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ITawHeB A.H., CopoKHH a.rr. E2-92-27 
0 cyrreprroneBbIX cpopMynHpOBKax cyrrepqacTH~ 
B rrpocTpaHCTBe pa3MepHOCT~ D = 2,3,4,6 H 10 

IT0Ka3aHo, qTo BCe H3BeCTHWe cpopMyDHPOBKH gHHaMHKH 
N = I cyrrepqacTH~bI B D = 2, 3, 4 H 6 KaK gBaJK,o;bI cy­
rrepcHMMeTpHqHwx TeopaA c n = D - 2 noKan&HoA cyrrepKoH­
cpopMHoA CHMMeTpHeA Ha MHPOBOA nHHHH HBDHIOTCH qacTHb!MH 
BepcHHMH 6onee o6~ero n = D - 2 cyrreprroneBoro geAcT­
BHH, HHBapHaHTHoro OTHOCHTen&HO o6o6~eHHOA (cyrreprrone­
BOA) k-CHMMeTpHH H COBrraga10~ero Ha MaCCOBOA rroBepXHOCTH 
C get'ccTBHeM BpHHKa-li!Bap~a MH cyrrepqacTHI.J,bl. 

Pa6oTa BWITOnHeHa B na6opaTopHH TeopeTaqecKoA (pH3HKH 
OIDIH. 

npenpHHT O6be;HIHeHHOro HHCTHryTa llllepHbl.X HCCJie;tOBaHHH . )ly6Ha 1992 

Pashnev A.I., Sorokin D.P. F:2-92-27 
Note on Superfield Formulations 
of D = 2,3,4,6 and 10 Superparticles 

It is shown that all known formulations of N = I su­
pPrparticle dynamics in D = 2,3,4 and 6 space-time di­
mensions as double supersymmetric theories with n=D-2 
local worldline superconformal symmetries [J-3] are • 
particular versions of more general n = D-2 superfield 
action, which is invariant under generalized (super­
field) k-symmetry and coincide (on shell) with the 
Brink-Schwarz superparticle action. For D = JO case 
only n = I superfield action is known. 

The investigation has been performed at the Labora­
tory of Theoretical Physics, JINR. 
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Recently a double supersyrrimetric twistor-like version·of the N = I 
Brink-Schwarz superparticle in D = (2), 3, 4, 6 and 10 di~ensions has . 
been proposed [I), which is invariant under N = 1 target superspacc 
global transforniations,'as well as,'·under the local n = D - 2 supercon­
formal transformations in worldline superspace (for. D = IO only n = 1 
action is known[l]). In these particular space-time dimensions l such . 
a. form~lation allowed one to give the well-known 11:-symmetry [4;5] a 
clear geometrical meaning as an ·on-shell manifestation• of the local su­
perconform~l symmetry in the proper~time· superspace parametrizing the 
superparticle trajectory .. The corresponding N = l, n = D - 2 si:iperfield 
actions for D = 3,4 superparticle.were const,ructed in [1] and the·com 0 

ponent action for D = 6 case was discussed iii [6). . . , 
In a recent elegant paper by D.elduc ancl Sokatchev [2) another super~ 

· • field version of D = 4, n = 2 superparticle in curved target superback-
. · ground was proposed and generalized to D = 6 , n ·= 4 case. The basic 

geoin~trical idea, which allowed the authors to/accomplish this program, 
was to introduce propedies of double chirality (in D = .4 ,n = 2) and 
double har~onic analyticity (in D = 6;n = 4) in. addition to the double 
supersymmetry of the_ particle dynamics considered. Note that this no­
tions have been independently introduced in ref. [3], where, in particular, 
a superfield a~tiori for the massiv~· N ~ 1, D = 2 stiperparticle has beeri 
discussed. 

In. series of interesting papers [7,8] it was clarified the connection of 
the twistor-like appro~ch [1-3;9) to the superparticle dynamics with the , 
Lorentz-harmonic approach developed in pa:i:allel with the former one 
{see [8,10-12]· and references therein). Orie may hope that this will allow: 
to overcome the D = 10, n ·= 8. barrier and close the prnblem of covariant 
quantization o{the D =dO Brink-Schwarz superparticle by'constructing 
its harmonic superfield version. · . · · 

Let us note also the int~resting geometrical interpretation of the su~ ·. 
perparticle versions of Ref. [1] ~nd some other superparticle twistor formu­
lations [9,12,14) as a supersymmetric Chern-Simons mechanics proposed 
by Howe and Townsend,[15]. · 
· Though the connection. of superparticle superfield formulations [1-3] 

1 Note that D. = 3;4, 6, 10 are .. closely ~elated to th,e critical space-ti~e dimensions 
for the classical Green-Schwarz superstring from the one hand side and twistors from 
the other. ·•. 
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with another approaches is established, the relations between the versions 
' ' 

proposed in [1],[2] and [3], as far as we aware, has not. been clarified yet. 
The main goal of this note is to fill this gap. We will show. that alf · 

known superfield formulations [1-3] of N = l superparticle dynamics in 
D = 3, 4 and 6 space-time dimensions are particular versions of more 
general n = D - 2 superfield action, which is invariant under generalized 
superfield K-symmetry and coincide (on shell) with the N = 1 Brink­
Schwarz superparticle. D = 2, N = l massive superparticle action of 
Ref.[3] arises as a result of dimensional reduction of the D = 3, N = 1 
massless superparticle action [1]. When the dimensional reduction ofthe 
D = 6, n = 4 action to D = 4 space-time is carried out one gets an n = 4 
superfield formulation of the D = 4, N = 2 massive superparticle with 
central charges [4,16]. For D = 10 superparticle we still possess only the 
n = 1 superfield formulation. 

Let us start with reminding that the general form of Lagrangians of 
all known superfield versions of the N = l Brink-Schwarz superparticle 
except the D = 4, n = 2 version of 
Ref. [1], looks as follows: 

Lo= Pmnm, (1) 

where m = 0, 1, • • • D - 1, Pm is a superfield Lagrange multiplier, which 
has .a physical meaning of superparticle momentum, and n,m is a cov~riant ' 
form with respect to global N = 1 and local n = D - 2 supersymmet;ic 
transformations. · 

For D = 3, n · = 1 case superparticle trajectory is parametrized by 
( r, 7J) supertime ( with 7J being real odd superpartner of r) and n,m ( r, 'TJ) 

has the following form ( for the details see refs.[1,6]): 

n,m = -i(DXm - i01m D0). (2) 

where D = :t/ + in:T and xm(r,7J),ea(r,7J) are bosonic and fermionic 
coordinates of the superparticle in D = 3, N = l target superspace. Note 
that Lagrangian (1) wi_th n,m represented in the form (2) is valid.for all 
"critical'\dipiensions D = 3, 4, 6 and 10[1,6]. · , 

1 For-D T 4, n =. 2 7J is complex and 
,-;:_) ~ [i l > 
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... nm= i(xm.:... xm) _ eaum. 0°·. 
2 L R aa , (3) 
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with (X.i ( r, 1J, rj))* = XR( r, 1J, rj) and (0"')* = 0° ( r, 17, rj) being (anti)chiral 
superfieldsin (r,17,rf) superspace (am.are the Pauli matrices). Note that 

· iX_i = vm in the notations of Refs. [1,6]. The chirality conditions ~an be 
· incorporated into Lagrangian (1) with the help of Lagrange multipliers. 

,, · To describe the D = 6, n = 4 superparticle one has to consider har­
monic superspace ( r, 1Ji, 7li, u±t ( i = 1, 2) and parametrize a particle tra­
jectory by its analytic subspace (TA= r +i17irjiutun, 17+ = 17iut, r;+ = 
rfu;,u±i) (see Ref.[2] for the details). In th~ present case ·. 

n++m = n++ x; - i01,m01, (4) 

where n++ is a covariant harmonic derivative and XA(rA,1J+,r;+,u), 
01( TA, 17+, r;+, u) are analytic qu~ntities in the world-line supers pace and 
in a target D = 6, N = 1 harmonic superspace. This is the way the 
double analyticity is introduced in the preserit approach. The necessary 
harmonic conditions such as n++0:~t = 0 can be incorporated into eq.(1) 
with the help of corresponding Lagrange multipliers [2] . 

When N = n = 0 all theories discussed above are truncated to the 
massless bosonic particle formulation [13,1] described by the Lagrangian 

. of the form (1) (where nm = l'Txm - X,m ,\, a~d ,\0 being a commuting 
twistor- like spin.or). --

One can see that eq.(1) has the form of the geometrical relations (nm_ 
quantity) defining the structure of the corresponding target superspaces 
times the Lagrange multipliers Pm [1,2]. 

We argue here that this form of the Lagrangian is, in fact, not nec­
essary for the superfield description of the N = l Brink-Schwarz super­

. particles and propose its generalization which looks as a conventional 
relativistic ( super )particle first-order Lagrangian: ( 

L1 = Pmnm :_ tEPmPm, (5) 

. where for then = 1 case E is an odd superfield, for D = 4, n = 2 it is a 
real scalar superfield, which, in particular, can be a constant due to the 
invariance properties of theintegration measure in ( r, 17, rj) superspacc; 
In the case of the D = 6, n = 4 superparticle the analytic superfield E++ 
bears two harmonic U(l) charges to compensate two minus charges of 
the analytic superspace mect,sure'\n:_the ac:tion integral. One can ident'ify 
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superficlds E with the "reverse" supereinbeins of the corresponding one­
dimensional supergravity theories in the sense that their last compon.ents , 
coincide with t.he einbein of the underlying bosonic massless particle dy­
namics. 

The equation of motion for unconstrained superfield Pm, which follows 
from eq.(5), is: 

nm= EPm, (6) 

whereas 
nm =0 (7) 

when Lagrangian (1) is varied over Pm. Actually, the both equations' 
describe theories with the same physical content, i.e. the N = 1 Bririk­
S~hwa~z superparticle, which can be straightforwardly checked by solving 
all the equations of motions f()llowing from Lagrangians (1) and (5) .. The 
nonzero r.h.s. of eq.(6) results onlyjn a shift of auxiliary components of, 
the superfields integral to the nm. The basic reason of th.is equivalence 
lies in the fact that Lagrangian (5) is invariant (up to a full derivative) 
under additional gauge transformations which allow one to get rid of 
superfield E. For example, in target D = 3, N ~ 1 superspace the.se 
transformations look as follows (generalization to D = 4, 6 is straightfor­
ward): 

sxm = A( T, 1J )Pm ,8E = -iDA, 80 0 ~ 5pm = O; (8) 

800 = Pm,':/3 KfJ(r,17) , 8Xm = -i0,m80, 8E = 4KD0, (9) 

where A( r, 1J) is an even superfield gauge parameter and Ka( r, 1J) is an 
odd one. In transformations (9) one can e~sily recognize a superfi~ld 
generalization of the conventional ,;-symmetry. [4,5]. Both symmetries 
(8),(9), which form an algebra, occur to be enough for choosing the gauge 
in which superfield E( r, 1J) turns to zero. Thus, Lagrangian (1) is nothing 
but eq.(5) written in the particular gauge (E = 0). .. . . . 

For. D = 4, 6 and n = D - 2 one can substitute pm in eq.(5) for 
its expressi()n (6)in terms of nm and get the second-order form of the 
superparticl~ formulatio~s considered: . . . , 

L 
'.n nm 

2=~ 
2E 
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For example, in, the case of DC= 4, n = 2 superparticle one can put 
E =; l and obtain the action proposed in [1]: 

S.o~! = ~I dr dTJ drj (~(X_i - x;n - i0o-m0)2. (11) 

The generalization of Lagrangians (5),(10) to describe superparticle 
propagating in supersymmetric Maxwell and gravitational background is 
straightforward and implies the replacement of 0,,m0_ terms in nm ,eqs.(2)­
( 4) by the corresponding Maxwell and supergravity prepotentials (see [2] 
for thedetails). . . 

Let us now consider massive 'superparticle dynamics in D = 2 and 
D ~- 4 space-time dimensions which possess the ,.:-symmetry. Note that 
just in the dynamics of the 
D = 4, N = 2 massive superparticle with' central charge the ,.:-symmetry 
was first discovered [4]. 

·. To ob(ain the description of massive N = 2 superparticle in D = 2 
one can make use of the dimensional reduction procedure applied to the 
D = 3 Lagrangian(5) . 

- 1 
Ln=3 = Pm(DXm - i01mD0) - 2EPmPm, (m = 0, 1, 2) (12) 

In eq.(12) nothing is supposed to depend on the X 2 coordinate and P2 

is identified with the D = 2 superparticle mass m. Then eq.(12) takes 
the form: 

Ln=2 

. . . . E . . 
= Pm(DXm-,- i01mD0) - im0120 - 2 (fmPm - m2),(13) 

(m = 0, 1;°,,2 = 1°11 
). 

When E == 0 Lagrangian (13) coincides with the one considered in [3].· 
The analogous procedure applied to the D = 6, n = 4 action 

L~:~ = I drdudTJ+arf+ [Pm(n++ x; - i011m01) - ! PmPm] ' (14) 

(where P4 = P5 = ~ are identified with the equal central charges of 
the D = 4, N = 2 supersymmetry, which value equals the superparticle 
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mass) results in the action 

SN=2 
D=<I =. J dr du dTJ+arf+ [Pm(lJ++ Xl - i01o-m~)-

--(0+ e+a + 0 · 0 )A - -(P. pm - m2) 
im ,,,_+ -+& E++ ] 
2 Ao A Aa 2 m (15) 

describing the N = 2, D = 4 massive superparticle of ref.[4] and general­
izing its harmonic superspace formulation proposed in [16]. 

To resume, the superfield Lagrangian (5) generalizes the known sup~r­
field versions of the Brink-Schwarz superparticle and allows one to clarify 
relations between them. Note, also that Lagrangian (5) belongs to th_e 
Lagrangian classes discussed in [15], which admit the interpretation in 
terms of gauged supersymu'.ietric Chern-Simons mechanics_. · 

In conclusion we would like to give some motivation in favor of using 
Lagrangians of the type (5) for a generalization of the discussed superfield 
approach to describe superstring theories. The well-known superfield ver~ 
sions of the N = l and N = 2 Green-Schwarz superstrings [17,18;3] suffer 
from the difficulty to incorporate constraints of the type (7), which are 
imposed by hand, into superstring actions. To our point of view this 
problem is connected with the fact that· the superfield superstring ac­
tions [17,18,3] are constructed in some world-line supersymmetry gauge 
(for instance, superconformal one) whic_h puts too rigid limits on the 
possibility to manipulate with the quantities available. Thus, in contrast 
to the (super)particle case where the term with supereinbein E can be 
gauged away without losing the local supersymmetry, one has to mani~ 
festly, incorporate the geometrical objects of the superstring world-sheet 
superspace into its action; Then one can hope to obtain the necessary 
constraints as some superstring equations of motion. For the heteroti~ 
superstrings the step in this direction was performed in a recent' papers. 
by Tonin [19] (see also ref.[20) by Berkovits). Let us explain the above 
arguments with the example of twister-like formulation of the classical 
bosonic string discussed by the Kharkov group (see, for example, [21]). 
The proposed action for D = 3, 4, 6 and 10 classical bosonic string looks 
as: 

J ~ ~-s = dr do- det(e~))•')'mpae~>.(8µXm - 2 >.,,mpbet>.), (16) 

where Tis a string tension parameter, e~(r,o-) is a world-sheet zwein-

7 



bein, pa(a = 0, 1) are world-sheet Dirac matrices and ,\~(i = +, - ) are 
commuting spinors in both, world-sheet and target, spaces. 

Due to the equations of motion following from (16) one obtains a 
'solution of the Virasoro constraints (8±X)2 = 0 in the twistor-likeform: 

a±xm = T 2X±,m ,\±· (17) 

· One could naively think that eq.(17) also arises from the conformal-gauge 
· form of actions (16), (17), where the dependence of e~(r,u) vanishes 

similar to the twistor particle case as well, but , in fact, that is not the 
case unless some additional constraints on the solutions of corresponding 
equations of motion are imposed. 

· We argue that action (16), or some its modification, has to be con­
~idered as the basis for superfield formulations of Green-Schwarz super­

. strings with world-sheet supergeometry being explicitly incorporated into 
their actions. After the elimination of auxiliary variables the twistor-like 
N = l, 2 superstring actions should take the form: 

SN=l =·! dr du det(e~) [x,mpae~,\(8µXm + ie,maµe - ~
2

x,m pµ,\)-

det~e:) cµ"0,m8µ08,.Xm] , (18) 

SN=2 = f dr du det(e~) [X,mpae~,\(8µXm + i01,m0µ01 + i02')'m01,02-. 

- T
2

2
.· J,m pµ,\) - d ~ . ) cµ" (i(011m8;01 - 02,m8µ02)8,.Xm+ 

. de: · . 

+(01,m0µ01)(02,ma,.02))]' (19) 

• where 0 1 ,2 are d = ·2 scalars. The mai~ goal' one may hope to achie~e by 
consid~ring superstring formulations of eqs:(18) type is the possibility to 
trade the K:-symmetry for the local world-sheet supersymmetry (in com­
pliance with the superparticle case) [17] and, to accomplish the sup~rstring 
covariant 'quantization. ' ' . ' . . 

'The'authors are grateful to EJvanov, A.Ka'pustnikov and D.Volk;v 
for stiinulatj:ve· discussions. . : . · .. · . . . . . . . · '. . , · ·, .··. : . 

Note. 'added. When. the woi:k. was completed the authors became 
aware of the paper [22], where the dimensional reduction procedure has 

· also• been discussed in applicatiori'to superfield superparticle',actiohs. We 
thank E.Ivanov for bringing this paper to our attention. 
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