


The renewal of interest in extended Nambu-Jona-Lasinio (NJL)
models happens basically due to the fact that they share a lot of
conceptually important features with low-energy.QCD [1-8]. Thus,
they incorporate all relevant symmetries of the quark flavor
dynamics of QCD including explicit symmetry breaking terms due to
quark masses. The most important moment is that they offer .a
simple scheme to study spontaneous breakdown of chiral symmetry
and its manifestation in hadron physics. This concerns, in
particular, the transition of current quarks into constituent ones
due to the appearance of a nonvanishing quark condensate, the
emergence of light composite pseudoscalar Nambu-Goldstone bosons
as well as of heavier composite vector and axial-vector mesons.

In view of these successes, one should, however, not forget
that NJL models are incomplete since they do not contaln a
reliable coqfinement mechanism. In the present paper we con51der a
new type of a QCD-motivated NJL-model including gluon condensatlpn
as well as a nonperturbative gluon mass which provides a possibie
machanism of quark confinement. In the first step the dynamical
running quark masses are .determined from the Schwinger-Dyson (SD)v
equation taking into account a specific form of a nonperturbatidé
gluon propagator. Using this solution as input, we describe the
masses and decay constants of low-lying o, n, p and a, mesons from
the Bethe-Salpeter (BS) equation. Finally, on thlS ba51s the
fundamental parameters of the gluon propagator are extracted to
obtain predlctlons for the dynamical gluon mass (equ1va1ent1y, the
gluon condensate) and the low- energy value of g /(4n) '

The starting point of our considerations is the follow1ng
(Euclidean) generating functional describing an effective -form of
truncated QCD _ '
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Slnt= %g
is the part of the effective action corresponding to quark
interaction via gluon exchange with the nonperturbative gluon
(x-y)=8"
The corresponding gluon propagator is determined by the path-

propagator ng;; SHUG(x—y) taken in the Feynman gauge.

integral average of the gluon field G;(x),

2ab

(x y)=<g’c? (x)G (y)> . (2)

Next, the gluon field Gu(x) is assumed to be decomposed into a

constant condensate field GZ

and the quantum fluctuations g;(x)
1) .

arround ‘it

G;(x) = G +-g;(x) . (3)

il
(3) and <g;(x)>=0.
position of the nonperturbative gluon propagator into two parts:

Taking into account eq. one obtains the decom-

“e (x-y)=<g’i o> + <g’gh(x)gp(y)> . (4)
Note thét, taking into consideration the transformation of the
‘integration measure DG® —DG Dg and the normalization factor
i[fDG;e'S “! appearing in (2), the average of the condensate field

in (4) is just given by integrating the constant field Gu over all
directions in color and Lorentz space.
From symmetry considerations the first term arising from the

nonvanishing gluon condensate can be written in the form

52%s
2. a b _ yy 2.2
<gGqu>-——3—2——<gG>.
Moreover, the second term in (4) will be approximated in the low-
) energy region by a term s§° *s (4)(x y)-g /m in”the'spirit of the

lJ

usual NJL-model. Such an approximation is suggested by the fact
that for the shifted gluon field g *(x)

dynamical gluon mass  connected with the gluon condensate by the

there might arise a

1)Due to the fact that local gauge transformations miX’G; and

g;(x) the separation (3) becomes possible only in a fixed gauge.
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mz = 15 =5<g 6% - (5)-

The above motivations 1lead us to consider in Euclidean
momentum space the following simple low-energy model for an
effective nonperturbative gluon propagator corresponding to the
decomposition (4)

, G(q) = [us'®

Here the dS-function contribution arises from the constant gluon

(@) + Ge(A*-q®)] . (6)

condensate. The second term emerges from the low-energy massive
giuon propagator,where the 6-function corresponds to. the usual
regularization of ‘the NJL-model with a momentum cutoff A. The
constdnts g and G are. related to the unknown nonperturbative
dynamics and can be expressed through the QCD coupling constant g
and the dynamical gluon mass m_ as follows:

42 2
u = m_, G =

(7).
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G
In this paper the constants g and G will: be treated as free

parameters to be fixed from the spectroscopy of mesons.

After Fierz transformation the action (1),becomes

s = ffdx dy G(x-Y) q(x) (y) q(y)

int

(x), (8)

where Me are tensor products of Dirac, flavor and color matrices

of the type
| {1,19%, 2o, Lo% 1 (30T (J1)°
) 2

t°=1) with ©*

being Pauli . matrices, -and we have restricted ourselves to color-

Here we consider the'SU(z) flavor group (a=0,1,2,3;-

singlet qq contributions.

After introducting in a standard way [10-12] scalar (S),

pseudoscalar (P), vector (V) and axial-vector (A) Dbilocal

42)For a discussion of this issue we refer to ref.[9]. Ve
slightly differ from this work by the factor 15/32 in front of eq.

(5) instead of their value 1/4.



collective meson fields, the effective action (8) becomes bilinear
in quark fields and the integration over quark degrees of freedom
may be performed to obtain a bilocal effective action for
collective fields. Defining the vacuum configuration of fields to
minimize the bilocal action, we obtain SD-type equations which
have the following form for translation-invariant solutions:

a=0
S:=o(x—y) = gG(x-y)tr(D(x—y)T2 ),

°a=o(X_Y) = gG(x-y)tr(D(x—y)ivuzi——) , (9)

H

A

and P:=Aza=0 by parity-conservation of the vacuum. Here D(x-y) is
the propagator for u- and d-quarks moving in the background of
composite meson fields parametrized in momentum space by the
relation ‘

0 -1 e 150 ) 1.0 . ~
(" (1) = iq + zvo(q) + m+ 35 (q) = id(q)q + m(q) . (10)
The "running" quark mass m(q) and the function d(q) are defined as
solutions of the equations

16 d'q m(q)
m(p) = m+ = G(p-qQ)—————"31 |
° 3I(zn)“ q®a®(q)+m?(q)
8 d'q o d(q)qu
(d(p)-1lp, = —J G(p-9)————— . (11)
o 3)em® q®a®(q)+m®(q)

following by inserting the ansatz (10) into (9). The "running"
constituent quark mass can be defined as mcdn(q)sm(q)/d(q).

Then let us expand the bilocal effective action over the
fluctuations pa(x,y)=Pa(x.y), af(x,y):Ag(x,y) and sa(x,y)=Sa(x,y)—
Baosg(x—y), vg(x,y)=Vg(X,y)—8aoV2u(x—y) of the collective fields
around, their vacuum expectation values. Varying the-quadratic part
of - the -bilocal - action - over the : fluctuations S P» vg, ag
(a=0,1,2,3) and neglecting (p-a)-mixing, for:simplicity, one gets
the following BS—type'equations for the corresponding bound state
vertex functions (fig.1)

Sa(qz'q1) _ 16J d4q
p,(a,.q,) (2n)

s (9,-9,9 -q) |
(i)(ql_q,qz_q) a' 2 1 : (12)
p,(q,-q9,q -q)

G(q)B8

3 4

a, )] gf g Ypademd 97D
e o gJ 49 g(q)0' ¥ (q~q,q,-) | V2 P T (13)
a (q,,q,) (2m) 3.(4,79: 9~ D ‘
where .
AB(1>(q1,q2) = [_(ql.qz)b(ql)b(qz)ic(ql)c(qz)],

; +
' D' (q,,q,) = (dlal+qa’q)b(q,)p(q,)

* + 8" [(q,-q,b(q,)blq,) tc(q,)clq,)]

(the indices "t" refer to the upper or lower part of the vertex

components)>and

-m(q) -d(q)
c(q) = —2P | p(q) = ——ND___
q’a®(q)+m’(q) q2d®(q)+m(q)

Let us introduce the relative and absolute momenta q=%(q1+q2)
and Q=(q1—q ), of the qg-system, respectively, and expand .the
(“)(ql—q,qz—q)zﬂ(i)(Q,q) in eq.(12) over Q@ near Q%-0
taking into account only the terms up to the second order. Using a

function B

factorizable ansatz
s (q,,q,) s_(q)s(Q)

p,(@)P(Q)

s (q,0Q)

p (a,,q,) p,(q,Q)

2

one gets for Q2=¥H the foiloWing mass functional  [13] for

composite scalar and pseudoscalar mesons

S 2 2
4 p,(q) -1{p (y)
W= L -24J—g—ﬂ—zréi’(q) : + 2atylen] | ,
= £, (2n) s“(q) s“(y)
- . a a
a p2(q)
£2 = Gjlflll—z[lii)(q) - qZI;i)(q)] : (14)
- (2m) s_(q)
Here )
Iéi{= (qzdz + mz)/az" I:i)=(—d2 M - ZQDI;i))/QZ ,
() oo - P . 3 =2
. I,%'= [+# - (20F - D)1 _“']/Q" ,
with D=d®+2mm’, a=q2d2+m2, F=mm'’+m’2%, M=2mm’, ;t=2mm"--m'2 and



3)

m=Lpn etc. It is not difficult to see that this mass functional ‘ Using the trial ansatz for vertex functions
dq S {s(@),p(q),v(q),a(q)} ~ m(q) - m 19
is minimized by the solutions of the BS-equations. .plad,vial.atq d o (19)
In the same way the following ansatz one gets from eqs (14) and (15) the following formulae for meson’
v masses: : :
Va9, 9,) _ V. (3 Q) C (0.0.-0% ) v (pv(Q) . . A2
a, (q,,9,) a, (q0,Q) T v pyae) | m(s)-m
Ha 2’ ™ Ha ’ a m2 =m gé s-ds 0
C A _ T °r2)l(an)® sd®(s)+m?(s)
which is transversal in momentum Qu leads from eq.(13) to mass £ L

functionals for vector and axial-vector composite mesons:

0
T [m(s)-m 1[2m*(s)+m_(sd?(s)-m3(s))]
-1 v (y)} » m? = m_4Js.ds m(s)-m ]1[2m"(s)+m (sd"(s)-m"(s ,

ve (q)
M= 24Jd Sy @ | 4 | v sfaty[ecn] o Tor2 ) (amy? [sa®(s)+m? (5)1°
£2 (2n)* al (q) al () %
+ ¢
£2 d’q 1 255 (o Vfla(q) S (15) : 2 o 24[s-ds [m(s)-m_] [m(s)( sd?® (s)+m(s))+m ( >8d®(s)+m?(s))]
=6 - - . - sy ’
* J(ZH) [ d 1% 1 ] aZ (@] ) P -off,o(‘ln)z. , [sd®(s)+m®(s)1? : .
Here A
e .
+) o, L . .. - 2 ﬁF'ds [m(s)—m 7 [m(s) (zsd (s)+3m(s))+m (ESd (s)-m (s))]
= =(9—d £ w?)/Q* , JP=(-d’+ 4 - 20038 ")/Q° , : : 1 %2 J(am?® [sd®(s)+m®(s)12
. ' R 10 . )
‘-’—[+M - (20F - D*)J¥']/Q° ' ' AR - (20) -
. C . ’ Here
with 3;i)=(§—q2d2 + mz)/az. ‘ A® ,
. . ) 2 s-ds (&3] +) 2
The substitution of the model gluon propagator (6) into fL,e =6 ) 2[11 (s)-sI,” (s)]Im(s)-m 1",
eqs.(11) leads to.the system Qf equations , : 0( me
~ 2 2 : 2
m(s) = m+ —2MEL___ . peaqs)-1) = 2S00 (44 | : L
sd®(s)+m°(s) . sd®(s)+m°(s) 2 = 6Js-ds [J(+)(s) sJ(‘)(s)][m(s)-mo]z . (21) .
where for convenience we introduce the notations k 0(4 ) )

are meson decay constants.

antv? = g, an'c® = g ; (17) .
The ansatz (19) allows us to reproduce the relatlons between

2
A masses and decay coupling constants of mesons obtained in ref.[1]

m=m +T¥2m)*H(n), M(A)zjs-ds m(s) (18) : within the usual NJL-model:

° : (4m)? sd®(s)+m’(s) - : .
0 3)Such an ansatz follows for pseudoscalar mesons from Ward -
and s=q .

- identities. As we shall see it makes also sense for. the other
mesons (comp. discussions around eq. (22)).

(<]



2, 2 2, 2 2 2 2,
m_x n+4M (N, fo~f m’ ~mp+6H (n), fp~—fn. (22)

2-
n!
s 1

- 2
2
where MZ(A) lEJS ds m”(s) . In the 1limit of chiral
(4n)“|{sd”(s)+m“(s)

symmetry (mo=0) the relation

m2 fz -m f

2
f
al a1 P

2=m22.
p g o
follows from eqs.(20) and (21). )

The SD equations (16) can be solved using an iteration method
with free parameters m, v, T and A being fixed from the
experimental values of masses mn=135 MeV, mp=770 MeV, m o= (1260 *
30) Mev band the deca& constant ,fn£93 MeV.4) y
shown in table 1 for various fixed values of the cutoff A. In the
limiting case v=0, corresponding to the usual NJL-model without
gluon condensate, a satisfactory fit of -experimental masses and
can be achieved for Ax~800 MeV. In the
general case, for v#0, the fit allows the bigger value of the mass

The best fit of the

the.  decay constant fn

m and the larger predicted value for m_.
1
experimental parameters can be achieved for the value Ax700 MeV.

Note that a
obtained in the modified NJL-model [14] where the'gluon condensate

smaller value of the cutoff Ax700 MeV was also

contribution was, however, treated differently as a perturbation.

The numerical values for the quark condensate <gg> = -12#(A) and
the "constituent" quark mass mcon(s=0) are also presented in
table 1.

4)

The present SU(2) model essentially serves us to. demonst-
rate the interplay of gluon condensatioﬁ and qyark*confinemenf
providing us with a consistent pattern of mesoﬁq properties.
Clearly, the predictive power of this type of models is essential-
ly increased for SU(3) flavor symmetry where on the basis of the
fitted model parameters, the masses and decayvcohstants of four

low-1lying meson octets are determined.

Thése results are

We should note that in the discussed model the mass of the
current quark proved to be lafger than its standard value moxSHer
At the same time the additional &-function: term in the gluon
propagator (6) provides roughly. the standard magnitude of the
constituent quark mass (see table 1) and increases the axial-’

vector mass m
1
mass m, also becomes increased for 100 MeV in average.

It is worth mentioning that the simplified expression for the
(a)

up to 1its experimental value. The scalar meson

gluon propagator glven by G(q)~$8 (q) alone proved to be not
adequate to describe the mass of p-mesons (compare also ref.
[15]). The results of ref.[12] have also demonstrated that

based on the use
1
of a simple &-function-type gluon propagator together with an

simultaneous description of the masses‘mp and m_

ansatz of type (19) for meson wave functions, 1is problematic.
Evidently, the main reason for this is the absence of . a
contribution to the quark condensate proportional to M(A) 1in
eq.(18) which is related to the additional NJL-like contribution
to the - gluon propagator (6). This fact  just allows one - to
reproduce ‘the :well-known NJL-model  relations for the masses M
o mal and to get a correct simultaneous fit of their
experimental values using now "running" quark masses m(s).
Usuaily, after Fierz transformation of the gluon exchange
only one coupllng constant G does appear in the effective four—
Then one has to

m m

o

quark Lagranglan of QCD- mot1vated NJL-models.
introduce by hand another coupling constant G, in ‘ordgr to
describe simultaneously the masses of n- (G ) and p-mesons (G )
[1]. In. the last paper a gauge invariant regularlzatlon was used
for quark loop calculations ‘so that quark loops do not contrlbute
into the p- meson mass. The mass term then emerges only from ‘the
quadratic field terms arising in the bosonization procedufe from
the Gaussian path;integral. Let us emphasize that the present
apbroach does contain the same number of coupling constants (u, G
instead of G1’ Gz) as ref.[1]. 7 4

On the other hand, the choice of a gauge-invariant regulari-
zation' for calculating quark loop diagrams emitting p-mesons is
not obiigatdry in general because the p-meson is massive., For



instance, in nonlocal quark models [12,13]:the vertex .functions of
mesons are claimed to regularize themselves all loop integrals
which leads to a finite contribution of quark loops to the p meson

mass.. To simulate this situation in the present extended . QCD-.

motivated NJL-model we have calculated the corresponding quark
loops without requiring gauge invariance of the regularization
procedure. The used momentum cutoff can be understood to model, in
some sense, the effect of form-factor functions.

Fig.2 shows the solutions m(qz) and d(qz) of the SD equations
(16) in the extended QCD-motivated model with the gluon propagator
(6), analytically continued into Minkowski space. The values A=700
MeV,'” =14 MeV, v=360 MeV and t"f=1965‘MeV were used. Due to egs.
(16) the denominator of the quark propagator satisfies ‘the

relation

_ v’m(q®)

2, ~ >0
m(q~)-m

_quZ(qZ) + mZ(qZ)
which in Minkowski space obviously guarantees the absence of a
pole of the quark propagator for the solutions-m(qz) and d(qzy
Such a property is generally believed to be a possible realization
of -quark. confinement.
It is a well known fact that in the standard NJL-model with
constant quark masses the quark loop diagram for p—p transitions
contains an imaginary part'ImH ~|1"p>1T |

the'p—meson propagator. Thus, the decay p—qq 1nto free quarksr

would be allowed, in contrast to the idea of quark confinement.
Clearly, in our model the quark loop for p—p transition does not
contain such an 1mag;nary part because the quark propagator cannot
,he put on the mase shell. In _consequence, p—aq decay becomes
forbldden. An additional argument 1s ‘that now p-meson decay also
becomes< 1mposslb1e due to purely klnematlcal reasons because
2mc (q )>1GeV for q2~ 2 ‘ -
from . the behaviour of the running quark mass m(q ) and the

in Minkowski space. This 51mp1y follows

function d(q ) shown in fig.2. ) . IR
The parameters v=360 MeV and t-1=1965 MeVv, fixed together

with A and m, from the experimental values of meson. masses and the
decay constant fn’ lead to the following estimates  for the

10

which contributes into

dynamical gluon mass and the QCD coupling constant g (see eqs. (7)
and (17)):

2 .
2 _ 45 2 2 [« 2.2 _ N
m. = 1g¥ = (603 MeV)“, an - gVt o= 2.19 . )

This can be compared with the estimate

= [(806 275)MeV]>

obtained from the value of the gluon condensate

2
g, a 2. _ 4
<Z;5(GHV) > = [(410 * 80)MeV]

taken from *e*e”—hadrons [16], wusing eq.(5) and

172
<g6%> = [%"—<—-(c ) >] = —(1.72 + 0.68)GeV?
4n ‘ ' ,

where sz is the field utrength tensor of the gluon condensate.

Thus, we have demonstrated that the above new type of QCD-
motivated NJL-model, based on  -the idea of gluon condensation and
dynamical gluon mass, reproduces earlier realistic eétimates of
masses and decay constants of low-lying mesons. On the other hand,
it is important to note, that all this is now achieved with a
running quark mass which guarantees the absence of a pole,in the
quark propagator, denerally interpreted as a signal of quark
confinement. As a result, a well-known deficiency of the standard
NJL-model, - the possible decay‘ p—dq into free quarks, is now
cured. Finally, let us mention that there are another approaches
to quark confinement based on infrared 1/q4 behaviour of the gluon
propagator  [17]. As it has been widely discussed in the litera-
ture, the confinement properties of the quark propagator in this
case strongly depend on the infrared regularization chosen.

We thank M.K.Volkov (JINR Dubna) and E.Wieczorek (DESY-IfH)
for fruitful discussions. ’ \
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q Table 1. Model parameters A, mo, T, v, constituent quark mass,
1
quark condensate and masses and decay constants of mesons
(all quantities are given in MeV)
==
Q NJL-model limit Gluon propagator (6)
q A 700. 800. 900. 1000.} 700. 800. 900. 1000.
2 mo 13.8 11.3 9.2 7.7 14.0 11.5 9.9 8.8
. . . : ! 2004. 2380. 2739. 3086. |1965. 2358. 2725. 3077.
Fig.1l. Bethe-Salpeter equation for guark-antiquark bound states. ’
v 0. 0. 0. 0.| 360. 350. 630. 595.
hﬂ"?kCWVSkllsfﬂlcel | mcon(s=0) 210. 184. 162. 152. | 338. 311. 447. 419.
1
28t 1 <qe>'’® |-182. -196. -207. -219. [-181. -194. -203. -215.
2L 7 '
fn 93.. 93. 93. 93. 93. 93. 93. 93.
2 20t m 135.  135.° 135. 135.| 135. 135. 135. 135,
. O
L6} £ 73. 78. 79. 81.| 70. 15. 74. 76.
~
T 2} - ma 424. 361. 315. 294.! 553. 418. 453. 401.
£ .
’ 8L 1 fp 81 80 78 78 82 81 81 79
B B mp 729. T70. 810. 859.] 770. 800. 874. 901.
0 h fal 57. 61. 63. 64, 54. 59. 59. 60.
18 - B m 1141. 1089. 1070. 1092.|1308. 1198. 1317. 1278.
) 16 -
~
.z, -
'U 1.4 [~ -
;
12 |- .
10 1
qZ, Gev?
Fig.2. The behaviour of the solutions m(qz) and d(qz) of
the SD equations (14) in Minkowski space. '
‘12 13
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w1thout poles rea11z1ng quark confinement is conside-
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