





It is known that the existence of certain gecmetric

:symmetries in curved' spaceés ‘1eads to ' conservation laws - -

:rexpre551b1e in the form of f1rst 1ntegra1s along geodesics"

k1n these spaces (i.e., along traJectorles ‘of" “the test

_ particles). In [1]- quadratlc first ‘integrals (QFI) of
:geode51cs are obtained. ' S

In" this report 'the method of the covariant

:3fi+deCOmp051tlon~of“the‘4—space~is used to. establish the:
'\pnysical meaning of the: above mentioned:first integrals .as’ -
" functions of -the reference frame’s (RF) characteristicsvand7f~

ﬁ’to‘give some examples 6f'their~possib1e'applications. o
" Henceforth we shall use natural units (¢ =:-1).. Greek-
‘indices run from 0 to 3 and 1at1n ones run from 1 to 3

In -order to descrlbe a reference frame ‘(RF) 1s:"
convenlent to use the congruence of time- 11ke world lines

¥

;w1th\the:f1eld of -.correspondent tangent vector o= dx“/dt:?

where dt is the proper-time-along . the world lines of the RF
congruence,(see,;for‘eXample,>[2])‘ - Letirus write. some

" formulae~of -projection: formalism which ‘we shall use ‘in what

‘follows. We have the’ffqllowing,;decompeSition for metric

"~ tensor..

/1/ guv = tutu - p ’

where h o is the’ metr1c tensor ‘of . the phy51ca1 3- space

Further, we have . - . & sl R ,.TJ~

2/ Coaxt = t“dt +: a1t

where d1? = dlpdlp = h,; dlpdl -and dt = T, axt is proper tlmer

along a world line of the RF congruence.._»
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, The "time" and the "space" components of an arbitrary - ;;131‘:“ /107 T o (E . f E )UMUV _’ConSt:__’hi'7f R
vector are defined as ) . ! : .. -tisca quadratlc f1rst 1ntegra1 of the geodesics.
o /3/ j(t)= aH. ; ',;;,n S In the: spaces which admit AC it is convenient to choose ’
/4/ ap - hAZAA . ; ( | Z;T,:;"as a ‘RF. the congruence .";" satisfiyng /9/... 1t follows
The covariant der1vat1ve'of the vector t° may be determined %;i,xlimmedlately that ip = D '
by a set of geometrical objects which characterise the RF;,_lér Using /5/ and 76/ we obtain o : SRR R
namely, the vorticity tensor AaB’ the expansion of ' Born i /11/ o L™ 7 (F V - Du vy )' L e

- tensor DaB and the acceleration F, in the following way In (2) the 3+1-decomposition of the geode51c s equatlon;

§
/5/ T, . =A4- -D S TF, ) o fV }kf‘/tbls given Tts "time part" is

o i u;v uy uv i , L " ' sy ‘ » T
where ' ‘ ' ‘ s dm _ - : S LN T
A : ‘ , e =1 %" e B /12/ o at - P F DaBp v ‘ BTy
: 23 M5 @ ) : '
S o where p = mV‘are covar1ant 3 momentum components,
; 1 ,a ,8 Pk e . ' :
D = — h" h (T + T ), . Do N t ax® .m
v s Yot . L i S R HIREa
# 2 AR R« N : SR m'='n%—————— = =2 is the dynamical mass and m, 1s the rest.
2 - _1ha hB (t - T ). T SRR % ds ’ ¥ o T : i
‘ uy 2 v B Byl o PR mass\of the con51dered test particle , ‘. NERY
 Let UM = ax/ds be the tangent vector of the geodesic, ?V:. The Compar15°“ of /11/ .and 712/ implies the ' simple.
. i.e., 4~velocity vector of a free particle in gravitational B expre551on J R : e
. ' . . ) R B d I. m -Const.m
- field; s is affine. - parameter :.along ' geodesic. i Im ‘.= . i - /13/ ‘ . dg = ACZ =. i
-correspondence with;/z/'the decomposition of the vector "U" : S ;f.; L 7, ) -7 R ) R
in the system "t" is £ . , \J‘;c;InV the case of the projective _collineation; (PC) - .the .
: ’ . " RSTRE . Lo g,“‘conditions on the vectors "E" are t - R
/6/ U = 7(1: + v ) . . . T Gt ‘ /14 ( + ) 'b - 2 ¢ + ¢ + - ¢: ‘ R
Ve denote v¥ = v P and g = —— = (WPr) = vh - 5. Then /G €)™ Puvi o™ 2 ot Top?ut Tu?
= -v v" an = = T = - . ~ e : X : Co
S S 4 ds “H : TV EH el and the quadratic first 1ntegra1 ‘has the form
v o= dl“/ds is ‘the evident covariant generalization of ‘the' ‘. J;g; /15/ IP = (buv - 4¢g U)U“Uu‘é‘ConSt.
usual notion of the relative 3-velocity. ‘ ! ' . ‘ 1 o
, Let us consider one example . of. symmetry, namely, ' the: )f,f: pwhere ¢ (n+ 1) E v - 570 in our case.
affine collineation (AC) defined as a point transformation : ' . Making use of the fact that the. ‘norm of U 1s~constant
. , : , — e ' ‘Vl‘%'valong a geode51c we have the follow1ng expressions | EERE
AT xH=xHs &(x)d¢e, : e e /16 . I (I D), L T
where &g is infinitesimal and for ' the vectors 5“ ‘the T TE e . FRE C_ cE ' ) e
following conditions are satisfied : : b e e e e - m . ' ' S
; /8/g ‘ erH = gt L grpH = , N /17/7 . g% = == (¢, = ¢,D) R
, /7 ‘ £ vp E; B3 oAy 0, Cln N ] PR S : . \ i
or equivalenttly *there c1 and c,are’ constants . . o
/9/ ' (€:p Ey;“);p =0, Hence we can get from /11/ that in .the PC-case “the :_

' ‘where £, indicates the Lie-derivative with respect to the ' " ‘dependence between proper times along the geode51cs and - the '

vector £. This implies that -~ p\mworld lines of the RF depends on_the volume expansion D.




'_equatlons of motion as geodes1c s equatlons in V

'world 11nes of the RF depends ‘on the volume expan51on D

Let us now make . some ‘remarks on - the problem of . test‘

part1cles' traJector1es mode111ng Th1s method 1s ' based ,on

the fact that one can introduce spaces with various metrlcs

-and connections on the .same manifold and. on the

',character of tensor  and vector

1nterest1ng case are the trajectories of . charged particles: 1n7“

..given space V4.

" 'some other  space Vv, chosen appropriately on the same‘manifold
~ (See [4]). ‘ - : ‘

For instance, let the metric g wg Of v, and the
electromagnetic tensor Qaﬁ admit mot1on\ in .some
field’s ‘direction. Then the Lie- -derivative of V connection~
in:‘the “same direction is - equal ‘to zero,\ i.e. " this space

admlts AC (see [4]) Ev1dently it is more. convenlent to solve
and to use
the QFI ex1stence 1n the same way as above.
”between the parameter s of the

k part1cle s equatlons of motlon X = x(s)

;parameter s along the geode51c ,in 74 can be obtalned by

. comparing- correspondent equations ' : RN

a
iEE o \ DU~ -
/187 = y* P = q3* UP,
L ds P P
S g%, :
/19/ — =0*0° =0 -
L , as = P o
‘nghtihand side of /18/ is “the Lorentz force, éqp fis)
: _[‘ P o P. v
felectromagnetlc tensor and uP = ——. "By def1n1tlon -in both
. ds o G
’cases ‘the traJectory is the same and s = s(s). It follows
a’x* 1 %% - ax
s20/ i :_[_~ s 2
) ds® 52\ gs® ds

’?and tak1ng 1nto account that vector v*
=1 we get

local~f
.quantities([3]). An’

They may be. modelled by_means of geode51cs in-

vector"“

The connection’
1ntegra1 curve of chargedssm’
and: the aff1ne

is time-1like and UaU&

: For a cloud of non—lnteract1ng charged partlcles
peas11y be obtained ‘

wh1ch

or

t}

/21 : — = Hv vruHu
/ / . El lup
g e P s i " ‘ . " ‘
‘where IIA up rh,up rA up 1S a tensor‘called ceformatlon of_
' N a®s  _ ds
connection" s" = —h s’ = — .
ds. ds

it"mayA”

A ' .
= u'e + U &
A up = AU, +ULE ) L
from the symmetry properties of ;the
and. the

‘tensor . -
Obviously in this special case s” =

/zz/ I |
yfollows
Christoffel
components &
P up

symbols wrug ~electromagnetic .

(see./4/).

I

0,, s’ = Const.

In /5/ the close connect1on between flrst 1ntegra1s of'}

~ deviation equat1ons injthe spaces adm1tt1ng motions’ and QFI“

; of geodes1cs in these spaces has been pointed out. Let us“
7L'wr1te the ‘following identity '
o ‘p%g®  p¥® B ‘ o
. /23 — = —— =R vute e 7+ v e %
S ds? ds - KAO ™ H 3 Aa &
where f% is a non-gravitational force acting on - the
considered " particles. From ./23/ ‘various equations1gof

‘deviation can be obtained through imposing certain conditions.
" on the considered vectors or on the spaces' characteristics.; |

"First integrals" of /23/ may - be wr1tten as - follows

p p = :
/24/ Vo = UPb, ~ £, U ~

B . . . S P _ a
/25/ 4 U 'pg ZEU

: Ident1fy1ng vectors "E" and “r" and us1ng /5/ and. /6/one can;“
'—’;show that /24/ takes the form - S

= P
/26/ Va = 7V (A + Dpa)

When the basic traJectory is geodesic and ‘the space in

con51derat1on adm1ts "AC we have

: D E DV
,/26/ — = —— =R
» dsz ds KAO



‘

‘prOJectlve c0111neat10n then from /15/,

/27/ . ‘VaU —f 2 b A,U v o AL o

So in- the case of the AC as (V u* )

‘obtain the following relations ‘ ’ ..3,

S

4')

i

‘collineation (Sce).

/28/ U ZEU = U V = D + Const.

},When the expan51on D is constant this case reduces to the AC p

Another example of space’s ‘symmetry is spec1a1 curvature
‘A Space ‘admits. SCC if the requ1rement 2

29/ | bug:po = © B SRR
holds To th1s ‘symmetry the folloW1ng cublc f1rst 1ntegra1 of .
geode51cs corresponds : ' i ’

. : B P _ j
o b pi) U Const
L ses e Pag U T | |
'"<Byuuse of /30/, /31/, /28/ and /25/ one can eas11y verlfy!;:
Le g W ~dt - e
“““'that “in this case .for 7y = — 'the follow1ng,requ1rement 1sﬁ;n
A b ds « R
satisfied .
" p? : p? . D2y ﬂ
/31/ ———(U 2.07%) = — (U &) = —— = Const. .0 e o)
ds oE” ds as . : T

F1na11y, let us con51der the case when the bas1c tra3ectory[f~
is non—geode51c and for act1ng force the follow1ng condltlon‘

holdS e Lo e e ‘ t k ' ‘(1’;,"\‘
‘ /32/ 2€U"‘ ==7rf°~‘; ¥ =U sp el R
/see [5]/ By means of /5/ and /6/ one can obtain’ for V
/33/ ’ v* = v (A + D% )' o
L On the _other hand, if we put 7“3 = Ubg ~ g o
'con31der - the RF correspondlng to this decompos1t10n w1th- .
. n’ v
the proper tlgg ds and characterlstlcs Auv and Du the v
obv1ously % = —, 2 Uu = D U ‘= 0 and we have
. : uv- up
e , ds
R , VP ~g
' : Y, 4 ;
: = A +'D .
/34/ o v 72, 8l

C In the re1at1v1st1c theory it - is "often_ convenlent to

cons1der motions satlsfylng partlcular klnematlc‘

If we con51der,*h
/25/ and 728/ we -

- connect - the

‘1. Katzin G.H.,

' aﬁd;LV

conditions, -

e;g{,rigid or‘irrotational motions. It has been pointedlout‘

in (6] that this problem can be reduced .to the analysis of a

space-time carrying the pair of time-like congruences. In

‘’.general case one can assume that we are given information on
" these.

while the relative

is unknown. Usuallyvexpressions,Which

congruences’ characteristics
velocity of motion v%

above mentioned characteristics are - partial

differential equations with respect to unknown functions v%.

In this’special case, however, the problem is simplified and

.comparing the expressions /33/ and /34/ .one can determine/the,y

e 4

‘v~ algebraically. More detailed consideration. of such a

problems will be the subject of further report.
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