





‘Brink-Schwarz superparticle in D =

_action is known[1]). In these particular space-time dlmens1ons :
“a_formulation allowed one to glve the well-known «- symmetry [4 5 a
clear geometrlca.l meaning as an ‘on- shell mamfestatlon of the local su-
S perconforma.l symmetry in the proper-time superspace parametrlzmg theA L
superpa.rtlcle trajectory .The correspondmg N=1n=D-2 superﬁeld s
- actions for D = 3,4 superparticle were constructed in [1] and the ‘com-
e ponent action for D = 6 case was discussed in [6]. ..
Ina recent elegant. pa.per by Delduc and Sokatchev [2] another super-‘ i
field version of D = 4, n= 2 superpartlcle m curved target- superbacl\-" ,
o ground was. proposed a.nd generallzed to D =6, n = 4 case.. The basic '
o geometrrcal idea, which a.llowed the authors: to accompllsh this programi,
- 'was to introduce _properties of double chirality (m D=4,n=2)and
" double harmomc analyticity (in D = 6;n = i
: supersymmetry of the pa.rtlcle dynamics considered. Note that this no-
"' tions have been mdependently mtroduced in ref. - [3], where, in particular,
- a superﬁeld a.ctlon for. the massive’ N = 1 D = 2 superpartlcle has been

Recently a double supersymmetrlc tw13tor-llke version- of the N=1
(2),3,4,6 and 10 dimensions has -
~'been proposed [1], which is invariant under N: = 1 target superspace
global transformations, as well as, under the local n = D — 2 supercon- .
+ formal transforma.tlons in worldlmc superspace (for D =10onlyn=1""
such. .

1.
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o In series of mterestmg pa.pers [7 8] 1t was clarlﬁed the connectlon of‘ Py
- _the tw1stor-llke approach [1-3;9] to the superpartxcle dynamlcs with the i
ERE Lorentz-ha.rmomc approach developed in. parallel with the former one = -
- {see [8,10- 12] and references therein). One may hope: that this will allow,
" to ¢ overcome the D = 10, n=8 barrier and close the problem of covarlantf L
i rqua.ntlzatlon of the D =10 Brmk Schwarz superpartlcle by constructmg -

its harmonic superﬁeld version.

. Let us note also the mterestlng geometrlcal mterpretatlon of the su—l S :
e perpa.rtlcle versions of Ref. (1] and some other superparticle twistor formu-é o
. lations [9,12,14] as a supersymmetrrc Chern-Slmons mechamcs proposed -

by Howe and Townsend:[15]. "

Though the connectlon of superpartlcle superﬁeld formulatlons [1 J] o

" !Note that D =3;4,6,10 are. closely related to the cntlcal space-tlme dlmenSlons i

. for the classxcal Green- Schwarz superstnng from the one hand side and thstors fromk
"theother G S L S

'4) in addition to the double =

with another approaches is established, the relations. between the versions
proposed in [1],[2] and [3], as far as we aware, has not been clarified yet.
The main goal of this note is to fill this gap. We will show.that all

known superfield formulations [1-3] of N = 1 superparticle dynamics in
"~ D = 3,4 and 6 space-time dimensions are particular versions of ‘more .

general n = D — 2 superfield action, which is invariant under generahzed
superfield x-symmetry and coincide (on shell) with the N =.1 Brink-

Schwarz superparticle. D = 2, N = 1 massive superpartrcle action of
Ref.[3] arises as a result of dimensional reduction of the D = 3, N =1
massless superparticle action {1]. When the dimensional reduction of the -

D = 6,n = 4 action to D = 4 space-time is carried out one gets an n'= 4

superfield formulation of the D = 4, N = 2 massive superparticle with
central charges [4,16]. For D =10 superpartlcle we still possess only the
n.= 1 superfield formulation.

Let us start- with reminding that the general form of Lagrang1ans of
all known superfield versions of the N = 1 Brink-Schwarz superparticle

- .except the D = 4,n = 2 version of
~Ref. [1], looks as follows:

Lo = P,Om, R (O

where m = 0,1,--- D — 1, P, is a superfield Lagrange multiplier whlch

“hasa physxcal meaning of superpartlcle momentum, and ™ is a covarlant

form with respect to global N=1andlocaln=D — 2 supersymmetrlc ;
transformatlons »

"For D =3, nn="1 case superpartlcle traJectory is parametrlzed by
(7,7) supertime (with 7 being real odd superpartner of 7) and Q”‘(’r 17)
has the following form ( for the details see refs.[1,6]):

Q’“’:-i(DX"‘—i@wDe). @

where D = & 2 4 “7‘3" and X’“(‘r 1), G)"('r n) are bosonic and fermlomc‘ o

- coordinates of the superparticlein D =3, N = 1.target superspace. Note -
that Lagrangian:(1) with Q™ represented in the form (2) is valid- for all g
“critical”. dimensions D = 3,4,6 and 10[1,6]. : B
”*ForD A =2 nlscomplexand :
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with (X7 (7, n,7)" = XE(r,7,7) and (@d)* = @d(f, n,ﬁ) being (anti)chiral C |

superfields in (,7,7) superspace (¢™ are the Pauli matrices). Note that
41X = V™ in the notations of Refs. [1,6]. The chirality conditions can be
- 'incorporated into Lagrangian (1) with the help of Lagrange multipliers.

" To describe the D = 6,n = 4 superparticle one has to consider har-
monic superspace (r,0, 75, ut), (i = 1,2) and pararnetrize a particle tra-
jectory by its analytic subspace (74 = 7 + zn 7 u(t P pt=nluf, 7t =
'ﬁ‘ ut, utt) (see Ref.[2] for the details). In the present case o

Q++m ______D++X'm_i®+ me+ o L (4)

where D++ is a covarlant harmonic derlvatlve and X7 (74,077,771, u),
@+(TA, 7,7 ,u) are analytic quantities in the world-line superspace and
in a target D = 6, N = 1 harmonic superspace. This is the way the
. double analyticity is introduced in the present approach. The necessary
harmonic conditions such as D¥+©%*-= 0 can be incorporated into eq. (1)
~with the help of corresponding Lagrange multipliers [2]. -
When N = n = 0 all theories discussed above are truncated to the
massless bosonic particle formulation [13,1] described by the Lagrangian
. of the form (1) (where Q™ = —X”‘ A, and A% being a commutmg
L tw1stor- like spinor).
- One can see that eq.(1) hasthe form of the geometrical relatlons Q-
fquantlty) deﬁnlng the structure of the corresponding target superspaces
times the Lagrange multipliers P, [1,2]. :
We argue here that this form of the Lagrangian is, in fact, not nec-
“essary for the superfield description of the N = 1 Brink- -Schwarz super-
ipartlcles and propose its generalization Wthh looks as a conventlonal
-relativistic (super)partlcle first-order Lagranglan

1

L= P, Qm;EEP Pt (5)

.where for the n= 1 case E is an odd superﬁeld for D =4,n=21t1is a
real scalar superﬁeld which; in. particular, can be a constant due to'the
“invariance properties of thé integration measure in (7,7,7) superspace.
“In the case of the D = 6, n = 4 superparticle the analytic superfield E*+
bears two harmonic U(1) charges to compensate two minus charges of

- the analytic superspace measure-in'the action integral. One can identify
e - Lo .. E

'superﬁelds E with the “reverse’ ’ supereinbeins of the correspondmg one- .

dimensional supergravity theories in the sense that their last componentsu’

~ . coincide with the einbein of the underlying bosonic massless particle dy-

~ward):

- generalization of the conventional x-symmetry. [4,5].

§ namics.

The equatlon of motion for unconstralned superﬁeld P,., which follows
from eq.(5), is e
Q™ =FEP™, ; - (6)

whereas

when Lagrangian (1) is varied over Pp. Actually, the both equatlons
describe theories with the same physical content, i.e. the N = 1 Brink-
Schwarz superparticle, which can be stxalghtforwardly checked by solving
all the equations of motions following from Lagrangians (1) and (5). The .

nonzero r.h.s. of eq.(6) results only in a shift of aux111ary components of : . ‘
the superfields integral to the Q™. The basic reason of thls equ1valence -
lies in the fact that Lagrangian (5) is invariant (up to a full derlvatlve)\

under additional gauge transformations which allow one to get rid of .
superfield E. For example, in target D =3, N = 1 superspace these -
transformations look as follows (generalization to D = 4,6 is stralghtfor—' "

§X™ = A(r,7)P SE = —iDA, 60, =6P™ =0; (8) -

600 = Pyl Ka(r,n) , 6X™ = —i®ym60, 6E=4KDO, (9)

~ where A(7,7) is an even superﬁeld gauge parameter and Kq(7,n) is an“

odd one. ' In transformations (9) one can easﬂy recognize a superfield
Both symmetuesv_

(8) (9), which form an algebra, occur to be enough for choosing the gauge ‘

in which superfield £(r,n) turns to zero. Thus, Lagranglan (1) is noth1ng7 o

but eq.(5) written in the partlculax gauge (£ =0). ... . : :
For D = 4,6 and n = D — 2 one can substitute P™ in eq. (5) for

its expression (6) in terms of Q™ and get the second- order form of the, -

superpartlcle formulations considered: ' '

'QmQT

9E (10)
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- For example, iﬁ,the case of . D.= 4,n = 2 superparticle one can put
- E=1and obtain the action proposed in [1]:

" The generalization of Lagrangians (5),(10) to describe superparticle

propagating in supersymmetric Maxwell and gravitational background is -

straightforward and implies the replacement of @4™0 terms in Q™ eqs.(2)
(4) by the correspondlng Maxwell and supergravity prepotentials (see [2]
for the detalls)

-Let us now consider massive superpartlcle dynamics in D = 2 and

D=4 space-time dimensions which possess the k- symmetry. Note that

just in the’ dynarmcs of the

" D=4,N=2 massive superpartlcle w1th central charge the - syrnrnetlyb :

~ was first discovered [4].

- To obtam the descrlptlon of massive N = 2 superpartlcle in D =

one can make use of the dimensional reduction procedure applied to the

' Df- 3 Lagranglan 5)

LD~3 = P (DX"‘ — z®7mD®) - —EP pP™ (m=0,1,2) (12)
.Ineq. (12) nothing is supposed to depend on the X? coordinate and P,

is identified with the D =2 superpartlcle mass m. Then eq.(12) takes

" the form: ,
SRR L E,_ . o

- Lp=g = Pnp(DX™ 109" DO) —1m67°0 — E(PmP —m?*),(13)
- (m =0,1;79% =%7"). o

' When E = 0 Lagrangian (13) coincides with the one considered in [3].
~ The analogous procedure applied to the D = 6, n = 4 action ‘

izt = [ drdudyar [Pm(D*“*XZ‘—,iezvmez)-—?—Pum L4y

'v(where,P‘i = Ps; = 2 are identified with the equal central charges of

2 .
the D = 4, N = 2 supersymmetry, which value equals the superparticle

mass) results in the action

syzt = [dr dudrtant [Pa(D*XT - i0f0™EY) -
; s ++ o
- (05,05 + B0 )u - 5 (PuP - m)| (19

descrlbmg the N = 2, D = 4 massive superparticle of ref.[4] and general- EER

izing its harmonic superspace formulation proposed in [16].

To resume, the superfield Lagrangian (5) generalizes the known super- -
ﬁeld versions of the Brink-Schwarz superparticle and allows one to clarify
relations between them. Note, also that Lagrangian (5) belongs to the

-Lagrangian classes discussed in [15], which admit the 1nterpretat10n in -

terms of gauged supersymmetric Chern- Simons mechanics.

In conclusion we would like to give some motivation in favor of usmg" o
Lagrangians of the type (5) for a generalization of the discussed superfield =
approach to describe superstring theories. The well-known superfield ver-
sions of the N = 1 and N = 2 Green-Schwarz superstrings [17,18,3] suffer *
from the difficulty to incorporate constraints of the type (7), which are

imposed by hand, into superstring actions. To our point of view this

~ ‘problem is connected with the fact that the superfield superstring ac- |
- tions [17,18,3] are constructed in some world-line supersymmetry gauge " -

(for instance, superconformal one) which puts too rigid limits on the

possibility to manipulate with the quantities available. Thus, in contrast -
to the (super)particle case where the term with supereinbein £ can be

gauged away without losing the local supersymmetry, one has to mani-

festly incorporate the geometrical objects of the superstring world-sheet.
superspace into its action. Then one can hope to obtain the necessary“'f ‘
constraints as some superstring equations of motion. For the’ heter}o‘tlck ‘
superstrings the step in this direction was performed in a recent papers
by Tonin [19] (see also ref.[20] by Berkovits). Let us explain the above .
arguments with the example of twistor-like formulation of the classical
bosonic string discussed by the Kharkov group (see, for example, [21]). -
~ The proposed action for D = 3,4,6 and 10 classical bosonic _string looks
© as:

where T is a string tension pararneter eg(r,0) is a world- sheet zwein-

S = / dr do det(e,,)/\'ymp“e"/\(a X™m— -Cg—)\fy pve /\) (1’6 g

R



~ bein, p*(a = 0,1) are world-sheet Dirac matrices and X, (z = +, —) are
commuting spinors in both, world-sheet and target, spaces.

- Due to the equations of motion following from (16) one obtains a
'solution of the Virasoro constraints (8+X)? = 0 in the twistor-like form:

0 X™ = T2 X1y™ Mg (17)

\O‘ne could naively think that eq.(17) also arises from the conformal-gauge
“form of actions (16), (17), wheré the dependence of -ej(r,0) vanishes

similar to the twistor particle case as well, but , in fact, that is not the

case unless some additional constraints on the solutions of corresponding
equatrons of motion are imposed. :

- ‘We argue that action (16), or some its modification, has to be con-:
51dered as the basis for superfield formulations of Green-Schwarz super-

- _strings with. world-sheet supergeometry being explicitly incorporated into .
~ their actions. After the elimination of auxiliary variables the twistor-like

- N = 1,2 superstring actions should take the form; -

: L 2
SN=1 =/ dr dc det(eu) [A'ymp e M0 X™ + z@'yma @ -~ -—)\'y pu/\)-—

o det( @)
SN=2 -—/dT do det(eu) r*ymp el X0, X™ + z@l’y’“a 6, +z®2'ym8“@2

T+ . 1
_?/\7 pu/\) de t( ghr ('L(@l’)‘ma @1 @2’)',,16“@2)8*}{’“'

for stlmulatlve discussions.

‘Note ‘added. When the work was completed the authors became;: j
aware of the paper [22], where the dimensional reduction procedure has

" also'been discussed in apphcatron t6 superfiéld superparticle.actions. We
thank E Ivanov for brlngrng this paper to our attentlon

8

5‘“‘@7,,,5 09 X’"] . (18)

+(@17m3 61)(627’"6 @2))] (19

where O, ared = 2 scalars. The main goal one rnay hope to achieve by'.vg"
cons1der1ng superstrlng formulatlons of eqs.(18) type is the poss1b1hty to .
trade the k-symmetry for the local world sheet supersyrnmetry (in com-
™ phance wrth the superpartlcle case)[l?] and to accornphsh the superstrlngb :
k' covarrant quantlzatlon B ) o
' The' authors are grateful to E Ivanov A Kapustnlkov and D Volkov
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