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1 Introduction 

The existence of intimate relationships between W-algebras .on one hand and conformal 
field theories and integrable systems in 1+1 dimensions on the other (see, e.g, [1-12]) is 
a fairly well~established fact which has profound and far-reaching implications in mod
ern mathematical physics, especially in what concerns the string theory and 2D·gravity: 
One of the most exciting discoveries in this area is the understanding of the p1·operty 
that various W algebras and their superextensions provide the second Hamiltonian str.uc~ 
tures for the generalized KdV and KP hierarchies as well as superextensions of the latter .. 
For instance, the. W2 (Virasoro) algebra defines the second Hamiltonian structure for the 
KdV hierarchy [5), W3 for the Boussinesq one [6), WI+oo for the KP hierarchy [7), etc.·A 
natural description of the correspondence between the W algebras and 1 + 1 integrable 
hierarchies is achieved in terms of pseudo-differential operators [8). It is of interest to un
derstand these remarkable relationships proceeding directly from the intrinsic geomet.ries 
of W symmetries. Besides providing new insights into the geometric origin of the above 
hierarchies, this could shed more light on the geometry·of the associated theories, such as 
W gravities, W strings, etc. 

To understand the geometry behind a symmetry group G, the key concept is to·con~ 
sider it as a group of transformations acting on the coset space G / H with an appropriately, 
chosen stability subgroup H. This is the content·ofcthe famous nonlinear (or coset) re
alization method [13). In the papers of two of us (E.I. & S.I{,) [12, 14, 15], it has .been 
argued that the most direct and fruitful way of revealing geometric features.of W sym
metries is via this method. However, it,had been originally invented to treat the Lie type 
symmetries, therefore, its application to WN symmetries encounters difficulties because 
WN algebras for N ~ 3 are not Lie ones. A way out of this difficulty has been proposed · 
in ref. [12]. It consists in replacing WN algebras by some associate infinite-dimensional 
linear algebras W,v" which appear if one treats as new independent generators all the 
higher-spin composite generators present in the enveloping algebra of the basic W N gen
erators (these are the spin 2 and 3 generators in the W3 case, the spin 2,:J and 4 ones in 
the W4 case, etc). WN symmetries can then be viewed as particular realizations of linear 
W,v' symmetries. To the latter, one may apply the entire arsenal of the coset realization 
techniques. The authors of ref.[12] have constructed a coset realization of the product· · 
of two light-cone copies of Wf' and have shown that after imposing an infinite number 
of the inverse Higgs [16] type covariant constraints on the relevant Cartan forms (this is 
called the covariant reduction of a given coset [12, 14]), one is left with the realization 
of W3 on two sca.lar 2D fields which coincides with the well-known s13 Toda realization 
of W3 [4, 10). As a consequence of the covariant reduction constraints, the scalar fields 
turned out to satisfy the s/3 Toda lattice field equations (or their free version, depending 
on the choice of the vacuum stability subgroup) which thus had proven to be intimately 
related to the intrinsic geometry of W3 . An analogous treatment of the s/2 Toda system 
(Liou ville theory) in the framework of much simpler nonlinear realization of W2 (Virasoro) 
symmetry has been earlier given in [14] 1 • 

1 W2 symmetry is linear, so there is no'direct necessity to pass to something like W:f" while constructing 
its nonlinear realization. However, this necessity comes out if one tries to understand the KdV hierarchy 
in the nonlinear realization approach [17]. 
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In the present paper we construct coset realizations of Wt' (its one copy) which are 
different from those found in [12]. We demonstrate that there exists _a set of the covariant 
reduction constraints which reduces the number of independent coset parameters-fields 
to the two fields -_of conformal spins 2 and 3 identified with the currents of W3 and si
multaneously gives rise to the Boussinesq equation for these fields. Both the spatial (x) 
and evolution (t) _coordinates of these fields naturally appear as the parameters of the 
coset considered. The generator to which t is attached coincides with the Hamiltonian 
used in the standard Hamiltonian approach to the Boussinesq equation, thus establishing 
a link between the second Hamiltonian structure for this equation [6] and our geometric 
approach. The Miura map for the Boussinesq equation gets also a simple geometric in
terpretation. One enlarges the coset by adding two spin 1 generators from the stability 
subgroup and then imposes additional covariant constraints which covariantly express the 
spin:2 and spin 3 coset fields in terms of the two new spin 1 fields. The resulting expres
sions are just the Miura transformations relating the Boussinesq equation-to a "modified" 
Boussinesq equation. Thus the Miura map arises as a manifestly covariant relation be
tween parameters of a coset of W3 . Quite analogously one may construct further Miura 
map onto the two spin O fields which leads to the Feigin-Fuchs type representation for 
the spin 2 and spin 3 fields. One should transfer two spin O generators from the sta
bility ,group to the coset (the remaining generators still form a subalgebra) and impose 
appropriate inverse Higgs constraints. The zero-curvature representation for the ordi
nary and modified Boussinesq equations, as well as the relevant matrix Lax pairs, appear 
very naturally in this picture, basically as the Maurer-Cartan equations for the reduced 
cosets. The W3 symmetry of the Boussinesq equations established recently in [18] also 
immediately follows, it is recognized as left WJ°'' shifts on the relevant coset manifolds. 
The higher-order equations from the Boussinesq hierarchy can be produced by consider
ing more general cosets of Wt' with additional evolution parameters associated with the 
higher-spin generators. 

, The.paper is organized as follows. 
In Sect.2 we consider a toy example of the nonlinear realizations of Virasoro (W2) 

symmetry and show that some essential features of the entire construction can be seen 
already in this simplified situation. In particular, the holomorphic component of the 
conformal stress-tensor comes out as a parameter of some coset manifold of W2 , the 
Miura maps amount to covariant constraints on the coset parameters, etc. 

In Sect.3 we recapitulate the basic facts about the linear algebra W3
00 following ref. 

[12] and list its some subalgebras which are utilized while constructing coset realizations 
of W3

00 symmetry in the next Section. 
In Sect.4 we construct three coset realizations of W3 and give necessary technical 

details (parametrizations of the coset elements, Cartan forms). 
Sect.5 is the central, there we apply the covariant reduction procedure to the cosets 

constructed in Sect.4 and show that it results in expressing an infinite tower of the coset 
parameters-fields in terms of a few essential ones: either the spin 2 and spin 3 fields u, 
v, or two spin 1 fields u1 , Vi, or two spin O fields u0 , v0 . Simultaneously one obtains 
dynamical equations for these fields, namely the Boussinesq equation and two types of 
the modified Boussinesq equations. We explain the geometric meaning of the appropriate 
Miura maps and zero-curvature representations and piake contact with the Hamiltonian 
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formulation. · 
In Sect.6 we study transformation properties of the Boussinesq equation under left 

shifts of W3 on the original coset elements. We show that in the realization on the spin 2 
and spin 3 fields, the W3 transformations constitute the W3 symmetry of the Boussinesq 
equation revealed in a recent pape~ [18].' 

2 A sketch of nonlinear realizations of Virasoro _sym
metry 

For reader's convenience and to make more clear what kind of nonlinear realizations of 
Wa symmetry we are going to construct, we first dwell on a simpler case of Virasoro (W2) 

symmetry. We will demonstrate here that the holomorphic component of the conformal, 
stress-tensor can be treated as the coset space parameter corresponding to a kind of the 
coset realization of one copy of this symmetry. The Miura map and the Feigin-Fuchs 
representation for this component naturally appear in the framework of some extended 
coset spaces of W2 as Wr covariant constraints on the coset parameters. 

We restrict our study, like in ref.[14], to the truncated W2 formed by the generators 

W2={L-1, Lo, L1,••·,L,., ... } n?-1; [Ln, Lm]=(n-m)Ln+m• (2.1) 

In what follows we will denote by W2 just this algebra and, depending on the context, 
use the same term for the corresponding group of transformations. 

As was observed in ref. [14], the standard realization of W2 as conformal transforma
tions of R1 ( or S1) coordinate x can be easily re-derived within the framework of coset 
realization method. It is induced by a left action of the group associated with the algebra 
(2.1) on the one-dimensional coset over the subgroup generated by 

Lo , L1 , ... , Ln , ... ; n ? 0 . 

Namely, parametrizing an element of this coset as 

g(x) = e"'L-1 

and defining the group action on it following the standard rules of ref. [13] 

9o g(x) = g(x') h(x,go), 9o = exp ( L AnLn) , 
n~-1 

(2.2) 

(2.3) 

where his some induced transformation from the stability subgroup, one obtains for x 

the standard conformal transformations (regular at the origin) 

8x = >.(x) = L An (xf+I . (2.4) 
n~-1 

The above coset is not reductive in the sense that the coset generator L_1 is rotated 
by the stability group into the generators or°the latter and this causes some difficulties in 
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applying the standard techniques of ref. °[13) to the present case. The simplest reductive 
coset manifold of l½ is obtained by treating all generators (2.1) as the coset ones: 

g(x) => g(x) = exL_,. (rr e"n(x)Ln) • e"1{x)L1 eu(x)L2 euo(x)Lo , (2.5) 
n,::3 

where the coset parameters are regarded as fields given on the line manifold x, i.e. as a 
kind of golds tone fields, and the special arrangement of factors has been chosen for further 
convenience. Under the left W2 shifts the coordinate x as before transforms according 
to the rule (2.4), while the coset parameters-fields transform through themselves and the 
function >.(x). For instance, 

8uo = ->.u~ + >.' 

OUt = A I Al 1 )." - Ut - Ut + 2 
8u = A I 2).' 1 ).Ill t - U - U + 6 , e C. (2.6) 

We observe that u0 ( x) transforms as a 2D dilaton, while u( x) as a holomorphic component 
of conformal stress-tensor. To see that the latter property is not accidental, let us look 
at the structure of the Cartan forms for the nonlinear realization in question. 

The Cartan forms are introduced as usual by 

--Id- "'""' L 9 g=~Wnn (2.7) 
n,::-t 

and are invariant by construction under the left action of W2 · symmetry. They can be 
easily evaluated using the commutation relations (2.1). A few first ·ones are as follows 

w_1 = e-"0 d:r 

wo = (t1~ - 2t1i) dx 

W1 = e"0 (t1~ + (ui)2 
- 3u2 ) dx. (2.8) 

Note that the higher-order forms, like w0 and Wt, contain the pieces linear in the relevant 
parameters-fields (beginning with t13 ). Now, keeping in mind invariance of these forms, 
one may impose the manifestly covariant inverse Higgs type [16) constraints 

Wn = 0 , \fn,::0 , (2.9) 

which can be looked upon as algebraic equations for expressing the parameters-fields 
t11 , ti , Un (n 2 3) in terms of 110 and its derivatives in a way compatible with the 
transformation properties (2.6). Thus u0 (x) is the only essential coset parameter-field in 
the present case. Using eqs.(2.8) one finds the.coset fields 11 1 and 11 to be expressed by 

1, 1[1(,2 "] 
tit = 2t10 , ti = 6 2 uo) + llo . ' (2.10) 

We see that u indeed has the standard form of the conformal stress-tensor for the single 
scalar field in the Feigin-Fuchs representation (an arbitrary paran~eter that is usually 
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present in front of the Feigin-Fuchs term can be attributed to a rescaling of u0 ). Thus 
we have succeeded in deducing the Feigin-Fuchs representation for the stress-tensor as a 
covariant relation between the parameters of certain coset manifold of W2 symmetry. 

The above coset realization of W2 is not unique, there exist other ones, with less trivial 
stability subgroups. 

The first possibility is to factorize over a on·e-dimensional subgroup with the generator 
Lo 

'Ht= {Lo} . (2.11) 

The relevant coset element and Cartan forms are obtained simply by putting u0 = 0 in 
eqs. (2.5), (2.7) and (2.8). The set of Cartan forms now consists of those living in the 
coset (w-t , Wn n 2:: 1) and in the stability subalgebra (wo = -2u1dx). The coset forms 
now undergo homogeneous L0 rotations while w0 transforms inhomogeneously. The only 
essential coset field in this realization is Uti all others are expressed in terms of it via the 
covariant constraints 

Wn = 0, Vn,::t (2.12). 

For u one obtains now the representation 

. 1 
u = 3 [(u1 )

2 + u~] (2.13) 

which is known as the "Miura map" for the stress-tensor (ut is interpreted as a U(l) Kac
Moody current). Thus the Miura map also naturally appears in the nonlinear realization 
approach ,to W 2 as a covariant relation between the parameters of the coset of W2 over 
the subgroup with the algebra (2.11 ). 

Finally, one may extend the stability group a.lgebra by including the generator L1 

1i ={Lo, Li} (2.14) 

(further extension is impossible since adding, e.g., the generator L2 would immediately 
entail adding an infinite set of W2 generators and we would return to the non-reductive 
case discussed in the beginning of this Sect.). 'The set of the associate coset fields starts 
with u which is independent in this realization. All higher-order fields arc expressed 
through u by the constraints 

Wn = 0 \fn,::2, (2.15) 

which are still closed under the left action of W2. 
A few words are of need regarding the geometric meaning of the procedure of elim

inating higher-order coset fields in the above examples. In all cases, after imposing the 
inverse Higgs constraints, we are left with the Cartan forms on the stability subalgebra 
and the form W-t• The associate generators form subalgebras which are particular cases 
of what was called "the covariant reduction subalgebra" in ref. [12, 14, 15). These are 
the one-generator subalgebra {L-d in the first example, the two-generator subalgebra 
{L_t, L0 } in the second example and the algebra sl(3, R) = {L_ 1 , L0 , Li} in the third 
example. The coordinate x parametrizes the one-dimensional cosets of the correspond
ing subgroups ("covariant reduction subgroups" in the terminology of ref. [12, 14, 15)) 
over the stability subgroups while the surviving coset fields (uo(x), ttt(x) and u(x), re
spectively) together with their derivatives of any order specify embedding of these curves 
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into the original infinite-dimensional cosets of W2 • As was argued in [19] on a simple 
finite-dimensional example, such curves (and two-dimensional hypersurfaces in the cases 
considered in ref. [12, 14] and Section 5 of the present paper) form fully geodesic sub
manifolds in the original coset manifolds. Thus the role of eqs. (2.9), (2.12), (2.15) is to 
single out one-dimensional geodesic submanifolds in the cosets of W2 . 

The main points one learns from the above discussion are as follows: 
i. The conformal stress-tensor u(x) as well as the 2D dilaton field tto(x) and the U(l) 

Kac-Moody current u1(x) can be given a nice geometric interpretation as the parameters 
of coset manifolds of the truncated Virasoro (W2 ) symmetry (2.1). 

ii. The free-field Feigin-Fuchs type representation and Miura map for the stress-tensor 
appear in a geometric way as covariant constraints on the parameters of these cosets. 
These serve to single out geodesic curves in the original manifolds. 

In the examples considered here the inverse Higgs constraints are purely kinematic, 
they do not imply any dynamics for the involved fields. To gain a dynamics, one should · 
arrange the fields to depend, besides x, on an evolution parameter, a time coordinate. 
One way to do this is to add one more copy of W2 and to interpret the coset parameters 
associated with the two commuting generators L_1 as the light-cone 2D Minkowski co
ordinates. A nonlinear realization of such a symmetry generalizing first of the examples 
considered here has been studied in ref. [14]. It has been shown that the relevant inverse 
Higgs constraints not only serve to eliminate higher-order coset fields in terms of the 2D 
dilaton, but also give rise to the dynamical equations for the latter, in particular to the 
Liouville equation. Such a version of the inverse Higgs procedure has been called "the 
covariant reduction". An analogous construction for two light-cone copies of Wj sym
metry has been given in ref.[12] and it has led to a new geometric interpretation of the 
s13 Toda theory within the covariant reduction approach. In the next Sections we shall 
demonstrate that there exists another way to incorporate the evolution parameter into a 
nonlinear realization of W3 symmetry without doubling the algebra. The relevant cosets 
of W3 are a more or less direct generalization of those considered here. However, due to 
the presence of the time coordinate, it wiH turn out. to be possible to obtain dynamical 
equations for the coset fields from the covariant reduction procedure: the Boussinesq and 
modified Boussinesq equations. But before discussing this we need to recall how to apply 
the notions of nonlinear realizations to the algebra W3. As was shown in ref.[12], the only 
conceivable way to do this is to deal, instead of W3, with some infinite-dimensional linear 
algebra W3 closely related to W3. 

3 W3 and its subalgebras 

In this Section we shall briefly recall salient features of the algebra WJ°'' and its relation 
to W3 , closely following ref.[12]. To avoid a possible confusion, we point out that, like in 
[12], we start with the most general classical W3 algebra possessing an- arbitrary central 
charge. Its commutation relations can be found, e.g., in ref.[6] (see eqs. (3.1) and (3.2) 
below). 

The central idea invoked in [12] is to construct a linear algebra W3 from the nonlinear 
W3 by treating as independent all the higher-spin composite generators which appear while 
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considering successive commutators of the basic (spin 2 and 3) W3 generators. 
Let us consider the defining relations of the classical W3 algebra (6] 2 

(Ln,Lm] = (n - m)Ln+m + 
1
c
2

(n3 
- n)On+m,o 

(Ln,Jm] = (2n-m)Jn+m 

!Jn,Jm] = 16(n-:-- m)J~~m - ~(n - m) (n2 + m2 
- ~nm -4) Ln+m -

-i(n2 
- 4)(n2 

- l)nOn+m,o , (3.1) 

where 

J(4
) = -~ '°' Ln-mLm. 

n cL (3.2) 

The structure relations of W3 are then defined as the full set of commutators between Ln, 
Jn, J!41 and all higher-spin composites J!'1 (s 2: 5) which come out in the commutators 

of lower-spin generators. All the composite generators, beginning with J!41 , are treated 
as new independent ones. Thus ·W3 is formed by an infinite set of generators 

Ln, Jn, J!4l, J~•l, S 2: 5. 

It should be pointed out that the full set of commutation relations of W3 , as is clear 
from the above definition, can be entirely deduced from the basic W3 relations (3.1), 
(3.2). For our purposes here it will be of no need to know the detailed structure of these 
commutation relations. 

It will be of importance that the central charge c is non-zero in (3.1). The presence of 
this parameter strongly influences the structure of W3 . For example, the commutation 
relations of the basic generators Lm, Jm with some (of the spins 4, 5 and 6) composite 
generators(~ LnLm, LnJm, JnJm) contain in the r.h.s., apart from the composite gener
ators, also basic generators which appear just due to non-zero c in (3.1). In what follows 
the presence of such terms in the commutation relations will be very important (cf. (12]) 
and this is the main reason why we should keep c non-vanishing in (3.1) 3 • As an example 
we quote the commutator 

[ (4l] _ ( ·) JC4J 4 ( 3 ) L Ln, Jm - 3n - m n+m - 3 n - n n+m • (3.3) 

The second term in the r.h.s of (3.3) is owing to the presence of non-zero c in (3.1). 
Just as in (12], while constructing a nonlinear realization of W3 , we will deal not 

with the whole algebra, but with its important subalgebra which contains all the spin 
s generators(s 2: 2) with the indices varying from -(s - 1) to oo (this subalgebra is 

2For correspondence with our forthcoming work on N = 2 super W3 algebra [20) we use a bit different 
normalizations of the spin 3 and spin 4 generators Jn and J~4

) compared to those used in [12). These are 
the same as in ref: [21) 

3One can regard c as a contraction parameter. After rescaling Jn = c-½jn, J~4
) = c- 1 j~4 ), c can 

be put equal to zero. In this limit (3.1) contracts into the commutation relations of the "classical w~· 
algebra" of ref. [22). 
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a genuine generalization of the "truncated"..Virasoro algebra, eq. (1.1)). If one thinks 
of Wj as an algebra of some 2D field vari~tj~ns, with holomorphic parameters (e.g., 
in the realization given in (12]), the above subalgebra corresponds to restricting to the 
parameters-functions regular at the origin. To simplify the terminology, in what follows 
just this truncated algebra will generally be referred to as W3 . We wish to point out 
that the higher-spin generators of this algebra, when treated as composite, still involve the 
basic generators with all conformal dimensions, both positive and negative. For instance, 
in eq. (3.2) one restricts the index n to vary in the range n 2: -3, however the summation 
still goes over the whole range -oo < m < oo. 

In the rest of this Section we list some subalgebras of the truncated WJ°'' algebra which 
will be employed in our further discussion. The proof of closeness of the relevant sets of 
generators in most of the cases goes by a direct inspection and essentially relies upon 
the property that all higher-spin generators in W3 (with spins 2: 4) form an invariant 
subalgebra [12]. 

The reflection symmetry n---> -n of the original relations (3.1) implies the existence of 
a wedge subalgebra W11 in W300 [12]. It is constituted by an infinite number of generators, 
with the indices varying from -(s - 1) to (s - 1) for each spins 4 

L2 L1 Jo J1 J2 

{ 

L_1 Lo L1 } 

W11.= J~~ .. ~?. -~~?. -~~4: .. -~l-4~ .. ~J:'. .. ~~4) 

(3.4) 

(dots mean higher-spin generators with proper indices). An interesting factor-algebra of 
this wedge algebra is the s1(3, R) given by: 

W11/ {J~t ... , JJ4>, ... } ~ s/(3, R) (3.5) 

One more important subalgebra of W3 is constituted by the following generators 

g = P-2,L1,L-_1,Lo,Jo,L1,J1,J2,Ji4> (n?: -3),Ji•> (s 2: 5, n?: -s+ 1)} . (3.6) 

It is the maximal subalgebra of the truncated W3 . We see that it is obtained by adding 
to the wedge algebra (3.4) an infinite rest of the higher-spin generators with all positive 
conformal dimensions. All these generators still form an ideal and the factor-algebra over 
this ideal coincides with the s/(3, R) (3.5). 

One may narrow the subalgebra (3.6) successively removing from it some generators. 
It is easy to check that the sets of generators 

1l = P-1 +2L1,Lo,Jo,L1,J1,J2,Ji4> (n?: -3),Ji•l (s?: 5,n?: -s+ 1)} (3.7) 

1l1 = P-1 + 2L-1, Lo, Jo, Ji4
> (n ?: -3), Ji•l (s ?: 5, n ?: -s + 1)} (3.8) 

1l2 = { L1 + 2L1, Ji4> (n?: -3), Ji•l (s?: 5, n?: -s + 1)} (3:9) 

4The precise relation of Wf' and this wedge algebra to the W 00 -type algebras and their wedge subal
gebras (see, e.g. (23]) is not quite clear to us at present, For instance, W 00 is known to contain each spin 
only once while this is not true for the algebras WN. It is likely that W 00 can be obtained as a N - oo 
limit and truncation of WN. 

8 

~ 

) 

., 

still form subalgebras: 
1l2 C 1l1 C 1l C g . (3.10) 

Note that 1l1 and 1l2 can be extended by adding the generator J_2 

1l~ = 1l1 EB L2 , 1t; = 1l2 EB J_2 . (3.11) 

The algebra H; has been already utilized as the stability subgroup algebra in the Toda 
type nonlinear realization of Wa"'' [12) ( under the restriction to one of two light-cone copies 
of Wj considered in [12], with.the second 2D light-cone coordinate regarded as an extra 
"time"). The algebras 1l, 1l1 and 1£2 will serve as the stability subgroup algebras in new 
nonlinear realizations of W3 we will construct in the next Section. 

4 Nonlinear realizations of W3
00 

As has been argued in ref.[12), extending the nonlinear realization method to _the W N type 
symmetries implies replacing the latter by symmetries based on the linear algebras W,v" 
and then constructing coset realizations of these W,v" symmetries according to the genera.I 
prescriptions of ref. [13]. Once this is done, the original W N symmetry is expected to 
emerge as a particular field realization of W,v". So a nonlin_ear (coset) rcali~ation of Wa 
should always be understood as that of W3

00
• Just this point of view has been put forward 

in ref.(12) and we will pursue it here. In this way in [12] the s/3 Toda realization of W3 

symmetry has been reproduced starting from a nonlinear re~iization of the product of two 
light-cone copies of W3 symmetries. Here we consti-uct a set of nonlinear realizations of 
one W3

00
• In Sect. 6 we will prove that they also amount to sonic-specific fiPld ~·ealizations 

of the W3 algebra (3.1), (3.2). In the next Section we will show that these 1'.ealizations 
bear a deep relation to the Boussinesq equation and Miura ·maps for the latte/ 

Any nonlinear realization is quite specified by the choice of the stability subgroup H 
or, equivalently, its subalgebra 1l. So in the case at hand one should start by fixing the 
appropriate 1l C Wj. Like in [12] we \Viii always place the entire set of higher-spin gen
erators (starting with the spin 4) in the stability subalgebra and consider first a nonlinear_ 
realization of W3 with (3.7) as such a subalgebra. This choice can be motivated by the 
following reasonings. In Sect. 2 we have learned that the spin 2 conformal stress-tensor 
u(x) can be interpreted as the essential coset field of the nonlinear realization of V,ira
soro symmetry W2 with the stability subgroup corresponding to the algebr,a (2. 14). There 
arises a natural question whether it is possible to give an analogous cosct intcrpretaticm to 
both spin 2 and spin 3 currents associated with the W3 algebra, Clearly, the approprfatc 
stability subalgebra of W3 should become (2.14) upon reducing W3 __, W2, i.e.' taking 
away all generators except for the W2 ones. The algebra (3. 7) just satisfies this criterion. 

Inspecting the set of the W3
00 generators which arc out of (3.7), i.e. belong to the coset, 

we find that the lowest dimension ones are L 2 (cm-2 ), L_ 1 (cm-1 ), L2 (cm2) and J 3 (cm3
). 

With the generator L_ 1 , like i~ the W 2 c~se, it is natural to associate the coordinate x. The 
last two generators have true dimensions for identifying the i!ssociate coset parameters, 
respectively u and v, with the spin 2 and spin 3 currents. All higher-order coset generato~s 
have growing negative dimensions so the corresponding parameters-fields are expected to 
be expressible in terms of u and v by the inverse Higgs effect. But there still remains 
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the generator J_2 • The dimension of the coset parameter related to it is inappropriate 
for treating this parameter as a field. On the other hand, one cannot put J_ 2 into the 
stability subgroup as its commutator with, ·e.g., J1 yields the coset generator L_1 in 
the r.h.s. Thus, the only possibility one may conceive is to treat this parameter as an 
additional coordinate, we call it t, in parallel with x and to allow all coset fields to depend 
on it. One observes that t has the same dimension cm2 as the evolution parameter of the 
Boussinesq equation [6), so in what follows we will refer to it as to the "time" coordinate. 
Note that the interpretation of x and t as the coordinates parametrizing the "spatial" and 
"temporal" directions is quite natural from the physical point of view, for the translations 
along these directions are entirely independent as a consequence of commutativity of the 
generators L_1 and J_2. 

With all these remarks taken into account, an element of the. coset space we are 
considering can be parametrized as follows: 

9 = etJ_, exL_, e,J,aLa . (rr e1"nLn ee"J") . euL2 evJ, 

n~4 

( 4.1) 

As usual in nonlinear realizations, the group G (associated with W3 in the present· 
case) acts as left multiplications of the coset element. This induces a group motion on the 
coset: the coordinates x, t together with the infinite tower of coset fields u(x, t) , v(x, t), 
1/Jn(x, t) , en(x, t) constitute a closed set under the group action. We are postponing the 
discussion of all symmetries induced on the coset parameters in this way to the Section 6 
(their number is infinite in accordance with the infinite dimensionality of W3 ). 

Besides the above minimal coset we will need also extended cosets with the stability 
subgroups generated by subalgebras 1{1 and 1{2 defined in eqs. (3.8), (3.9). The relevant 
coset elements are represented by 

91 = 9eu1L,ev,J,ev,J2 (4.2) 

92 = 91 euoLoevoJo , ( 4.3) 

where u1, vi, v2, u0 , v0 are additional parameters-fields, all given on tlie space { x, t}. It 
is worth mentioning that the subalgebra (3.8) and the associated nonlinear realization of 
W:f' generalize the subalgebra (2.11) and the realization of W2 related to this choice. In 
the realization of W:f' on elements ( 4.3) all Virasoro generators belong to the coset, so it 
is an extension of the realization (2.5). 

Let us now turn to constructing Cartan forms for the above cosets. Like in the W2 
case these are defined by the generic relation 

n = 9-1 d9 = L WnLn + L BnJn + Higher-spin contributions' (4.4) 
n2:-1 n2:-2 

and by the analogous ones for two other cases, with 9 replaced by 91 or 92-
The explicit expressions for the forms which we actually need can be obtained by using 

solely the commutation relations (3.1) and (3.3). For the realizati_on (4.1) these are 

w0 = 0 , w1 = 160vdt - 3udx 

8_1 = 0 , Bo = -6udt , 01 = -8-ip3dt , 02 = 12u2dt - (5vdx + l0-ip4dt) ( 4.5) 
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W-1 = dx 

W2 = du + 320(4 dt - 4-ip3dx 
. 3 

W3 = d-ip3 + (2u2 - 5-ip4)dx + (560(5 - 240uv)dt 

W4 = d-ip4 - 6(1/Js - u-ip3)dx + (896(6 - 320v-ip3 + 6384ue4)dt (4.6) 

0_2 = dt 

03 = dv - 6e4dx + (36u-ip3 - 121/>s)dt 

04 = d(4 - (7es - 2vu)dx + (201/>~ + 48u1/J4 + 80v2 + 8u3 
- 141/>6)dt. (4.7) 

The Cartan forms ( 4.5) belong to the stability subalgebra and transform inhomogeneously 
under left W:f' shifts. The forms ( 4.6), ( 4. 7) are associated with the coset generators, so 
they are transformed into themselves and other coset forms. 

In the realization corresponding to the coset (4.2) some Cartan forms on the stability 
subalgebra get contributions from the new _coset fields ui, vi, v2 and, besides, the Cartan 
forms w1, 81, 02 become belonging to the coset. Due to the special arrangement of factors 
in ( 4.2) the forms associated with other coset generators are linear combin~tions of the 
previous coset forms with the coefficients depending on the new coset fields. We give here 
the explicit expressions only for the new coset forms . 

W1 = du1 + (ui + 12vi - 3u)dx + (160v + 48uv1 - 48v1ui - 64u1v2 + 64vf)dt(4.8) 

81 = dv1 + (2u1 V1 - 4v2)dx + (12uu1 - 81/>a - 4uf - 64v1 v2 - 16u1v;)dt ( 4.9) 

02 = dv2 + du1v1 + (4vf + 4u1v2 + UiV1 - 3uv1 - 5v)dx + (12u2 - l0-ip4 + uf 

+16vf - 64vi - 64u1v1v2 - 24uM - 6uu; + 24uv; + 160vv1 + 8u11/J3 ).(4;10) 

Finally, the net effect of passing to the coset ( 4.3) is homogeneous rotations of the 
previously defined forms by the group factors with generators L0 and J0 and extension of 
the set of coset forms by w0 and 00 • The _latter forms are given by 

Wo 

Bo 

duo+ (32u1v1 + 64v2)dt - 2u1dx 

dv0 + (6ui - 24v; - 6u)dt - 3v1dx. ( 4.11) 

As the last remark we mention that the form n (4.4) (and its analogs for the coset~ 
( 4.2) and ( 4.3) !11 and !12) by definition satisfies the Maurer-Cartan equation 

dextn = 0 AO. (4.12) 

5 Boussinesq equations and Miura maps from co-
variant reduction of the cosets of W3 

Here we generalize to the Wa"'' cosets the inverse Higgs procedure (alias covariant reduc
tion) which has been already applied in Sect.2 to simpler examples of nonlinear realizations 
of Virasoro symmetry. A new feature of this procedure in the case at hand is that it will 
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ead not only to the kinematic equations for expressing higher-order coset fields in terms 
of a few essential ones but also to the dynamical equations for the latter. This is directly 
related to the presence of the extra time coordinate t. 

We begin with the coset (4.1). A natural generalization of the constraints (2.15) is as 
follows 

Wn = 0, Vn'?_2 Om= 0, Vm'?_3 • (5.1) 

Upon imposing these constraints, the one-form n (4.4) defined originally on the entire 
algebra WJ°'' is reduced to the one-form valued in the algebra 9 (3.6) 

!1 =} ffed C Q. (5.2) 

In accordance with the terminology explained in Sect.2, 9 is the covariant reduction 
subalgebra in the present case. Taking into account that 1l coincides with the s1(3, R) 
(3.5) modulo higher-spin generators, one may, without loss of generality, regard just this 
s1(3, R) as the reduction subalgebra and consider only the s1(3, R) part of !1red . This part 
obeys the Maurer-Cartan equation (4.12) in its own right, without any contributions from 
the higher-spin generators. We will make use of this observation a bit later. 

Let us now inspect eqs. (5.1). As opposed to the W2 constraints (2.15), each of eqs. 
(5.1) actually produces two equations, for the coefficients of the differentials dx and dt. 
Using the explicit structure of the lowest coset forms, eqs. (4.6) and (4. 7), one finds 

1 I 
lp3 = -u 

4 
1 ( 3 2 1 ") 1P4 = - -u + -u 
5 2 4 

1/Js = 
6
1
0 

(21 uu' + iu111
) = 

1
1
2 

( v + 9uu) (5.3) 

( 1 . 1 , 
4 = -

320 
u = 6v etc. (5.4) 

We see that the higher-order coset fields are expressed by the inverse Higgs constraints 
(5.1) in terms of two independent ones, u(x, t) and v(x, t), thus generalizing an anal
ogous phenomenon of the W2 case. However, for all coset fields, except 1/J3, lp4 there 
simultaneously appear two expressions coming from equating to zero the coefficients of 
the differentials dx and dt in the appropriate forms. Requiring these expressions to be 
compatible amounts to the set of dynamical equations 

u = 
160 I 

--v 
3 

v = 
1 Ill 24 I 

(5.5) -u - -U ll 
10 5 

which is recognized as the. Boussinesq equation (6] (after appropriate rescalings). Its 
another, second-order form is obtained by differentiating the first equation in (5.5) with 
respect to t and then using the second equation 

U = - 136 111111 + 128( 112)11. (5.6) 
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With making use of the Maurer-Cartan eq~ation (4:12) one may show that the rest of 
constraints (5.1) does not imply any further dynamical restrictions on the fields u, v and 
serves only for the covariant elimination of higher-order coset fields. 

Thus we have succeeded in deducing the Boussinesq equation from a nonlinear real
ization of W;" like it has been done in (12] for the s13 Toda equations (starting with a 
nonlinear realization of two copies of WJ°''). This shows a close relation of the Boussi
nesq equation to the intrinsic geometry of WJ°'': it reveals a nice geometric meaning 
as one of the constraints singling out a finite-dimensiona:l geodesic hypersurface in the 
coset of W;" over the subgroup with the algebra 1l (3.9). This hypersurface is home
omorphic to the two-dimensional coset of the group with the algebra 9 (3.6) over the 
subgroup with the algebra 1l (3.9). Taking account of the fact that the higher-spin gen
erators drop out after such a factorization, this coset coincides with that of the group 
SL(3, R) with the generators (3.5) over its six-parameter Borel subgroup generated by 
{J-1 + 2L_1, Jo, L0 , Li, Ji, J2}. The coordinates x and t parametrize this coset while 
the fields u and v describe the embedding of it as a hypersurface in the original coset 
space of W3 . 

The Boussinesq equation is known to be completely integrable: it possesses a zero
curvature representation and the related Lax pair on the algebra s1(3, R) [9, 18]. It is 
instructive to see how these integrability properties are reproduced in the present geomet
ric picture. After substitution of the expressions for higher coset fields, the most essential, 
s1(3, R) part of the one-form !1red defined in eq. (5.2) reads 

ffed = (L-1 - 5vJ2 - 3uL1)dx + [160vL1 + (9u2 
- iu")J2 + J_2 - 6uJo - 2u' Ji]dt . (.5. 7) 

As has been mentioned before, the original Maurer-Cartan equations for this one-form 
are closed modulo higher-spin generators. Discarding the higher-spin pieces in the com
mutators of the s/(3, R) generators in !1red , one easily establishes that the Maurer-Cartan 
~~ti@ . 

dextnred = nred I\ nred (5.8) 

implies the Boussinesq equation (5.5) and so provides the zero-curvature representation for 
the latter. Recall that the original Maurer-Cartan equation ( 4.12) was purely kinematical. 
It becomes dynamical after invoking the covariant reduction constraints (5.1) (5.2). It 
should be emphasized that just these constraints are primary dynamical restrictions on 
the fields u and v in the present approach; the zero-curvature representation (5.8) is their 
consequence. This feature is typical for all other examples where the covariant reduction 
proved to be efficient (14, 15, 12]. 

To obtain a Lax representation from eqs. (5. 7), (5.8), one introduces the "covariant 
derivatives" 

a 
at+At, 

a 
ax+ Ax' 

where the s1(3.R) algebra valued connections A1 and Ax coincide with the coefficients of dt 
and dx in (5.7), and rewrites eq. (5.8) as the condition of commutativity of these covariant 
derivatives. Note that in this way one obtainsjust the Drinfel'd-Sokolov type Lax pair [9] 
for the Boussinesq equation (after choosing s1(3, R) generators in the fundamental 3 x 3 
matrix representation). 
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Let us turn to discussing the coset (4.2). As was already mentioned, it is an extension 
of the W2 coset associated with the stability subalgebra (2.11). So the relevant set of the 
covariant reduction constraints should be ·an appropriate generalization of the set (2.12): 

Wn = 0, Vn?:l , Om= 0, Vm?:l • (5.9) 

It includes the previous set (5.1) and, in addition, implies vanishing of the Cartan forms 
wi, 01, 02 • The fields v and u still obey the Boussinesq equation (5.5) but now they are 
expressed (like v2) through the fields v1 and u1 which are the only independent coset fields 
for the realization at hand. Bearing in mind the explicit expressions for the additional 
coset forms (eqs. (4.8) - (4.10)), one finds: 

u = 
1 ( , 2 2) J U1 + u1 + 12v1 (5.10) 

V = 1(1 " 1 / 3 / 2 3 5 4V1 + 2U1V1 + 2U1V1 + 2u1V1 - 8v1). (5.11) 

By the same mechanism as in the previous case ( compatibility between the equations 
coming from the coefficients of dx and dt in the appropriate forms) one also obtains the 
dynamical restrictions on the fields U1 and V1 

u1 = -8(v~ + 4u1v1)' 

. 2( , 2 2 2 2)' V1 = J Ul - U1 + 4V1 . (5.12) 

These equations can be easily checked to be consistent with' the Boussinesq equation: 
differentiating (5.10), (5.11) with respect tot and making use of eqs. (5.12) one obtains 
just (5.5). 

The expressions (5.10), (5.11) are a genuine generalization of eq. (2.13) and provide 
a Miura map of the W3 currents u and v onto the two independent U(l) Kac-Moody 
currents u1 and v1. Thus in the present case this map also gets a geometric interpretation 
as the covariant relations between the fields parametrizing the coset of WJ°'' symmetry. 

By analogy with the modified KdV equation, it is natural to call eqs. (5.12) the 
modified Boussinesq equation. It can be rederived from the vanishing of the curvature of 
the reduced Cartan form !li:°d (with the higher-spiri generators factored out) 

n;ed = (J_2 - 4u1J_1 + 16(v~ + 4u1vi)Lo+ 2(2ui - 24v; - u~)Jo + l6v1L1]dt 

+(L1 - 2u1Lo - 3v1Jo)dx · (5.13) . 

and so is integrable like the Boussinesq equation. One observes that· n1 is given on the 
five-dimensional subalgebra of the s1(3, R). So in the present case the covariant reduction 
actually leaves us with the coset space of the group associated to this subalgebra over 
the subgroup generated by J_i, J 0 and L0 • Once again, the coordi_nates t and x are the 
parameters of this coset while the fields u1 and v1 specify how the latter is embedded into 
the original W3 coset. · 

Finally, let us see which new features are brought about by passing to the coset_ g2 

defined in eq.( 4.3). In this case the essential coset fields are u0 , v0 and, in addition _to 
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the previous constraints, one should require vanishing of the two newly appearing cos~t 
Cartan forms w0 and 00 given by eq. (4.11) 

wo = Bo = 0 ,=> 
1 / 1 , 

U1 = 2Uo ' V1 = 3Vo ' 

. 16 ( ,, , ') u0 = - 3 v0 + 2u0v0 , 
• ff ( I )2 16 ( / )2 Vo = Uo - uo + 3 Vo . 

(5.14) 

(5.15) 

(5.16) 

The covariant relations (5.15) are analogs of the first of eqs. (2.10), they give a further 
Miura transformation from the U(l) Kac-Moody currents ui, v1 and the W3 currents u, 
v to the scalar fields u0 and v0 • For u and v one obtains the representation 

u = ¼ [ u~ + ~(u~)2 +· ~(v~)2 j 

V = 
1 [ 1 ,,, 1 . ,, , 1 , ,, 1 ( , )2 , s C , )3 l 5 12 Vo + 12 UoVo + 4uoVo + 6 Uo Vo - 27 Vo ' (5.17) 

which, after appropriate rescalings, is recognized as the free-field Feigin-Fuchs type repre
sentation for the W3 currents (4, 10]. Once again, the dynamical equation (5.16) induces 
for the sets u, v and u1, v1 the Boussinesq equation (5.5) and the modified Boussinesq 
equation (5.12). It amounts to the zero-curvature representation for the reduced one-form 

with 

n;ed = W_1L-1 + 0_1J_1 + 0_2J_2 

W-1 = e-""[ 4u~ sinh(4v0)dt + (dx + 
1
: v~dt) cosh(4v0)] 

0_1 = -e-""( 2u~ cosh(4v0 )dt + ~(dx + 
1
: v~dt) sinh(4v0)] 

B-2 = e-2""dt. 

(5.18) 

(5.19) 

Thus in the present case the original coset of W3 has been covariantly reduced to the 
two-dimensional coset of the three-parameter subgroup with the generators L_1, J_1, J_2 
over the one-param_eter subgroup generated by J_1 + 2L_1. 

In conclusion of this Section we briefly discuss the relation to the Hamiltonian approach 
which provides one more link between the Boussinesq equation and the algebra W3 • It is 
known [6] that this equation can be interpreted as a Hamiltonian flow on W3. Namely, 
it possesses the second Hamiltonian structure with the Poisson brackets between u and v 

forming W3 

u = { u, H} , v = { v, H} , (5.20) 

40c J H = 3 dxv(x, t) (5.21) 

2 [l 8
3 

8 '] {u(x,t), u(y,t)} = ~ 6 By3 + 2u By - u 8(x - y) 

{u(x,t), v(y,t)} = -~ [3v :y +v'] 8(x-y) 
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3 [ 1 85 5 iJ3 15 , 82 

{v(x,t), v(y,t)} = 10c -48 8y5 + 4u 8y3 + 8 u 8y2-

-(-~u" + 12u
2
) :y - (-~u"' + 12uu')] 6(x - y) (5.22) 

where the fields in the r.h.s. are evaluated at the point y. Decomposing u and v in the 
Fourier modes with respect to x, one observes that the algebra (5.22) implies for these 
modes just the W3 algebra relations (3.1), (3.2). 

We wish to point out that this Hamiltonian formalism matches very naturally with 
our nonlinear realization approach, though the precise relation between these two is as 
yet not clear to us. If one substitutes the Fourier decomposition of v in the Hamiltonian 
(5.21) and integrates over x, His recognized, up to a scale factor, as the generator J_2, 
just the time translation generator in the nonlinear realization scheme. 

As far as the modified Boussinesq equations (5.12), (5.16) , are concerned they can 
be given the standard Hamiltonian form like (5.20) with the same Hamiltonian (5.21) 
expressed in terms of ui, v1 or u0 , v0 by eqs. (5.11 ), (5.17) and with the following 
underlying Poisson structure 

3 a . 1 a 
{ u1(x, t), u1(Y, t)} = - -

0 
6(x ~ y), { v1(x, t), v1(Y, t)} = - !.>6(x - y), 

c y 4c uy 
(5.23) 

{u1(x,t),v1(y,t)} = 0, 

{u0(x,t),u~(y,t)} = - 12 
6(x -y), {v0 (x,t),v~(y,t)} = -~ 6(x -y), 

C · 4c 
(5.24) 

{uo(x,t),vo(y,t)} = 0. 

These Poisson brackets are characteristic of the U(l) Kac-Moody currents and free scalar 
fields. 

6 W3 symmetry of Boussinesq equations as left WJ°') 
shifts 

When studying integrable systems, one of the most important. questions is which sym;ne
trics preserve the given equation. In the previous Sections we reformulated the Boussines<J 
equation in the framework of the nonlinear realizations approach as one of the covariant. 
conditions which single out a two dimensional geodesic hypcrsurface in the coset ( 4. I) 

0

<l( 
W;f. Symmetries of Boussinesq equation arc then the set of lVJ°'' transformations acti11g 
on the coset elements ( 4.1) from the left 

Yo ( ,\) y ( x, t, u, v, ... ) = g ( i·, i, ti, v, ... ) h ( ,\, .r, t, 11, u, ... ) . (6.1) 

Here y0 (.\) is an arbitrary element of W;f with constant parameters and the, induced 
element h belongs to the stability subgroup H generated by the set of generators (3.7). 

In principle one could directly evaluate x, i, it, v by using eq.(6.1) and the commutation 
relations (3.1). However, in the case at hand even the infinitesimal transformations of the 

16 

fields 6u, 6v and coordinates 6x, 6t are very complicated functions of time t and all the 
higher-order coset fields 1/Jn,{m, so it is not too enlightening to try to give them explicitly. 
Below we will pursue another approach, in which transformation properties of the fields 
u, v and coordinates x,'t are obtained together with an additional condition fixing the t 
dependence of the transformation parameters. 

Let us begin by writing down the Cartan forms for the transformed coset (6.1) 

!} = h-1nh+h-1 dh 

n = y-1(x,l, ii, ii, ... ) dy(x,l, ii, ii, ... ) 1 

(6.2) 

· (6.3) 

where we have made use of the fact that the group parameters in (6.1) do not depend 
on x, t. Now, the induced element h of the stability subgroup can be parametrized as 
follows 

h = eaoLo ea,L, eb_,J_, i•Jo i1J1 eb2J2 h ' (6.4) 

where h stands for the factors spanned by higher-spin generators. Keeping in.mind that 
the higher-spin generators form an ideal in the stability subalgebra and comparing the 
Cartan forms associated with the_generators £_1, Lo, L1, J_2, J_i, Jo, J1, J2 in both sides 
of (6.2) we immediately obtain the following set of equations (let us remind that the 
parameters·a and bare infinitesimal)· 

W-1 = w_1 - aow-1 + l6b10-2 + Sb-180 

0 = dao + 64b20-2 + Sb_i 01 - 2a1w-1 

Wt = da - l + w1 + aow1 - Sbt<io - 8bo01 - l6b_102 

8_2 = 0_2 - 2aofL2 - b_1w-1 (6.5) 

0 = db_1 - 4a10-2 - 2bow-1 

Bo = dbo + Oo + 3b_1w1 - 3b1w-1 

81 = db1 + 01 + ao01 - 2a10o - 4b2w.'..1 + 2bow1 

82 = db2 + 82 + 2ao02 - a181 + b1w1 
(6.6) 

From the explicit expressions for the lowest ,Cartan forms (4.5), (4.6) and (4,7) we 
obtain the following equations for the variations of fields and coordinates: 

6u = ii(x + 6x, t + M)- u(x, t) = - -(6t) - 6u(6t) + 480v(6t)' 1 [ 1 · ,, · ] 
6 2 · · 

6v = ii(x + 6x, t + M) - v(x, t) 

1 [1 -, · '. ] = -
160 4(M) - 6u(6x) + 240v(6t) - Su' (6t)" + Su" (6t)' (6.7) 

(8t) = 2 (6x)' 

(6::i:) = 16 [su (6t)' -i (6t)"'] (6.8) 

Several comments are needed concerning the transformations properties (6.7), (6.8). 
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First of all, the time dependence of variations of the coordinates 6x, 6t is controlled 
by the differential equations (6.8) which involve the field u(x, t). It is hardly possible to 
find the_general solution of these. equations in a closed explicit form. Nonetheless, after 
expanding the coordinate variations and the field u in Taylor series with respect to t 

00 00 00 an 
6t = L Dnt(x) tn, 6x = L Dnx(x) tn, u(x, t) = L at~ tn, (6.9) 

n=O n=O n=O 

the role of eqs.(6.8) is reduced to expressing all functions Dnt(x), Dmx(x) through two in
dependent functions 6~t(x) and 60 x(x). So the transformations (6.7) are actually specified 
by the two functions of the coordinate x, much like the realization of one of the light-cone 
W3's in the s/3 Toda system [12]. Thus we have proven that the nonlinear realization of 
W;" in the coset considered is reduced to a kind of W3 transformations of the fields u and 
v. The same of course is true for other nonlinear realizations, with u1, v1 and u0 , v0 as 
the essential coset parameters. 

Secondly, after passing to the active form of the transformations of u, v 

Su;, 6u - 6t.u - 6x u' .iv = 6v - 6t v - 6x v' 

and eliminating time derivatives by the Boussinesq equation (5.5) and constraints (6.8) 
we obtain the standard W3 transformations for the spin 2 and spin 3 currents: 

6con/T = 
6con/J = 

6wT = 
6wJ = 

where 

U:-T 
3 

V = --:- 80 J , DX = - f , 6t = g 

~ J 111 + 2j'T + JT' 
6 
3J'J+JJ' (6.10) 

3g'J +2gJ' 

-¾911111 
- ~O g111T-20g"T' -12g'T" + 32g'A --~gT111 + 16gA" (6.11) 

A= -4T2 

and parameters are still subject to the constraints (6.8). 
These transformations and constraints are just those deduced in a recent paper [18] 

starting with a Lax representation for the Boussinesq equation. In our scheme they 
come out in a nice geometric way as the W;" group motions on the set of essential coset 
parameters {x, t, u(x, t), v(x, t)}. Invariance of the Boussinesq equation under these 
transformations does not need to be· checked, it directly stems from the fact that this 
equation is a dynamical part of the inverse Higgs constraints ( 5.1) which are Wf'-covariant 
by construction. 

Before passing to concluding remarks let us comment on the cosets of Wf' correspond
ing to the choice of 1{~, 1{~ (eq.(3.11)) as the stability subgroup algebras. In these cases 
the generator J_2 belongs to the stability subgroup, so one is left with one coordinate 
x, on which all other coset parameters are assumed to depend. The covariant reduction 
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constraints, like in nonlinear realizations of Virasoro symmetry (Sect. 2), do not produce 
any dynamical restrictions and serve entirely for the covariant elimination of the higher
dimension coset fields via the essential ones (u1(x), v1(x) or u0 (x), v0 (x)). In particular, 
the Miura maps (5.10), (5.11 ), (5.15) and (5.16) arise as before. For the independent 
coset fields the left W;" shifts generate the standard s/3 Toda-type W3 transformations 
parametrized by two functions of x which collect the constant parameters associated with 
the spin 2 and spin 3 generators Ln and Jn. These transformations are just those deduced 
in [12] (as far as one light-cone copy of Wf' is considered). 

These realizations actually bear a tight relation to those associated with the cosets 
(4.2), (4.3). One may pass to a different parametrization of these coset elements where the 
time factor iL2 stands from the right (tis related to t via a complicated field-dependent 
redefinition). Then one may check that the first-order time _derivatives of the coset fields 
in this new parametrization are transformed into themselves under left W;" shifts and s~ 
can be self-consistently put equal to zero, thus eliminating any time dependence of the 
coset fields. This is equivalent to placing L 2 from the beginning in the stability group 
algebra. 

7 Conclusion 

In this paper we have revealed a new kind of the relationship between W3 symmetry and 
Boussinesq as well as modified Boussinesq equations: these have been found to emerge 
in a geometric way as covariant dynamical constraints on the parameters of some coset 
manifolds of Wf' symmetry associated with W3 • The Miura maps relating these equations 
to each other arise as a sort of covariant kinematical constraints on the coset parameters. 
Put together, these constraints can be interpreted as the conditions singling out finite
dimensional geodesic hypersurfaces in the original infinite-dimensional coset manifolds. 
The spin 2 and spin 3 W3 currents and the introduced via Miura maps two spin 1 U(l) 
Kac-Moody currents and two spin O scalar fields come out as the essential parameters of 
three coset manifolds of W;" embedded into each other. Thus the considered Boussinesq
type equations, related Miura maps, involved currents and fields prove to be intimately 
linked to the intrinsic geometries of the_ coset manifolds of W3

00
, just like the s/3 Toda 

equations [12]. The common geometric origin of the latter equations and the Boussinesq 
ones suggests a deep connection between them which can hopefully be exposed most 
clearly within the present approach. The understanding of this relationship could have 
important implications, e.g. in W3 strings and W3 gravity. 

An interpretation of Miura maps as the covariant relations between the fields parametriz
ing coset manifolds of the WN type symmetries seems to be especially useful in searching 
for free-field representations of the currents generating more complicated W symmetries 
and their superextensions. Usually this is a subject of some guess-work. As we .have 
argued in [12] and this paper, within the present approach finding such representations 
becomes more straightforward and algorithmic. One starts by defining the appropriate 
linear W;" type symmetry and its cosets, ·then construct the Cartan forms and finally 
impose suitable covariant reduction constraints. Doing so, we have recently found, e.g., 
·Miura maps for the supercurrents of N = 2 super W3 algebra [20, 24]. 
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There remain some interesting problems with the Boussinesq equation itself. In partic
ular, it is desirable to have a full understanding of the relationship with the Hamiltonian 
formulation and the formulation which uses the Gel'fand-Dikii brackets. Also it is as yet 
unknown how to incorporate in the present scheme in a simple way next equations from 
the Boussinesq hierarchy. To this end it seems natural to extend the coset spaces of Wj 
by placing in the coset some higher-spin generators J!•l from the stability subgroup, e.g. 
the spin four one J!4>, and to introduce additional time variables as the coset parameters 
associated with the generators J~•J+i, e.g. J~1- New coset fields are expected to be re
movable by inverse Higgs effect, still leaving u and v (or u1 and v1 or u0 and v0 ) as the 
only essential fields of the theory. At the same time, due to the appearance of extra time 
variables, the essential fields could obey higher-order Boussinesq equations with respect 
to these variables as a consequence of appropriate extensions of the covariant reduction 
procedures employed above. 

Finally, we would like to point out that the covariant reduction approach invented and 
applied first in the case of Liou.ville theory [14) mainly for the practical purpose of con
structing higher superextensions of this theory [15) now turns out to possess a considerably 
wider range of applicability. It can be regarded as a universal tool for treating integrable 
systems in a manifestly geometric language of the coset space realizations of appropriate 
infinite-dimensional symmetries. The Toda systems [12), Boussinesq and KdV [17) hier
archies certainly admit an adequate geometric description in its framework. It would be 
of interest to consider along similar lines other classical integrable systems, such as the 
sine-Gordon and nonlinear Schrodinger equations, and to understand what are analogs 
of, say, Wj in all these cases. On the other hand, one of the problems ahead is to apply 
our nonlinear realization techniques to all known W type (super)algebras (e.g. Knizhnik
Bershadsky superalgebras) and to deduce the integrable equations associated with them. 
So our main goal is to provide a common geometrical basis for various integrable systems 
in 1 + 1 dimensions and the present work should be regarded as a· step in this direction. 
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IIIHHOB E.A., KpMBOHOC c.o .• ManHK P.n. E2-112-301 
YplBHIHIIII 6ycc:MHICKa III HMMHlilttblX peanMHQMil WJ 

' noc:ipoetta HOB.;. pe■IIM3~11 . GICKOH-Ml!pHC)il nMHMIOA Wi CHMMffpMM, ■ccoqMMpo• . 

88HHlll1 c w, anre6poil, OTnM'18IOll&■IICII OT. npeotipuo-1111 MHupM■HlHOCTH 11,no.KM TOAL 

· YpaBHIHMI 6yccMHICK■ H, MQAH4"1lHp1)8111HM ypl■HIHMe 6ya:MHICK■ IIOIHHK■IOT K■K ycno

BMII, BblAeM101QMe, AByMepHOe no.lnpoc:TplHCT90 ■ MCXCWIOM .. KTOp-npoCTpatCTH rpynni.a 

w; .. OTM8TMM CIIIAYI011'41 oatOBHble OC061HHoc:TM nocTpoeHHCIA ptlllMHQMM: 1. napeMerpi,1 

lj,aKTop-nPCJCTplHCT■a ■KIIIO'l8IOT npoCTp11HCT■111Ho-■peM111-e KOOl)AMHaTbl . x H t, ■xQlllll!IMII 
■ YplBHIHMI 6yi:c:MHICKa. 2. T0KH c- 2 M 3, r1111p11pyio....- w, anreClpy, T■K •e 1<■1< U(1) 
TOKM K111■-MYAM M AH CK-ptlWX noM, c■IIHHHblX C TOK ... H w, npeotipuo■■HMIIMM Maypi;,, 

ll■nlllOTCII tl,ll,MHCT■IHHblMM cyl!IICT■IHHWMM noMMM, nepeM8TptDYIOU91MII tj,aKTIJl)-npocrrpatt• 

CT■a; 3. npeotipuo■aHMII MMypW nonY'l8IOT 'IIICTO AOMITpll'IICKyio MHT9Pnpll'IQMIO KaK Wi 
MHHpM■HTHbll CBll:IM/ Ha nonll, nptt Ml)U:OAI OT -ro tli■KTI>P-npoCTJlll!CTN K APYrOMV: ' 

4. Ype■HIHMe 6yCCMHICKa, TaK' *' K■K 'a AN TMIII MO~IHHWX ypl■HIHMil 6yccMHICKa, 

■03HHK■IOT KaK AMHaM~ICKHI. yellO■MII, . COnpotlOIK,A■IOll'41 Wi. KONpMIHTHYIO ptl,ll,YKQHIO ' 

MCXOAHOrO tli■KTop-npoCTplHCT■a K A■YMlpHblM reoA-ICKMM noAnpoc:TpetCT■aM: 5. nptl,ll,

CTl■nlHHII Hyneeoi\ KpMBMIHW Anll 9TMX ype■HIHMil ■cmtHK■IOT a■TOMeTM•ICKH, KaK CIIIACT■MII 

KOB■pMIHTHoil IMAYKIIHM; 6. W1 npeotipuo-1111 CMMMffpMH ypaBHetHII 6yCCMHecK■ peanH• 

3YIOTCII KIK n-■ble Wi CABMrM Ha tli■KTOp-npoCTpetCTH. npuno•ettHblii nonOA A■ff yHH■■P
.. c■nbHOe reoMerpM•ICKOI onMCBHHI c■ll:IM _M'*AY HenMHlilttblMM ann6p■MM M MHTll"pttpylMblMM 

' Pa6oTa BblnonH .. a. na6opuopMM TIOpeTM•ICKlll1 cliMIMKM OIIIRIII. 

npenpHHT 06i.cJlHHCHHOl'O HHC!HTYTa QCPllhlX HCCJIC,lOHHHil. ny6Ha 1992 . 

Ivanov E.A., Krivonos S.O., Malik R.P. E2-92-301 
Boussinesq-Type Equations from Nonllnew Realizatlons.ofW1 

•'we construct n- CONt realizations of infinite-dimensional linear Wi symmetry anociatad 
with Zamolodc:hikov's W1 algebra which are dlffarent from the previously explored sis 'Toda twell
zation of w;. We deduce the Bousslnesq and modified Bounlnesq equations • c0111tralnt1 on the 
geometry of , the corresponding CONt manifolds. The main char-lstlc featur• of these reall• 
zations ere: I. Among the coset paramews there atw 1he ~ and time coordinatlll x and t which 
enter the Bousslnesq equations. II. The spin 2 and 3 currents of WI and two spin 1 U 11 I Kac-Moody 
currents II well II two spin O fields ,wletad to the W1 currenls via Miura maps, come out• the 
only -ntlal parameters-fields· of these cosels. The ,wmainlng coset fields ara covariantly expm- · 
sed through them; Iii. The Miura maps· get a ~ geometric Interpretation II Wi covariant con•' 

· strainls which relate the above fields while p•ing from· one CONt manifold to another: Iv. The 
Boussinesq equation and two kinds of the modified Bousslnesq equations appeer geometrically 
11 the dynamical constrainls accomplishing Wi covariant reductions of original co.t manifolds 
to their two-dlmansional geodesic submanifolds: v. The zer~rvature representations for, the• 
equations arise automatically • a consequence of the covariant reduction: vi. W1 symmetry of 
the Bousslnesq equations amounls to the left action of Wi symmetry on Its cosels. The ipproach 
proposed could provide a uniwnal geometric dela'iptlon of. lh• relationship between W-type 
algebr• and Integrable hierarchies. . . . . 

' ' -

~ IRVNtigation h• been perf~ :t the Laboratory of Theoretical Physics, JINR. 
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