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It is known that the existence of certain geometric 

symmetries in curved spaces leads to conservation laws 

expressible in the form of first integrals along geodesics 

in these spaces (i.e., along trajectories 'of the test 

particles). In [1) quad.,...atic· first integrals. (QFI) of 

geodesics are obtained. 

In this report the method of the covariant 

3+1.:.decomposition of the 4-space is used to establish the· 

physical meaning of the above mentioned:first integrals as 

functions of the reference frame's (RF) characteristics arid 

to give some examples of their possible applications. 

Henceforth we shal 1 use natural uni ts ( c = 1) . Greek 
·, 

indices run from Oto 3.and latin ones run from 1 to 3. 

In order to describe a reference frame (RF) it is 

convenient to use the congruence . of time-like world lines 

. with, the field 'of correspondent tangent vector -c/.1 .= dx/.1/d-c 

where d-c is the proper time· along the worid lines of the RF 

congruence. ( see, . for example, , [ 2)) . Let. us write some 

formulae of projection formalism which we shall· use in what 

follows. We have the f~llowing decomposition for metric 

tensor .. 

/l/ g/.lV = 'C/.l'CV -.h/.lV 

where hµv is the metric tensor of the; physical 3:..space. 

Further, we have 

/2/ dx/.1 = -c/.ld-c + dl/.1 1 

where dl~ = dlpdlp = hpcrdl~dl0: and d-c = -c/.ldx/.1 is proper.time 

along a world line of the RF congruence. 



The "time" and the "space" components of an arbitrary 

vector are defined as 

/3/ 

/4/ 

A('t")= A 't"µ • 
µ i\. 

a = h A · 
p i\.p . 

The covariant derivative of the vector -rP may be determined 

by a set of geometrical objects which characterise the RF, 

namely, the vorticity tensor Aa~• the expansion of Born 

tensor Da~ and the accelerati_on Fa in_ the following way 

where 
/5/ 't"µ;IJ = AµIJ - DµIJ,+ 't"µFIJ, 

DµIJ 

Gµ = 't' -ra, 
µ;a 

1 · a (3 ( ) 
= 2 h µh IJ 't'a;~+ 't'(3;a' 

_ 1 a (3 _ 
AµIJ - 2h µh IJ('t'a;(3- 't'~;a). 

Let Uµ = dxµ/ds be the tangent vector of the geodesic, 

i.e., 4-velocity vector of a free particle in gravitational 

field; .s is affine parameter along 9eodesic. In 

correspondence wit~ . /2/ · the decomposition of the vect·or "U" 

in the system "-r" is 

/6/ uµ = oC-rµ + vµ) . 
d't' A . 

We denote v 2 = -v vP and O = -- = (Uµ't') = 1 - v 2
• Then 

p . ds . µ 

,vµ = d1µ/ds is the evident covariant generalization of ·the 

usual notion of the relative 3-velocity. 

Let us consider one example of, symmetry, namely, the· 

affine collineation (AC) defined as a point transformation 

/7/ Xµ=Xµ+ €(X)oc, 

where oc is infinitesimal and for the vectors €µ the 

following conditions are satisfied 

/8/ ~ rµ = €µ + ti\.Rµ = 
€ IJP ;p1J pi\.lJ 

Q I 

or equivalenttly 

/9/ ( c:_ +c: ) =O, 
'->µ; IJ '->IJ; µ ; p 

where~€ indicates the Lie-derivative with respect to the 

vector~- This implies that 

2 

,,.,,-, 

'/· 

' /10/ .I = (€ .. · ·+ € ; )uµuV. = Const·_ 
AC µ,IJ IJ,µ · ·· 

is a quadratic first integral of the geodesics. 

In the· spaces which admit AC it is convenient' to choose 

as .. a RF.. the congruence ":C" satisfiyng /9/. It follows 

immediately that -rP = D. 
. . ;p 
Using /5/ and /6/ we obtain 

/11/-
2 IJ . µIJ 

IAC= o (FIJV - DµIJV V )., 

In (2).the 3+1-decomposition of the geodesic's equation 

is given. Its "tim~ part" is 
· dm_ µ a(3' 

/12/ d't' - p Fµ-Da(3P V , 

where pµ = mv are covariant 3-momentum components, 

i dxa m 
m = m a = • - 0 is the ·dynamical mass and m is the rest 

0 · 0 
ds o 

mass, 6f the considered t~st particle. 

The , comparison of /11/ ,and /12/ implies the. simple 

expression 

j13/ 
dm 
d't' = 

I Ac m · · Const.m 
= ,,.2 ,,.2 

In the case of the projective . collineation °(PC) - the 

conditions on the vectors "€" a're 

t /14/ ( €µ; IJ + €µ; IJ); p=- bµIJ; p= 2gµIJ'.P• p + g1Jpc/>' µ + gµpcf>' ~ 

and the quadratic first integral has the form 

/15/ I = (b,. - 4cf>g )UµUIJ = Const. 
PC µv µIJ 

- ( )-1 i\. 1 . wh_ere cf> = n- + 1 € . i\. = 5 D 1n our case. 
' . 

Making use of the fact that the norm of U is constant 

·· -along a geodesic we have. the following expressions 

/16/ Irc = (IAc - c 2 D), 

/17/ 
dm 
cfi: 

m 
= --2 ·(ci 

,,..- 1 

where c
1 

and c
2
are constants. 

c
2
D), 

Hence . we can get xrom /17 / that in ._the PC-case 

·dependence between proper times along the geodesics and the 

world lines of the RF depends on the volume expansion D. 

3 



world lines of the RF'depends on the volume expansion v: 
Let us now make some remarks on the problem of. test 

particles' trajectories modelling. , This method is. based .on 

the fact that one can introduce s·paces with various metrics 

and connections on the same manifold and on the 'local 

. character of tensor and vector .quantities([3)). An 

interesting case are the trajectories of charged particles in 

given space V. They may be modelled by means of geodesics in 
. 4 

some other space V .chosen appropriately on the same manifold 
• 4 

(See [4]). 

For instance, let 
• I 

the of 

in 

V
4 

and the 

some vector 

metric gex{3 
ad.mi t motion electromagnetic tensor <fl 0 . ~ - . 

field's direction. Then the Lie-derivative of V
4 

connection 

in the · same direction is equal to zero, i.e. this space 
. . 

admit,s AC (see [4]).Evidently it is more convenient to solve 
I• \,,, . .' 

equations of motion'._ as geodesic• s equations in' V
4 

· and to use 

the QFI existence in the same way as above. The connection 

· between the · parameter s of the integral curve of charged. 

particle's equations of motion x = x(s) and the affine 

param~ter s along the ·geodesic in V can be obtained by 
4 

comparing correspondent equations 

. /18/ 

,/19/ 

DUex 

ds 
= Uex uP 

;p 
- . q<flex uP 

p ' 

DUex 
= Vex uP = 0 • ;p . . 

I 

ds 
Right~hand .side of /18/ is the Lorentz force, <flex is 

p p 
. dx 

electromagnetic tensor and up·= --. By definition in both 
ds 

cases the trajectory is the same ands= s(s). It follows 

/20/ 
d 2;ex 1 d 2xex ·. dxex 

( 
-11 ) -- = -- --- -· s --2 - 2 2 

ds s' ds ds 

and taking 'into account that vector Uex is time-like and uexuex 

= 1 we get 

4 

Ji 
. /J 
., 

l 
I 

. ·•'i, 
;:; 
'j 
\/ 

:1 
I 

s" 
'/21/ 

s' 
=II 71.µ 71., µpu U uP, 

where r( ,, = I\ ,, - r, is a tensor called "deformation of n,~P n,~P . n,l.LP 
2 - -d s ds 

connection", s" = --, s' = 
ds~ ds 

For a cloud of non-interacting charged particles it may 

easily be obtained 

/22/ Ill!., I.LP = q(Ull.<f!l.LP + U p<flµll.) 

which follows from the symmetry properties of the 

Christoffel symbols r O' and the electromagnetic tens~r . l.LV . , 
components <fl (see /4/). Obviously in this special cases"= 

~ . . . 
0, , s' = Const. 

In /5/ the close connection between first integrals of 

deviation equations in\the spaces admitting motions and QFI 
I 

of geodesics in these spaces has been pointed out. Let us 

·write the ·following identity 

.D2(;ex 
/23/ 

ds 2 

DVex 
= -- = Rex uK,ull. t;<J' + (;ex f<J' + ull.u<J' !f. rex , 

ds . KA<T . ; er l; 71.<T 

where f<J'· is a non-gravitational force acting. on 

considered particles. From /23/ various equations 

the 

of 

deviation can be obtained through imposing certain conditions 

on the considered vectors 

"First integrals" of 

o,r on the spaces' characteris_tics .. 

/23/' may be written as follows 

. /24/ vex = uPb - l; uP exp p_; ex 
or 

/25/' 

' 
vex= uex ~P - !f. uex 

; p',, l; 

Identifying vectors "l;" and "-c" and using /5/ and /6/ one can 

show that /24/ takes the form 

/26/ vex= 7vP(Apex + Dpex) 

When the basic trajectory is geodesic and 'the space in 

consideration admits AC we have 
D2 l;ex DVex 

/26/ = -- = Rex · u"ull. t;<J' 
ds2 KA<T · ds 

p 



/27/ v ua = -1. b · uPu~ =.:.:..!.I a • 2 p<T · 2 AC , 

l. '. / 

Se>~in the case of the AC ~s (VaUa) ·= o. If .we consider 

projective collineation then from /15/, /25/ and /28/ we 

obtain the following relations 
• a a 

-. /28/ U a!f.E;,U = u av = D + Const. 

When the expansion Dis constant this case reduces to the AC. 

Another example of space's symmetry is special curvature 

,'collineation (SCC). A space adniits. sec if the requirement 

/29/ ba(3;po- = 0 
holds. To this symmetry the following cubic firs~ integral of 

ge~desics corresponds 
· · b uauf3uP = Const. 

a{3;p . /30/ 

By· use of /30/, /31/, /28/ and /25/ one 
,. di: , 

can easily verify 

that in this case. for a = ·the following requiremer;it is 
ds 

satisfied 
D2 D2 D2 

. /31/. 
o- . o- r 

-(Uo-!f.tU) = - (U £;.) = -- = Const. 
ds ds2 o- ds 2 

Finally, l_et tis consider the case when. the basic trajectory 

is non-geodesic and for acting force the following condition 

holds 

. /32/ !f.cUa =·ofa; a= U E;.p 
. ~ p 

, . . a 
-/see [5)/. By means of /5/ and /6/ one can obtain for V 

/33/ 
a · CT a a 

V = oV ( A CT + D CT) • 

On the other hand, if we put· a a{3 

consider th~ RF ~orresponding to this 

the proper time ds ~nd characteristics 
di: 

= u u - g and a (3 a{3 . 
decomposition with 
- ~ 
Aµv and Dµv•· then. 

obviously a= --, 
ds 

A Uµ 
µv 

~ V 
= D U = 0 and we have 

µv 

/34/ Va 
vP ~ ~ . 

~ -··-(Aa + Da ) ·. 
0 p p 

In the relativistic theory· it is often convenient to 

consider motions satisfying particular kinematic conditions, 

6 

e;g, rigi~ or irrotational motions. It has been pointed out 

in (6] that this problem can be_ reduced .to the analysis of a 

space-time carrying the pair of time-like congruences. In 

general case one can assume that we are given information on 

these congruences' characteristics while the relative 

velocity of motion v:a is ~nknown. Usually expressions which 

c_onnect the above mentioned characteristics are . partial 

differential equations with respect to unknown f,unctions va. 

In this special case, however, the problem is simplified and 

comparing the expressions /33/ and /34/ .one can determi_ne,'the 

•va algebraically. More detailed consideration of such a 

problems will be the subject of further report. 
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