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1 Introduction 

The phenomenon of spon~aneous symmetry bryaking, or in other words,. 
the vacuum structure arrangement is an important ·part of many quan:- . ·1 

tl1m field constructions. ,The simplest example, where the .vacuum ex-,:• 
hibits a nontrivial structure, is the <p~ theory. Many papers [1-8] are de
voted to the investigation of vacuum phase structure in this model, But .. , 
their results are in contraduction. We shortly treat some nonperturba
tive methods seemed to be basic among investigations on this subject. 
An original approximation [1] using a Hartree-typ~'ren~rmalizatio~ ex
hibits a first order phase transition in this theory. A.similar result was 
obtained [2] within the Gaussian effective potential approach. The di
mensionless critical coupling constant, for which the first order phase 
transition takes place is G = 1.62 in both papers. These conclusions 
contradict mathemati.~al .theorems [3,4) proving that a second order 
phase transition occurs in the <p~ model. There are papers [5-8), where 
different variational methods have been used for solving this problem 
and a second order phase transition has been observed in the region 
G ~ 1. In the previous studies [9,10), we have shown that the critical 
coupling cons~ant leading to a second order phase transition cannot 
exceed the value G0 = 1.4392 and may be found n~ar G~rit ;._, 0.53 .. 

in this pap~r; \Ve c~nsid~r the scalar field theorY ~ith the Lagrangian. 
den~ity · ·· · ·· · 

1 · ;, . ' 2 2 .. · ' g 4 
C = 2<p(x)•[ 8 - m ];'P,(x) ~ 4-Nm { 'P (x)} , (1.1) 

where the normal product Nm of the fields <p(x) : 



D (x) = 1~ exp{ikx}. 
m ( 21r)2 m2 + k2 

removes all the divergences in this superrenormalizable thC'ory. Here 
x = (x1, x 2) E O and O is a finite volume in R2 . Both the mass param
eter m and coupling constant g are positive. At small g the Lagrangian 
(1.1) describes a system invariant with respect to the transformation 
<p +-+ -<p. The question is whether this symmetry remains for increasing 
g. 

We will investigate this problem within the method of effective po
tential utilizing the techniques introduced in [1~,12]. We demonstrate 
that the first order phase transition exhibited in [1,2] does not occur 
due to nontriviality :of the obtained Gaussian effective potential. Vve 
shown alsOa possible occurrence of a second order. phase transition and 
gave an-estimation for the.corresponding critical coupling constant. 

2 Effective Potentiai 

In this section, we will investigate the effective potential defined [13] 
as . 1 

V(<p0 ) = - lim r. ln I11(<p0 ), · 

fl-+oo ll ., 

In(<po) = Cm J O<p·8{ <po - ~ Jd2xt.p(x)} expjd2x-£[t.p(x)], · (2.1) 

n n 

Cm = J det{ -82 + m2}., 

In(t.p0 ,g = 0) = 1. 
' . . 

We work in the Euclidean space. The functional integral iri (2.1) is well 
defined at small g. The absolute minimum of the effective potei1tial 
V(cp0 ) at the point cp0 = <p* determines the true g·rouncl ~tate (vacuum) 
energy in the theory. For g ~ 1 the minimum is disposed at the 
origin: <p* = 0. As g increases, there may occur new nontrivial minima 
<p* . ±a, which means the appearance of a phase transition in this 
system. 
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Let us do some transformations of the functional integral In(cp
0

) in 
(2.1): First, we introduce [12] a transforrn,ation of the field variable 

t.p(x) = </>0 + <;b(x) + b(x), (2.2) 

where </>0 is a constant field and the new field variable ¢(x) and an 
arbitrary function b(x) satisfy the conditions 

jd2x </>(x) = 0, 

n 
j~l2

x b(x) = 0 and b2(x) = b2• 

n 
(2.3) 

\Ve can substitute (2.2) into (2.1) and perform integration over d¢
0 

taking into account the functional differential Ot.p = d</>
0

8¢>'. Then, we 
obtain 

In('Po) = Cm J 8¢· exp{j~L2x-£[cp0 + cp(x) + b(x)]}. (2.4) 
n 

Second, we go over to the normal ordering in the new fields ef>(x) 
with a new massµ using the well-known [14] formula as 

Nm{ exp{/3\,,(x)}} = Nµ{ exp{/J(I', + b(x) + <j,(x)) + ~
2 
Ll.(m, µ)}}, 

.6.(m, p) = D111 (0) - Dµ(0), (2.5) 

D (x) = j dk exp{ikx} 
µ ( 21r)2 µ2 + k2 

1 
/t20 . 

Then, substituting (2.5) into (2.4) we get 

In(<po) = e-OVo('Po) J dCYµ~ exp{Jd2x 

n 

{ 
1 2 2 · 2 ] 2( ) Nµ 2-[µ - m + 3g(.6. - cp0 ) ·</> X 

-{[<t>4(x) + 4(cp0 + b(x))¢3(x)+ 12cp0 b(x)¢2(x)] } } , 
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(2.6) 



J daµ = Cµ 18</>· exp{-½ Ja2x<f>(x)(-8
2 + µ 2

)<f>(x)} = 1, 
n 

where a leading term Vo(cp0 ) of the effective potential is introduced: 

l J dk [ . m2 - µ2 m2 - µ2] 
Vo(cpo) = -2 (27r)2 ln(l + µ2 + k2) - µ2 + k2 

m2 g 
+ 2 (cp~ + b2) + 4(cp!- 6~(cp~ + b2) + 3~2 + 6ip~b2 + b4). (2.7) 

We require [12] that all the quadratic field configurations be concen
trate.cl in the Gaussian measure da µ and linear terms should be absent. 
The requirements lead to the following constraint equations for the 
parameters b and µ: 

{ 

b(x)[m2 - 3g(6 - cp~) + gb2
] = 0, 

µ 2 - m 2 + 3g(~ - cp~ - b2) = 0. 

Thus, we finally obtain the formula for the effective potential 

where 

V(cpo) 

½c(<po) 

Va(ipo) + Vsc(cpo), 

- lim ~ ln Jn(cpo) ,· 
fl~oo ~ G 

(2.8) 

(2.9) 

Jn(cp0 ) = j daµ·exp{-¾fci2xN1,[<1>4(x)+4(cp0 +b(x))</>3(x)]}· 
n 

(2.10) 
Eqs (2.7)-(2.10) define self-consistently the effective potential at arbi
trary coupling g. 

We note that in the particular case of trivial b(x) = 0 our leading 
term Vo(cp 0 ) and constraint equation (2.8) reproduce the Hartree-type 
potential and the corresponding condition of its minimum on the pa
rameter µ , obtained in [5] . This coincidence may be explained by our 
particular choices of linear field transformation (2.2) and Gaussian type 
of measure daµ in (2.6). It is well known [1,2] that the potential (2.7) 
for trivial b(x) = 0 within the limitation for µ by (2.8) corresponds to 
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the sum of 'cactus-type' diagrams and indicates in favor of a first-order 
phase transition at 

( __f!_ - . 
m2 )* - 10.211 or GO = ( ~ )* = 1.6251 

· 27rm (2.11) . 

3 Gaussian Approximation 

Now we will im·0stigat.e th0 Gaussian Pmt (2.7) of th0 effective poten
tial whose parameters b(x) and /I are limited by constraint Eqs(2.8). 

It will be conv0nicnt to work in units of m dealing vvith numerical 
results. \Ve define 

( = (/t/rn)2
, <I>o 2 = 41r-p~ all(l B 2 = 47l"A2 . (3.1) 

Then, (2.7) becomes 

, ·m . . 2{ l·~(<I>o) = - l - 1-"ln( +<I>/+ B 2 
87!" 

+ ~ [<1> 0
4 + B 4 

+ 3ln
2

( + G(B
2

<1> 0
2 

- B 2ln(- <I>}ln0]}. (3.2) 

·we note that the potential (3.2) is invariant for <1>
0 

.-. B. 
The parameters ( and B in (3.2) ar<: limited by th~ following equa

tions: 

{ 

B 2
(( - GB 2 ) = 0, 

2~ - 2 + 3G(ln~ - <I>} - B 2) = O. 
(3.3) 

Let us consider the constraint. Eqs(3.3). A pair of" trivial'' solutions: 

3G 2 B = 0 and ( = 1 + 2 (111( - <l>o ) (3.4) 

can be found for an arbitrary coupling constant. G. Since G > G
0 

= 
1.4392 an additional pair of "nontrivial" solutions 

( 3G 2 B = - and ( = -2 + -(ln( - <I> 0 ) 

G 2 (3.5) 

appears here too. So for G < G0 t.lw ouly solution to lw substituted 
into (3,2) is the "trivia1''.orn', hut. siun· G > G

0 
tlH'n' is an alt0rnative: 
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one can choose either (3.4) or (3.5). We choose the pair obeying the 
lowest value of Vo( <T? 0 ) for certain fixed <T? 0 • 

All necessary calculations can be performed numerically. The ob
tained potential ¼(<T?0 ) is plotted in Fig.I. Near the origin <T?0 = 0 the 
potential ¼(<T?0 ) is presented by the "nontrivial" branch (if G > G0 ) 

B i=- 0 as it is situated lower than the "trivial" one. But for larger val
ues of <T? 0 the "trivial" solution B = 0 provides the lowest value of the 
potential. This picture leads to an interesting result. Let us consider 
the local minima of both branches. For B = 0 the minimum point 
<T?0 = A in Fig.1 is given by the equations 

{ 
B = 0, 

2 - 3Gln~ + G<T? 0
2 = 0. 

(3.6) 

On the other hand, the minimum of the "nontrivial" branch B i= 0 

is fixed at the origin <T? 0 = 0 for any G > G0 and (3.3) becomes 

{ 

<T?o=0, 

2-3Gln~+GB2 = 0. 
(3.7) 

Due to the invariance of the potential v~( <T? 0 , B) in (3.2) for <T? 0 · - B 
our Eqs (3.6) and (3.7) are identical. In other words, the minima of the 
potential (3.2) corresponding to different solutions of (3.3) are equal. 
The vacuum with < <T?(x) >= <T? 0 i= 0 is not lower than the initial at 
the origin < <T?(x) >= <T? 0 = 0. There is no reason for occurrence of a 
first order phase transition. 

4 Non-Gaussian Corrections 

In the previous section, we have derived the expression for the effective 
potential consisting of two parts. Considering of only the "leading" 
term ¼(cp0 ) says one nothing about the nature of a phase transition in 
this theory. To answer this question one should consider also the re
maining part Ysc(cp 0 ) of the effective potential, defined in (2.9). At weak 
coupling limit one can estimate it expanding the exponential in (2.10) 
in perturbative series. But explicit calculation of the non-Gaussian 
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functional integral Jr,,(cp 0 ) in (2.10) at arbitrary values of the coupling 
constant g and cp0 is a complicated problem. However, we are able to 
estimate it for small values of cp0 at arbitrary g. 

We rewrite (2.10) in the form correct for small cp0 : 

Jr,,(cpo) = j daµ• exp{-~ jd2xNµ [¢4 (x) + 4b(x)¢3(x)] 
11 

2 2 ' 2 
+ g :

0 [jd2xNµ(¢ 3(x) + 3b(x)¢2(x))] } . (4.1) 

11 

This representation can easily be obtained clue to the validity of the 
following transformation in (2.10): 

exp(-cp0 W) = cosh(cp0 W) ~ exp{ ½cp~W2 + O(<p!)} 

for infinitesimal <p0 and finite functional W . 
Applying to ( 4.1) Jensen's inequality we get an upper bound 

'V;;c(<p0 ) s; ~!('Po) = - 9;~~ jd2x jd2y f da1,{ 

11 11 

Nµ¢3(x)Nµ¢ 3(y) + 9b(x)b(y)Nµ¢2(x)Nµ¢2(y)}. ( 4.2) 

It is easy to show that 

f daµNµ</> 3(x)Nµ¢ 3(y) = 6D!(x - y), 

f daµNµ</> 2(x)Nµ</> 2(y) = 2D!(x - y). (4.3) 

Then, we rewrite ( 4.2) in the form 

m2 3G2<T? 2 
Vs!(<T?o) = - B1r · 2~ 

0 

(Q + 3B
2
), ( 4.4) 

1 

~~1/ 8(1 - o: - /3 - 1) 
Q = do: d/3 d1 /3 /3 = 2.3439. 

o: + o:1 + 1' 
0 
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Substituting the parameters ~ and B in either (3.4) or (3.5) into 
(4.4) one gets the behavior of ½t(<I>0 ) for small values <I> 0 ~ 0. Omitting 
details of calculations we write the results 

½!(<I>0 ) = -;:-{-
3
~ G2<I>/ + O(<I>0

4
)} for G < G. (4.5) 

and 

m
2 

{ [3QG
2 

9G] } ½!( <I>o) = - 87r. - ~+2 <I>o 2+0(<I>o 4) for G > G •. (4.G) 

3Gln~ - ~ - 2 = 0 . 

From (3.2) we get the following asymptotic behavior: 

Vo(<I>o) = .;; {<I>/+ O(<I>0
4
)} (4.7) 

as <I>0 --+ 0 at any G. 
Finally, taking into account Eq(2.9) we obtain the following behav

iors of an upper bound of the effective potential in the region of small 
<I>o ~ 0: 

v+[<I>o] = Vo[<I>o] + ½![<I>o] = ·;; · [n(G)<I>/ + O(<I>o4
)] , . 

where 

{ 

a:1(G) = 1 - 3QG2 /2, 

o:(G) = a 2(G) = 1 ·- 3QG2/(20 - 9G/2, 

3Gln~ - ~ - 2 = 0 . 

G::; 1.6251, 

G > 1.6251, 

( 4.8) 

( 4.9) 

One can easily check that the coefficient a 1 ( G) in ( 4.9) becomes 
negative as G > Gcrit = 0.5333 and remains negative for increasing G. 
But a2( G) is negative at arbitrary G > 1.4392. In the author's opinion, 
it can indicate a possible occurrence of a second order phase transition 
in the model under consideration. 
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Fig.1. The Gaussian part l.,~( <I> 0 ) (in units of m.2 /81r) of the effec
tive potential as a function of <I> 0 for different values of tl1e coupling 
constant: crosses, G = 0.5; triangles; G = 1.5; squares, G = 1.6251 
and rlwmbs, G. = 2.0. The dashed lines represent the ''nontrivial" 
branches. The "trivial" branches are denoted by tl1e solid lines. 
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