 be stud1ed 1n;f‘

Now we Just refer to\sthe

‘results of numerical est1mates wh1ch show that the f1n1tefé'
reglon of convergence . 1n T w1th the rad1us r. takes place at

every flxed set of q', q, «o.

) cannot be infinite, because even the ser1es for D(T q »q,0),

corresponding to the harmonic osc111ator, has a finite con-

ﬁlvergence range 1n T whlch 1s equal to n oL SR
"~ So far as the kernel should be determlned at every q g

the problem ar1ses to contlnue

:s'analytlcally the functlon D out51de the reglon of convergence
: of the series (18) : : o . :

‘For ‘the harmonic ‘osc111ator that cont1nuat10n ’can be7
made with the use of per10d1c1ty of the’ functlons ctn(T) and
In the case . of the’ anharmonlc osc111ator Swe - may

: e“elliptic functions) will help us to produce the continuation.

w1th the help of (19) allows -

It is obv1ous that thls regloan.



Notice that it is easy to distinguish the terms corresponding
to the quasi—classical approximation in the expression (6).

It is enough for this:to retrieve the d1mens10n factors forf

the varlables q ’ q, o.
Note that the representatlon (18)
restr1ct ourselves to a small coupling: constant o.

allows us not to

consider "large «a,

“for the series in T.

2.4 Quantum mechanics in three-dimensional space

The method be1ng developed can be eas11y ‘generalized to

_the’ case of three—dlmens1ona1 space. If the coordinates in
~this- space are q_(q 14,4, ),

4'.for the kernel is

o hmyr mded Ly
Lqlyt g, o= — ...exp {ii———— - D(At,q’,q)}.  (20)

2mhAt zhAt,

‘The functlon D is represented by (6) 1n wh1ch now the co—.

ord1nates are vectors and 1ndexes k
k={k,, k K }. 1= ={1,,1,,1 }.

One can -
but this diminishes the convergence range'

then the general representation,

1 are mu1t1 1ndexes“

3
‘|
]
3
i

5t In analogy w1th the one d1mens1onal ‘case we get the‘jifj

' Schrodlnger equatlon

198 ' h o 3 8% , (q )

- ———<q’ t lq,t>— — ~———<q t |q,t> - —_gr, |q,t>
i at' ‘2m- =1 aq : ‘h
SRR L BRI ‘(21)1

When ‘one seeks the solutlon of (21) ‘in the form (20),
f:then one gets the sequence of equatlons for: P
Lyt S .
aP (q )
o :
—q )— = Pi(Q',EI)"),
z
‘1,, ) . aqJ : Sl o .

(22)

~fer from zero.

. sequence of equatlons (24),

3

- CXCa
. nPn( q)+ Z (q}-q, )~————————_=
4
1=1 aq’ . .
. R o
- o3 [o°P (@, D  m-2 8P (F D oop o (D]
- - - n n-n =1 '
“om BT e PEE— | %
m j= e n’ = o
“m = 9y noet eqy e
. which are a direct generalization of (9), (10). Then one can
obtain from (22), (23) the equations for the coefficients ‘d;

k1

generalizing (11), (12). For n=1 we have (in dimensionless
units) o T e ‘
L 1 } . ‘ T o
dk,Jzn—E—____ [alo.zldk',k ot Z (k +1)d ,1-5 ]' a(24)ﬂg_
S K +1 ko 1=1 34 NEN :
1=1 t o . L PR
-and for. . n>1 -
n 1 3 - l n-1 0 1o
a, = — r |k +1)dk 5, st —(k +1)(k +2)dk 28 1 "
' Tk +n 17! o2 s’
1=1
LYy vk (k -k'+z)d5' e (25). -
2 Z PIRE =R T B | k' ,17 Tk-x'+28 ,1-17[" 4 .
n ‘=1-_ k 1 i L . ‘/W’j e . ~

Here k" 1, like k, 1, are multi-indexes and summation runs
over a11 components k’ 1;,

The symbol 8

for which the coeff1c1ents d dif-

is treated as 61 061 081~d‘

‘andf
1 2 3 -

4 . the 1ndexes of kind k+m8 mean here and further that the J—th

component is equal to k +m, and. the i-th one (i#3) to k ...The .

1

dkl

and’ in. th1s way to determlne ‘the functlon D...and - thec

kernel (20) in the range of convergence of the series.

(25) allows us to find any terms_;f
in-the expans1on (6) start1ng from the initial coeff1c1ents‘



<3 QUANTUH FIELD THEORY
In the f1e1d theory the components of ‘fields play -a role
of generalized coordinates. For the definiteness we will
Let us divide the three-

dimensional. space finto .small elements ‘of. volume ‘AV .

consider the real scalar field p(x).
Here
a—{a a,,a }
d1v1s1on. We w111 consider that the field may . be represented
by the countable set of functlons of the time P, (t)= ¢(x ,t)

f |P(X)>
‘ moment of t1me t the equatlon R :‘, o . N

g Introduce ‘the’ state vectors satlsfy1ng at the

(x)Iw(X)> w(X)I¢(X)>.

; where‘$(§) is the field operator.-

“of. P,
k of quantum mechanlcs, then the formallsm developed for- quan4
tum mechan1cs may be easily transferred to the field theory.

The kernel can be sought in.the form -

-iAv

2nAt

: <¢ t'lw.t>- m o
: - fa

i
a] exp { — L AV, (p]-p, )?

m;

-z (iAt)“Pn(¢’,¢)}.c

Here for the

4;¢~(tf).

‘sake of breuity we denoted ¢aE¢a(t),'

~The  symbol pmmeans‘the.complete'set of {p }, and:

'the system of unlts ‘in” whlch c=h=1 .is used The analogue of"

PR

the Schrodlnger equatlon (21) -

3

H¥|H .

———<¢ t Iw,t>— Z — ————<¢ v Iw,t> -P; (¢ w )<¢ t’lw,t>f
ath .o 2 °'AV a¢ - ; SITCAN T o
| (27)5
~in .the" same way ‘as in’ Sectlon 2'-can bederived from the'j
‘equatlon Vi D e el i et T e ' :
10

1s the multi- 1ndex numberlng the elements of“'

If we will consider the set
so as the components of the radlus—vector 1n ‘the case"

(26)

i

The sequence of the equations for P

for n>1

,We w111 not wrlte an equatlons analogous to (24),
‘can be obtalned 1n obv1ous way.

‘fP1(P ,p)= §:Ava{ =

’ <‘¢,,’tll|¢’t;= j<¢lllt,,I¢I’,tl>'nd¢;A<'¢f"i'_‘, I¢,t>.‘
T a S

n,is: for n=1

| 3P (', 9)
P (¢, 9)+ }(p.-¢ )— =
: a 84)' )

a

P .(¢',0"),

T er ()
PN R e L

6¢a

(9’ ,0)

’ 2 l‘ o ’/ 4 )
- ) Pn;l(‘P 'q)) n-2 aPn,“(;P‘ ,§0) oapx';-‘n’—l
z — ! PE B : "
. ap ‘

‘2 n’=1 - 8¢ 8y

a R ) a - a

‘Let us con51der, for example,

the‘Lagranglan
o« a4

- ¢,
41

ex)=La 2P 8“¢— = m’p® -
2 2

which determines the function

v e B A T
E . g Ry \ i
P(p,p)=F AV = } + = m ¢ -
- a 2 1=1 ‘Axal L2 41

=X, "X, 5 -

Here we denoted -8x

AV

a

(28)

(295"

]. (30)

(25)..

They

‘the scalar field with.

(31)

(32)

o :

Solving (29) we'will find

3 1 3. 1
1 — +‘Z - 2
6 lr;‘l»?(AX'al') : ‘;1,(Axa+‘51,bl) .

R AR

11

AV

.8 ]'~ o
X
a . .‘ 41 ,v :



—— Zw w +2¢ w w P, w ] +
ETVIRY 6 -8, -5, %25 %a .

al

W~ e L

i
[

i
1 2 s v ’ ‘ ’ ‘ ‘ v \
+ oo [¢a2+¢a¢a+¢f]f+ g—[v +0, %0 0 *0Zrp 0 p ]}. (33)

For n=2 the solution‘of (30) ié'

. s : (. VR .
P_ (¢> w)—“‘z — Z—-—Z 1+ ———J +
a 12 1=1(Ax ;) A

12+ 5!

s “‘[% -«>,’,-¢a+3«>§]}-7” B S

B The technique descr1bed is really a var1ant of the lat-y
,.t1ce field theory "It ‘is close” to the latt1ce Ham11ton1aniif
ff1e1d theory approach developed in [15 17] In that approachf :
‘the state functlonal is sought ‘from the Schrod1nger equatlon &

‘rd1scret1zed in space and time variables. Bes1des, the spaceﬁsl'
"of discrete values of field e, at every polnt of the ord1nary~'
"three-dlmens1onal space is cons1dered but“ our method n

‘requ1res to discretize only the three- d1mens10nal space. Ini-

tial -and f1nal field configurations :should: be givenas bouﬁi»

- 'dary conditions. The time evolutlon is described by (26),
where the f1elds at 1ntermed1ate moments of t1me do not arlse
'at all P S ‘

Nevertheless, ‘the scheme suggested (like any other

founded -on equatlon (27)) has_one unpleasant feature. Let; us

discuss it. We use the notatlon a for the character1st1c s1ze
fpof a cell of the three —-dimensional latt1ce The structure of
“the express1on (33) is such that it 1s poss1ble to. perform

- the l1m1t aeo ‘in it,” and P (w Se)- w111 be’ represented as the.
?integral over the three d1mens10nal volume. However (34) andy
H»the express1ons for subsequent P do' not have this property o

~-.-yet. The functions P do not allow us to perform this 11m1t;}'

12

l/‘

Pand cannot -be: represented ‘as ‘an - 1ntegra1 over volume.fThe'

magnitudes of* P ~depend - on’ the ch01ce of d1v1s10n ‘of three—;
dimensional space into the cells AV ‘Because the’ express1ons'

'for'P"are ‘singular -as a-0, one cannot - say about any: 11m1t
,magn1tudes of the functlons P . :

"Note that the s1ngular1t1es appear even for a free f1e1d “

because ‘of the s1ngu1ar ‘structure’ of initial equation (27)A‘
(term,~ 1/4V 1), Early it was pointed out in [16] that theory,i
"is-.singular as’ aeo nevertheless, in that paper this diffi-

culty  was by-passed with the .help of a not very r1gorous’

Pmathematlcal trick.

~.The - s1ngular behav1or of - the functlons P can be treated’

fas art1fact Then we should tend. to av01d it in some- way.: But‘

it is poss1b1e to try to look at thls fact from another view-

vlp01nt Maybe, it 1s an 1nd1cat10n of the necessity to work 1n,
{;the quantlzed space Ch01ce of the latter var1ant would mean
that quant1zat10n of the f1eld is closely connected w1thri
,’quantlzatlon of the space (and t1me7)

4 CONCLUSION

We suggest the method for calculatlon of Green functlons -

';1n the theorles w1th polynom1a1 potent1als as an expans1on 1n h
‘,powers‘of the t1me interval At. “In fact. the perturbat1on~_
.theory in parameter At is be1ng bu11t Here ‘the coupllng con-
stant a should .not. be small, i.e.: the S0~ called nonperturba— -
f.'tlve aspects are taken into account. The expans1on parameter“

At should. not be small too._Its max1ma1 pos51ble value 1s'

“,determlned by the convergence rad1us of ‘the ser1es r that -
"_ depends on the 1n1t1al condltlons and coupllng constant When;':
it is necessary . to- calculate, _the kernel for At>r , then
analyt1ca1 cont1nuat10n of the functlon D beyond the conver—_u;
-gence range of the ser1es should be done. ! Probably, 1t_may be '
ach1eved by us1ng 1nformat10n on the quasiclassical behavior. :-

Appllcatlon of thls method to quantum f1eld theory leadS~K
to a- new version of the 1att1ce f1eld theory in wh1ch only‘

the three— d1mens10nal space is dlscretlzed. Here s;ngularltyff'

13



‘of the Schrodlnger equatlon (and hence, its solutlons) as the

1att1ce cell 31ze tends to zero. becomes essent1a1 Maybe.,lt'

'~1suan~art1fact o£<the3}att1ceAHamllton;an field theory,. but
'maybe.rit is an indication of  the necessity .to. quantize the

. space.
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vrAPPENDleT”"

. Here the functlons P (q q) for some 1n1t1a1 numbers n
i are presented ' E

P1='~1q'2+ 1qlq+ lqz + « }—q'fl+lq'3q+ ’-lq;ZqZ_'F lq:q3+ 1q:\4 ,

S 6 6 5 75 .5 5 5 &
i;p;;'l_‘+’& §;q[2+*§qlh+ g;dz';; '“f‘*f v

Sf2r 10 s 10100 R s

P= —tq? g Lo+ Lo
7. 90 360 . 90 10 - .

- o ———q + 1z_q, q+ 2 yzq #'17 ,qa+ 4 al =
105 210 21 210 105

2119 ,a 22 ,3q+ 9 f2q2+ 22 , 3» 19 -4 .
150 i¢75~;:j2525‘ v 75;_,{‘15p;w
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CnoSoneHmK BT 0 E2-92-359 .
0 BbMMCTEHMN Siapa onepaTopa | aeonmumm‘ S
" ypasHenns lipeaurrepa

;/t

TpeanaraeTcs. MeTOA Buqmcnequ ﬂupa onepaTopa 3Bo-'
nmumm B BUAE pAAA MO CTeneHsMm BPEMEHHOro WHTepBana

‘) At. MeToa npuMeHUM K 334a4aMm C-NONMNHOMUAMBHBIMA. NOTEH-

LLMaﬂaMM ‘B KBaHTOBOM MexaHMKe " KBaHTOBOM Teopvm nons.

OH noagonseT yHMTHBaTb HeﬂepTypGaTMBHHe (no KOHCTaHTe
ceﬂam) abdexTh.

Pa60Ta BHHOﬂHeHa B ﬂa60paTopmm Teopequecxom ¢M3MKM
f}OMﬂM e B Sl

[Ipenpuit OfbeIHHEHROTO MHCTHTYTA SEPHBIX HCCIE10BRHMIL. Dy6uz 1992

¥

S]obodenyuk V AL SR 'E2792;359h:1
=0n Ca]cu]at1on of Evo]ut1on Operator S e
Kerne] of Schrod1nger Equat1on

The method for. ca]cu]at1on of the evo]ut1on ope=_
rator kernel as an-expansion in- -powers of the time
“interval At is proposed This method can be app11ea
“to the prob]ems of. quantum mechan1cs and quantum. -
~field theory with po1ynom1a1 potentials. Nonperturba-_
t1ve (1n coup11ng constant) - effects can: be cons1dered—
1n the framework of th1s approach R e

B The 1nvest1gat1on has been performed at the Labo-'.
’~‘? ratory of Theoret1ca1 Phys1cs J;NR P ,

-+ Preprint of the Joint Institute forlNuclela'r"Rcsear'c,h. Dubna 1992 -




