


1. Introduction

As follows from the analysis of studies of the thermodynamics of gluon
systems, a more complete investigation of peculiarities of dekcorn'ﬁnem'ként
requires a more close interplay of the lattice description [1-9} and statis-
- tical models [5,10]. However, this is a complicated problem as there is
no such statistical model that would be consistent both w1th the S U (2 )
group- and with the SU(3 ) group-lattice data.

Indeed, the approaches based on the Baacke method [10] and bag
theory [11,12] predict that the deconfinement in SU(2) and SU(3)
systems is a first - order phase transition, whereas the lattice calcula-
tions support the second - order deconfinement'in the SU(2) theory [5).
Besides, the above class of statistical models for the transition heat Aec.
produces the relation Ae =~ esp(04ec) , where esp is the enérgy den-
_ sity of the ideal gluon gas and .. is the deconﬁnement temperature,
whereas lattice studies of an SU(3) system give. much smaller value,
A€ ~ €sp(0zec)/4 [9]. Results of the phenomenological model. [5] in
which the free energy is a sum of two terms describing low - momentum
massive modes of the gluon field and high - momentum massless gluons
are in good agreement with-lattice data for the SU(2) theory. However,
since the model predicts second-order deconfinement, this approach does
not describe the SU(3) system relative to first - order deconfinement
(see refs. [4,9]). - o '

In this paper, we present a statistical model of the deconﬁnement in
SU(2) and SU(3) systems whose results are in good agreement with
the lattice calculations. Basic points of the proposed approach are as
follows: S ’

First, possible coexistence is considered of nonseparated phases of
glueballs and gluon plasma. Concentrations of the phases in our model
are determined from the conditions of thermodynamic advantage.. Note
also that unlike stratified Gibbs mixtures, our phases coexist in a homo-
geneous system. The importance of such heterophase mixtures is demon-
strated in a series of papers devoted to general problems [13-16] and to
applications, in particular, to studies of quark hadron matter at high
baryon densities [17-22]:

Second, we take into account the interaction between plasma gluons
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~ and their interaction with glueballs in the effective-field approximation.

The paper is organized as follows: In sect.2, we consider a simpli-
fied approach, based on the restriction rules in differentiation, as a first
approximation that gives a qualitative behaviour of the mixture and sat-
isfactory estimates. The results illustrated with figures are presented. In
sect.3, we expound a more involved approach to the mixture using cor-
recting functions and allowing a good agreement with lattice predictions.
The corresponding results are also supplied with illustrations.

- Some prehrmnary results of our approach have been announced in
refs [23, 24] '

_2. Model with restriction rules
2.1. 'Fundamentals of method

As said in the Inti‘oduo'tion, a key point of our approach is the possi-
bility of Simultaneous production of glueballs and unbound gluons from

vacuum, the phases of glueballs and gluon plasma being not separated -

in space Using the: total density of gluons in the system

P“/’g‘l‘zn/’n]a : , (1)
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where ~ p, is the density of quasifree gluons, p,; is the density of

glueballs of sort nj consisting of n bound gluons, we can determme
the concentratlons of phases in the mixture

(e

m

w,; + wg = 1. ) . (3)

In formulae (2) and (3), the index g stands for gluon plasma, whereas
the index" G , for glueballs. :
The densxty of unbound gluons in our model is given by the expression

"9) - 1]—1 dk, (4)
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whereas the gluon spectrum in the mixture is defined »by

| o |
wbp) =kt o )

In expression (4), £, represents the number of internal degrees of free-

dom of gluons, ¢, = 6 (SU(2)) or &, =16 (SU(3)) ; p, is the chemical
potential of plasma gluons. The choice of the gluon spectrum, eq. (5), is
based on the following: The energy of gluon plasma in the simplest case
of the MIT model is defined by the expression [11] 2

E=Y n,(k)-k+BV, (6) -
E=2 "

where n,(k) is the distribution of gluons over momentum; .V is the:
volume occupied by plasma; B is a constant called.the pressure of
QCD vacuum. If the term BV is interpreted as the energy of gluon
interaction in plasma, then the interaction energy per one gluon is clearly
equal to BV/N ,where N is the number of gluons in plasma Therefore

usmg the condition
' Z ng(k) =
k

we may add the given quantity to the spectrum of gluons in plasma and
rewrite the plasma energy in the form

E= ank)(k.-l-——) - (7);»

Taking the gluon spectrum in the mixture of gluons and glueballs by’
analogy with (6) we arrive at the formula (5). Note that the alternative
variant of choice w = k4 B/p, corresponds to a less stable state
of the mlxture, as it may be verified. Also we should stress ‘that the
computation of the quark plasma energy with the spectrum of the form
(5) gives results in satisfactory agreement with the fermion sector of the
energy of the SU(3) system w1th an isodoublet of light quarks above
the deconfinement point [25]. ’ '
As seen, the spectrum of unbound gluons in the mixture w(k, p)
depends on the total gluon density that contains both p, and py;
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for Vn,j . Consequently, w(k,p) defined by (5) describes not only the
interaction of quasifree gluons with each other but also their interaction
with glueballs; the latter being of course sensitive to the gluon plasma in
the system. However, at a given step of our consideration we will assume

that glueballs are strongly bound states of gluons and their energy in the -

equilibrium mixture slightly depends on gluon pla.sma

- To describe the interaction of hadrons with each other, let us ﬁrst
apply the Van der Waals method, as it is done by many authors [10,17,26].
In this case the following equality

mi

Prj = (1 - Eiﬁmi) bvnj (8)

is valid, where

- ‘ —l N
. €ﬂJ k W Fnj ' k
P,,, / k* lexp —1| dk. 9)

- 2rn? 0
0
Here v,; is the volume of the particle core; M,; is the glueball mass;
£n; is the number of internal degrees of freedom of a glueball; p,; is
the chemical potential of nj glueballs. Upon a simple algebra we obtain
the relation |

-1 -
= ,Z;nj (1 + Z vmiﬁmi) . (10)

Since the main contribution to thermodynamic characteristics of the glue-

ball phase comes from particles with the minimal masses, we will consider.

only the low-lying glueballs with the following properties [27,28]:
f20=6, M= 960Mev; €n =6, My =1290Mev;
€20 =6, My, = 1590Mev; {30 =11; May = 1460M ev;

&1 =36, Ms; = 1800Mev

This choice is argued as follows: The lightest glueball of the above set
has a mass about 1000Mev , which is in good agreement with estimates
for the SU(2) system [5,29]. In the SU(3) case this value falls into the

4

range of lattice predictions [30,33] and agrees with model estimates [34]
Besides, if an unusual narrow resonance 0++ recently discovered [35] in
the mass spectrum of a pion pair produced in proton-proton collisions is’
considered to be a scalar glueball, the experimental estimate of the mass
gap of glueballs in the SU(3) case amounts to 975 & 16Mev .

Using the relation
Ym _ Mn )
Unj My’
following from the bag theory [11] when the radius of the particle core is
assumed to be proportional to the bag radius, we may reduce the number
of model parameters to two, vy and B.
Characteristics of the equilibrium mixture of gluons and glueballs
(concerning equilibrium of a heterophase system see ref. [36]) are deter-
mined from the condition of local extremum of the free energy

oF OF :
_ or 9T N = 12
(dF).v o, dN, + %: N dN,; =0, ( )-

where N, and N,; are, respectively, numbers of plasma gluons and
glueballs of sort nj . Since the relations

oF _ ~ OF _
6Ng = Uy, aNnj = Hnj

are valid, and the increments dN, and dN,,J are independent, we
obtain from (12) the following equa.llty

Hg = Hnj = 0. (13)

Solving the system of equations (1),(4),(5),(8), (9) (13) we determine
the functions p(#),w,(6) and wg(f) for various sets of the parameters
veo and B . These functions are used to determine other thermodynami- -
cal characteristics of the system, specifically, the grand thermodynamical
potential f

+oo )
k —
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0
where the volume V; free for motion of clusters is expressed by
‘/f =V (1 - Zvannj) ’

nj

and {pg} is a set of glueball chemical potentials. However, owing to
the first approximation being quite rough, inaccurate use of the above
potential may lead to a number of inconsistencies. In particular, there
arises ambiguity in the definition of the pressure, because

w0
oav'’" v’
Besides, ’ ’
AR A | ko) =\ 17
R A % wik,p) “He ) _
on, # 973 / [exp( 9 1| dk,
0 :
-1
V k2 +M3 = Hnj
74 E"Jvf k* lexp " "1 21| dk
ap,,, 272 0

[

These difficulties appear because the definition of the grand thermody-‘

namic potential does not include additional terms, the correcting func-
tions, whose meaning will be explained in the next section. A reason-
able approximation of characteristics of the glueball mixture can also be
found without corrections that highly complicate the computations. To
this end, it is necessary to employ the restriction rules in the course of
differentiation, which is made in the following way: We mtroduce an
auxiliary function :

Q0,V,pg {1} X, Y) =

05” /kzln [l—exp( k—Jf—Xa——’-‘i)]dkjL

R+ M2 — .
OE"JVI/k’ln 1—exp | — TPk, (14)

06, VY VR M — s\ |
+ Z 621 3 k2 Injl—exp]|— 7 dk, | (15)
J .

and define the differential of the grand thermodynamic potential by the
equation

dl= lim lim d, (16)
- X—=B[p Y=V IV . : ;

where the differential d 0 is taken at X,Y = constant . Now all the
a.mblgultles in deﬁnmg thermodynamic characteristics vanish,
__ e _ 2
TR
100 1 00 '
== ny = 17
Py V a,ug P J V 0#’1] ( )

and the volume denslty of the energy of the system acquires the normal
form,

a0 .
e—Q-i-pgN {pr nj 0%. (18)

nj

It is to be noted that the restrlctlon rules are frequently used in differ-

entiating the: effective thermodynamic potentials. As a rule, the effective
L thermodynamlc potentlals include either the temperature- and density-

dependent spectra of particles or the free volume dependent on ‘their
number, as in the case when the sizes of particles are taken into account.

In these approaches that do not use correcting functions, dlfferentnet:on'

with respect to the above-mentioned characteristics is not performed in
order to prevent inconsistencies.

2.2. Results of consideration of model with restriction rules

Numerical analysis of the model with restriction rules provides the fol-
lowing results. For SU(2) and SU(3) mixtures with any set of the
parameters vy and B in a certain temperature region dependent on
the parameters the functions ¢/esp, p/psp and w, get sharply increas-
ing while wg gets decreasing ( psp -is the pressure of the ideal gas of
gluons). The behaviour of the functions ¢/esp and wg for the SU(3)’
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mixture at B4 = 235Mev and various values of 20 = (3vge/4m)'/3
is drawn in Figs. 1.and 2. When vy increases and B- is constant,
the growth of ¢/esp, p/psp and w, a.nd decrease of wg become still
more sharp. And finally, when vy = v20 (B) these functions acquire a
point of inflection, at which their derivatives w1th respect to temperature
become infinite. As is seen, when vy < v20 (B) , deconfinement in a
mixture of gluon plasma and hadrons is a continuous transition, whereas
deconfinement for wyo = v20 (B) is a second-order phase transition,
according to the Erenfest classification. Specific heat of the SU(3)

mixture at BY4 = 235M ev and ryp = 0.8fm ~ r{J(235) is shown
in Fig.3. When vy > v (B) thermodynamic characteristics acquire a
typical loop (see Fig.1) testlfymg to a first-order phase transition in the
system.

It is interesting that 1f vy =10, then a basic role in the mixture at
asymptotlca.lly high temperatures belongs to glueballs, and the quantity
¢/esg is much larger than unity; whereas for any wvy > 0 , when
0 — oo , we have

Wy _’,1, efesg — 1, p/pss — 1; 8 — co.

For the SU (2) mixture our results are in the best agreement with
lattice data if B!/ =~ 165Mev and ry =~ 1fm , and deconfinement

in the mixture is either a second order phase transition, or a close to

a second-order transition continuous crossover with a high maximum of
spec1ﬁc heat at the transition point. So, in Figs. 4 and 5 we present the
results of the consideration of the model with restriction rules for the
SU(2) system at BY4 =165Mev and ry = 1.2fm (0. = 210Mev) .
Note that both in SU(2) and SU(3) variants the agreement for €/esp
with lattice calculations is good, but for p/psp it is worse since in the
temperature region 04, < 264 the pressure in the model is twice that
in the lattice calculations. SRy
- For the SU(3) mixture our results are in good agreement with
lattice predictions at B'/* = 170 +- 270Mev and ryp = 0.4 = 1fm .
The range of the values of parameters depends on large inaccuracy in
estimation of the temperature of deconfinement on the basis of lattice
studies due to difficulties in transition from the lattice units to physical

units [6,9] If, for instance, B4 = 210Mev , then ry = 0.66fm and

a first-order phase transition occurs at the point 604, =~ 215Mev ; but
when B4 = 235Mev , then 7o &~ 0.82fm and a first - order phase -
transition occurs at the temperature 4. ~ 240Mev . In Fig. 6 we plot
the function (e + p)/(esp + psp) calculated within our model (a solid
line, BY4 = 220Mev,rz = 0.72fm, 0. =~ 225Mev ) and by the lattice
simulations (points, the data for the lattice 24 x 6 ) taken from ref.[4]).

3. The model with correcting functions

To simplify the presentation of the object of this section, we first con-
sider particular cases of the mixture of gluon plasma and glueballs: in

- subsect.3.1 we discuss the thermodynamic correction in the case of gluon

plasma; in subsect. 3.2 we analyze the mixture of glueballs; and finally,
in subsect. 3.3, based on these results, we formulate the complete model
with corrections.

3.1. Gluon plasma

As follows from the study of the gluon-glueball mixture within the model
with the restriction rules, the spectrum of gluons in plasma is well ap-
proximated by the function ‘

wlkipg) = k+ 2, (a~1), (19)
Pq
where C is a constant of the dimension [Mev]’**! . To construct
an approach consistent with thermodynamics for describing a system of.
unbound gluons with the spectrum (19), we should write the Hamiltonian
of the system in the form

HO =" w(k, p,) & (k,0)ag(k,0) +UD(0,p,)V, (20)

—

k.o

where tlg (7;,0); (ag(;,a)) are operators of creation (annihilation) of
a gluon with momentum % in a quantum state o obeying the Bose
commutation relations. The term U(0,p,) in (20) appears because
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the effective Hamiltonian in the mean-field approximation is always a
sum of the operator and numerical parts, the form of the correcting
function being dictated by the rules of statistical mechanics {36]. The
gluon plasma with the Hamiltonian (20) in the thermodynamic limit
possesses the following free energy

F9(0,V,N,) = f"W k2 ln[ exp(—“’—('“—”i“—"g-)] dk+

g
0

+UD (8, pg)V + g N, (21)

and the chemical potential g, is given by the equation

& Tl (@ke) .
= ? LhPel "l ) 1| dk 22
pg 27r2 k [ ( 0 ) 1] * ( )

0
Owing to the relation
OF)

aN ug’

we can, by differentiating (21) with respect to the varla,ble N, , get the

equality ;
OF @ ou'e aC (23)
= g+ — — —.
IN, Ho dpq Pg

From (23) and the respective expression for dF@/ON, we derive the
following equation for the correcting function

U9 | aC

Op; 5

with the solution

a -
U9, p,) = I—:ECP; +A(0), a#l

u(g)(o py) =Cln ( (0)) a=1; (24)
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where A;(9) and A;(@) are some functions of the temperature, the first
being of dimension of the energy volume density and the second of the
volume density of particles. To determine the temperature dependence’
of A1(0) and Xz(0), we make use of the well-known identity

F)
——
a0 '’

where -

< HWO >= plo) _ (25)

< oo >=Tr(...exp(—H9/8))/Tr(exp(—H)/0)),

and the right-hand side looks a3 follows

) _ gOF9 &V wik,p)—p\ 17
(9) _ Yt " _S¥V 2 1Pg) T He\ _
F 0 30 = 9.7 /k w(k, pg) [exp( 7 ) 1] dk+
0

‘ (9)
U, p,)V — 02T,

Respectively, the left-hand side is given by
< H >= 3wk, py) <dy (E,0)ay(E,0) > U0, p,)V.
k g

For Ny — 00, V — o0 and py = const

+o0 )
v _ -1
< H® >, %5_ / kzw(k,.pg) [exp (w_(l&%__,u_g) - 1] dk+
J /

+US)(8, p, )V.
Consequently, we may conclude that

ﬁ—;’ﬂi_o
do — do

Therefore, for the correcting function U(9) we have the following equalities

U(g) = %&Cp;‘a + A], Al COﬂSt a # 1;
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U = Cln(p,/Aa),

To complete this subsection, we make the following comments. When
we consider a system of particles with the spectrum

Ay =const, a=1. (26)

w(k, 0, p) = e(k) + Uspec(8, p),

where ¢(k) is the kinetic part of the spectrum, Uec(6,p) is the energy
of interaction of a particle with an effective mean field, and 6 and
p are, respectively, the temperature and density of particles, then a
thermodynamically consistent approach requires the following effective
Hamiltonian .

Hep =Y w(k,0,p) & (k,a)a(k, @) + Ueorr (8, p)V,

ko
in which & (—I;, a) (a(;,a)) is the operator of creation (a.n;lihila.tion) of
a particle of any statistics with momentum £ and in a quantum state

a; V is the volume occupied by the system. The functions Uspec(9, p).
and U.,,(0,p) are connected by the system of differential equations

MUspec | MUeorr _
o T o8 "
auspec az’(corr ‘
= 0. 27
06 29 =0 27)

The first approximation, as is discussed above, can here be found with
the use of the Hamiltonian

Hep =Y w(k,0,p) &

ko

(Za a)a(—’;a @),

together with the restriction rules in the course of differentiating.

3.2. Mixture of glueballs

The effective Hamiltonian of a mixture of glueballs of different sorts (the
limiting case of the mixture of plasma with glueballs when p, =0 ) is

12
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written in the form

HO = 3 5o+ ME + U ((06))) Eus (K, 9)ans (B, )+

—_

n ks .
+US({pa}V. (28)

+ - . o
where a,; (k,8) and a.j(k,s) are operators of creation and annihi-
—

lation of a glueball of sort nj with momentum k and in a spin state
s satisfying the Bose commutation relations; U,(‘?) is the energy of
interaction of a hadron of sort nj with other glueballs; {pg} stands
for the set of densities of glueballs; U(©) is a correcting function. Upon
standard computa.tlons we ha.ve expounded above we arrive at the system

of equations

nj Pri apmt * apmi =0 (le)’
u‘c"’ au(G> -
Z Prj 00 0. 4 (29)

While constructing a thermodynamlcally consistént model it is reason-
able to give up a rough Van der Waals approach to glueballs and use an
approach of the Hartree type. Note that the hadron spectrum given in
a Hartree approximation provides good results in the description of the
high-temperature gas of hadrons produced from the vacuum [37]. In our
case it is convenient to employ the following approximation

U = Anilo = pa), (30)
where p — p, is the density of gluons in glueballs,

p_ Py = Z_n/’ni'
nj

and A,; is a constant of dimension Mev=2. To get certain results from

-~ (29) and (30), we take two arbitrary sorts of glueballs nj and mi. It

is obviously that
au(G)
Opn;

Z nAlpPlP

lp#nj

—nApipnj —
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This equation can be transformed to

U@

5 = ~Ani(p—p5) = D pio(Apn — IAnz), (31)
Pni Ip#nj
integration of which gives
Anj,
UG = ._—2-77’(p - pg)2 -~ Z PniPrp(Apn — 1AL;)+
; Ip#nj
+¢({s5}), (32)

where {p;} denotes the set of glueball densities without the variable
pnj - Diflerentiating (32) with respect to p,; we arrive at the equality

BLI(G) Aﬂ m ' 03]

apm‘ . (P pg) pnj(Amin - mAnj) 4 5;0—'
On the other hand, from (29) we have

au(G)
) 0 : —mA miPmi — Z mAIpPIp,
Pmi Ip#mi
and , hence ,
Oy m
apm (p Pg)( A - Ami) + pnj(Amin - mAﬂJ)—

— D sl Apm — 1Ay,

Ip#m:

Since the function (p({pG} should be independent of Pnj » WE obtain
the relation

nAm; = mAnj,

(Vn,m). (33)

Using the notation ® = Ay , from eq.(32) a.nd relatxon (33) we get the
following result

Us = 5 ~8(p - p,),

UO = ~Z(p=p) + s, do = const, (34)

14
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where A; is to be put zero because for ® — 0 the mixture of interacting

glueballs should transform into the ideal gas of glueballs. .
The free energy of a system of glueballs with the Hamiltonian (28)

and specifications (34) in the thermodynamic limit looks as follows:

@ N
FOb,V,{N}) =) pniNuj = (0~ ps)*V+
nj

+ Z GEnJV k2 In [1 — exp (_wnj(ks {Pg})

where

— ""”)] dk,  (35)

re— ¢
wﬂj(ka {PG})== k% 4 M:_; + ng(p - pg)’

and {Ng} is the set of numbers of glueballs, N,; is the number of
glueballs of the sort nj . The chemical potentials p,; are determined

by the equation
-1
“"’) - 1J dk.

To complete this subsection, we note that for any effective Hamiltonian
of a system of particles of several sorts having the form

sz—ZZ (k) +Us(0, {p}) & (k,a)ai(k, ) + U(9, {p})V, (38)

the following rela.tlons

(36)

(37)

ou;
it A =0, (V5
Zpapj 9, (V1)
ou;  ou
2_rigy 5 =" 39

are valid. In (37) ?z',- (;,a) and a;(z,a) are operators of creation and
annihilation of particles of the sort 7; €;(k) and U are, respectively,
the kinetic part of the spectrum of particles of the sort ¢ and their
interaction energy with an effective mean field; {p} is the set of particle

densities. / '
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3.3. Mixture of glueballs and gluon plasma

The mixture of gluon plasma and glueballs is described by the following
Hamiltonian

HOD = 35" [w(k, {p6)) + Unj(0, £y (06 ))] dng (F, $)ans(F, )+

nj -

ks
+ Zw(k; p) zy (—I;’ a’)ay(—lg,a)+
;,U
+ (U(OJPy’ {PG}) _'%)'(P - Py)z) 2 (40)

where wy,; has been defined in subsection 3.2, and
c :
wlk,p) =k+ yoh v (41)

.), (ag(...)) is the operator of creation

(annihilation) of a unbound gluon; 3,,1- (--.); (an;(...)) are the glueball

operators of creation (annihilation); the term ,,;(4, pg:{pc}) in the

glueball spectrum and the term U(8, py, {pc}) in the correcting function

are stipulated by the presence of unbound gluons in the system. ‘
From expressions(39)-(41) we can derive the relations

ou

mt v Pg .
Bp, + ap, = O e

In'the expression (40) 39 (-

a
me: um‘ d = anC Po

apn] pa.H ? (VTI.]),

mt au
me, 2%+ 35 =0 (42)

which give the following solutlons.

a)if a#1,then
u an

apnj ’

pa

16

RS P '
=1 —C!Cp +7 %:Pruapnjr (43)

where 7 is a function of the temperature and densities of glueballs;

b)if a=1, then
uﬂ] P ng..i__a..r’_l
P Pnj

Ll Cln( ) + h— Z a pmn (44)

where ), is a constant of the dimension of the particle density and
is a function of the temperature and glueball densities.

Further consideration will require the free energy of the mixture of
gluon plasma and glueballs which has in the thermodynamic limit the

following form
&0V / I [ — exp (-‘L@fﬁ:i)] dkt
22 0
-0 .

n,()V / 1 [ (_wnj(ka{PG})0+ Unj — #m‘)] dk%

Tox?

F@%(9,V,N,,{Ng}) =

+ (U - —(p pg)z) V i+ pgNg + Zuw i+ (45)

“nj

In this case the chemical potentials obey the relations

+o0 -1 '
po=ots [ |ox (i@%}—“—"—)—l] & (40)

+o0
i i (K, U — i\ -1
Pnj = g_;riz_ / k2 [exp (w J( {pG})o J [ J) _ 1] dk. (47)
4]

When 8,V,{Ng} are fixed and p, — 0, the free energy of the plasma
- glueball mixture should tend to the free energy of the gas of glueballs
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(35); and p,; calculated from (47), to the values of chemical potentials
determined from (36). At fixed 6,V,{Ng} and p, — 0 we have:

1) st — —o00 , which follows from (46);

—;;5— f k?In [l—exp( ﬂﬂ)-—"‘L)] dk — 0;
3) pgNy — 0, which also follows from (46);

4) pn; will tend to tl'le’soluti‘on of eq. (37) only under the condition
U0, o0y |
5) Mor‘epvér, it is necessary that
U0, (p,—0).

‘Asra result, using 4) we arrive at the equality

an C

= —N—,
6/’nj (P - pg)a

for the case a # 1, (’a'~kl) y from which we get

n= —l——i—;C(p =)' +m(0), (48)

where 172(0) is a function of the temperature. Now from formulae (48)

and (43) under the condition 5) we may for a # 1, (a ~ 1) derive the

following equalities

Us=n" —n Y
p (p— pg)™
_ l-a l—a
U= 2O - G- )
Upon a similar procedure for a =1 we arrive at the relations
U, = ng -n ¢ y
p P — Py
18

u:cm( £ ) (50)°
, A

Now it is to be verified that at fixed 8,V,; N, and when N,; — 0, (Vnj),
the free energy of a mixture of the plasma and glueballs (45) tends to
the free energy of the plasma (21). We will not overload the paper
with cumbersome algebra and thus expound only basic results of our
computations. It appears that the free energy is continuous at the point
0,V, Ny, {Ng} , where N,; =0, (Vnj),only at a <1 and the constant
A1 in formula (26) is to be taken zero. Consequently, feasible values of
the coefficient a obey the relations

Ta~1, a<l. (51)

Note is to be made that parameter «a is directly related to the degree
of screening of interactions of gluons in plasma.

3.4. Discussion of results

Solving the systems of equations (1)-(3),(13),(46),(47),(49) for various
sets of parameters ®,C,a we get the following results. The behaviour
of the mixture in the model with correcting fthtions is analogous to its
behaviour in the model with the restriction rules. Indeed, investigating
the situation, when the parameters C and a are fixed, we find at
a sufficiently small ® (both in the SU(2) and SU(3) cases) that
the deconfinement is a continuous crossover. With increasing ¢  the
continuous crossover turns to a second-order phase transition according
to the Erenfest classification and then to a first order phase transition.
With further increasein @ the weak first order transition (Ae << csg) )
becomes strong (Ae ~ €sp) .

However, in contradistinction to the model with restriction rules that
fails to describe the pressure of SU(2) and SU(3) systems well, the
energy and pressure of the mixture can now be described in agreement
with the lattice data with an appropriate choice of parameters. It is to
be noted that this result is achieved due to the influence of correction
rather than due to increasing number of the parameters. In Fig. 7 the
relative energy ¢/esp and pressure p/psp for the SU(2) mixture
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are plotted computed by our method (a solid curve, a = 0.62, ® =
2.5 - 103 Mev=2, CYG>+1) = 175Mev ) and with the use of lattices
(circles and squares are drawn for the case 0z = 210Mev , data are
from ref. [5]). For the SU(2) system, the calculations within the model
with correcting functions well approximate the lattice data provided that
@ = 0.6 < 0.65, ® ~ 2.5-10"3Mev2, CY/G+) x 175Mev , and in the
mixture of gluon plasma and glueballs there is either a continuous phase

transition accompanied by a high peak of specific heat (Fig. 8) or a '

second - order phase transition (according to Erenfest). It is interesting
that in the SU(3) case our results are in good agreement with the
lattice results when « =~ 0.5+ 0.65 . This interval includes also the
range of « value for the SU(2) mixture, therefore, it may happen that
the parameter « is the same in magnitude both for the SU(2) and
SU(3) cases. The acceptable values of C and ® are in the regions

CV/Ba+1) 5 175 + 2T5Mev, ® = 5:107% +2.10"3Mev?

and the temperature of a first - order phase transition varies within the

range 0g.c =~ 225 + 50Mev , which corresponds to the lattice estimates

[6,9]. In particular, in Fig.9 we show the functions ¢/esp and p/pss
for the SU(3) system ( o, the lattice data for the energy from refs.[7,8];

A, the lattice results for the pressure [7,8];' O and ¢, the data for the

‘energy and the pressure from ref. [6], solid lines are predictions of our
model at & =0.62, & = 10~3Mev=2, C¥/Go+1) = 225Mev ). Note that
the lattice results for the energy and pressure shown were obtained with
corrections using the weak coupling expansion [5,6,38] and for the case
04ec = 225Mev . Our results agree with the conclusions of the approach

[5,6,38] that when 6 > 0. , glueballs still play an important role in

the system, as well, and for a continuous crossover this role being larger
than for a first - order phase transition. What more, the influence of
gluon plasma is significant when 6 < 4. , though in a narrow interval
of temperatures (Figs. 10 and 11)." As is known, an unbound gluon
cannot appear in vacuum when p =0 owing to its energy being infinite,

which also follows from the shape of the plasma - gluon spectrum in our .
model. However, in a medium consisting of glueballs p # 0 , which

makes the energy necessary for production of an unbound gluon finite.
Therefore, it is no wonder that the gluon plasma influences the behaviour
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Fig.1 The dependence on témperature of ¢/esp for the SU(3).
mixture at B4 = 235Mev and different values of 73 = (3vg/dm)'/3:
1) r90=0;2) r90=05fm;3) ro=0.7fm;4) roo=08fm;

5) 120 =1fm. |
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Fig.2 The concetration of the glueball phase wg versus temperature in
the SU(3) mixture at B'/4 = 235Mev and different values of 7 :

1) 150 =0;2) r20=0.5fm;3) r20=0.7fm; 4) 70 =0.8fm.
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Fig:3 The relative heat capacity c¢,/c,sp versus temperature for the
- SU(3) mixture ( c,,sp is the heat capacity of the ideal gluon gas) at
B4 =235Mev , ry = 0.8fm =~ ri(235) .
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Fig.4 The relative energy ¢/esg versus temperature for the SU(2)
system: the solid line is for the model with restriction rules, B4 =

165Mev , ry0 = 1.2fm ; the points present the lattice data from the

paper [5)].
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Fig.5 The concentrations "wy, and wg versus temperature for the
SU(2) mixture at B4 = 165Mev , ryo = 1.2fm .
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Fig.6 The dependence on temperature of the value (e + p)/(esp + pss)
for the SU(3) mixture: the solid line i is for the model with restriction

rules, BY/4 = 220M ev , T30 = 0. 72fm the pomts are the data for the
lattice 24% x 6 from Ref.[37).

23



100

o
1.E/Eg, SUI2) /o/o/r—T
t2.P/P, SU{2) > 0

0.50- (1) ) / /d/
- ,; o
060F
2

0.0}
0.20f

0 1 P 1 1.,

0 100 200 300 400 500

8[Mev!}

Fig.7 The behaviour of €/esp and p/psp versus temperature in the

SU(2) system: the solid lines correspond to the model with correcting
functions at a = 0.62, ® = 2.5-10"3Mev2, Cl/(s"“) = 175Mev ; o
and U are lattice data from Ref.[5].
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Fig.8 The quantity c,/c,sp versus temperature for the SU(2) mix-
ture in the model with correcting functions at « = 0.62, ¢ = 2.5 -

10‘?Mev’2, CV/@etl) = 175 Mev .
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Fig.9 The quantities ¢/esp and p/psp versus temperatures for the
SU(3) mixture: the solid lines are for the model with correcting func-
tions at a = 0.62, ® = 10">Mev, C/Ca+) = 295Mev; 0 and A -
are lattice data from Ref.[8]; U and ¢ are lattice data from Ref.[6].
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Fig.10 The concentration w, versus temperature for the SU(2) mix-
ture at a =0.62, ® =2.5-10"3Mev=2, CV/Bt) = 175Mev .

100

Yg

080¢
060}
040

020}

il N

0

g . 1&0 2| ol ) 460 500
MeV
Fig.11 The concentration w, versus temperature for the SU(3) mix-

ture at a =0.62, ® = 10"3Mev=2, CV/(B+) = 225Mev .
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of the system even below the transition temperature. Deconfinement in
our approach is not the transition from a state when the system has no
color objects to a state with color objects; it is rather the transition from
a state dominated by colorless clusters to a state dominated by color
objects (gluons).

Besides, we would like to note the following. The integral

+o00
6 k*1n [ — exp (—ﬁg—/L>] dk,

972

car'j‘beﬁrewrivtteri by ,C,hariging variables k — 7 = k+C/p* into the form

" 26:2 / ('*r - pga)?ln [1 —'exp (_%)] dr, k= pga

k-

As p is a function of the temperature, the above construction is an inte-

gral with a cut-off momentum dependent on 8. Therefore, introduction

of the cut - off momentum [5,6,38] to a certain extent simulates interac-
tion of plasma gluons with a medium composed of gluons and glueballs.
The palette of our results is more rich as compared to the model studied
in [5,38] because particle interaction is more naturally described by de-
termining the gluon and glueball spectra dependent on p, and {pg}

and coexistence of phases is taken into account in a way consistent w1th

general rules of statistical mechanics [36]
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‘ CTaTMCquecxmm noaAXoA K AEKOH¢aMHMeHTy
17 B YUCTO . Kanmﬁpoaquux Mouenﬂx

I'Ipep.narae'rc;l HOBbIA CTaTI/ICTVNeCKMVI I'IOAXOA K paCCMOTPE'

"HUK AeKOH¢aMHMeHTa B SU(2) n SU(3) rmoHHbIX cucTeMmax.
MokasbiBaeTcs, YTO COCYWECTBOBAHWE TMGONOB U FMOHHON -
“NNasMbsl TePMOAMHAMUYECKN BbIFOAHEe, 4YeM peanusauus cucre-
Mbl B BUAE COOTBETCTBYKWMX YACTBIX da3 . Mpu 9ToM yunTbiBa- |
eTcs B3aVMOAENCTBNE NNa3Mbl U rnwodonos. PesynbTaThl nccne-|
‘| - aoBaHuA oueHb xopomo cornacymTca c pemeTquumm npeAcxa-
'}3aHMﬂMM : . o i ,
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Shanenko A.A., Yukalova E.P., Yukalov V. 1. ;7 £2-92-329
|- Statistical Approach to. Deconf1nement S i
| in-Pure Gauge Mode]s o

We suggest - a new: stat1st1ca1 approach for cons1de-~“f'

~ring deconf1nement in SU(2) and SU(3) gluon systems. A [
- km1xture of coex1st1ng glueballs and of the gluon plas- | -
=~ “ma=is .shown . to be thermodynam1ca11y more profitable .
| than the corresponding pure phases. The ‘interactions of’
~gluons and’ g]ueba11s are taken into account. Our re-
J'.,su1ts are:in- a very good agreement w1th numer1ca1 1at-‘=
ﬂ*t1ce ca]cu]at1ons : : i Dl

The 1nvest1gat1on has been performed at the Labora—f

4.tory of Theoret1ca1 Phys1cs JINR.

- Prepnm of the Jdinl In,s'ii/u;’ley fer Nucie;ir ReSeérch. Dubnal992 : “ e




