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Deviation equation of Synge and Schild has been inves
tigated in spaces with affine connection and metric. It 
is shown that the condition f~u = 0 for obtaining this 
equation is only a sufficient {but not necessary) condi
tion. By means of a non-isotropic vector field u (g(u,u)= 
~ e f O) and the orthogonal to it metric hu a projected 
deviation equation of Synge and Schild has been obtained 
for the orthogonal to u vector field~, and its square 
L2 = g(~ 1 .~ 1 ). For a given non-isotrop1c, autoparallel 
and normalized vector field u this equation could have in 
some special cases the form of an oscillator equation. 
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INTRODUCTION 

1. In general relativity, as a basis for the theoretical scheme for 
gravitational waves detectors proposed by Weber/1/ in 1958-1959 and 
discussed by many authors/2-5/, the deviation geodesic equation 
(proposed by Levi-Civita in 1925161) in the form 

D2li i j k 1 
ds2 = R jklu u l ( 1 I ) 

or in the indexfree form 
'Ju v'u C: [ R ( u, E.)] u ( 1) 

has been used. Its generalization for non-geodesic trajectories (atO) 
(which has been proposed by Synge and Schild/?/ in 1956) in the form 

D2 E.i , i j k 1 i j 
~ = R jklu u l + a ;jl (2 I) 

or in the indexfree form 
v'u 'Jul = [R(u,!)) u + 1a , (2) 

has also been used by Weber in a special form for construction of 
gravitational waves detectors of the type of massive cylinders reac
ting to periodical gravitational processes. The application of these 
equations in experiments for detecting gravitational waves turned the 
attentibn of many authors to considerations and proposals' for new de
viation equations. Two types of prerequisites for obtaining such equa:. 
tions are usually used: 

a) Physical interpretation of deviation equations .as equations 
for the relative acceleration between particles, moving on trajecto
ries i~ (pseudo)Riemannian spaces without torsion (Vn-spaces), consi
dered as models of space-time in general theory of relativity, or in 
relativistic continuum media mechanics18- 111 • 

b)Mathematical models for obtaining deviation equa~ions bymeans 
of (covariant) differential operators, acting on vector fields in 
spaces with affine connection and,.1netric (1n-spaces) (special case: 

B (h, :; •' ~,-~: •. «1 Ki-::liryt~ I nt. .;.,,,.u 1u.e :1t,.:to11HI 
~ E,l,tS11t,10TEKA -- -



(pseudo)Riemannian spaces with torsion (Un-spaces) or without torsion). 
In both types of methods problems arise, connected with the 

physical interpretation of the quantities defined in the equations as 
well as with finding exact solutions of the proposed equations. At the 
same time there are many tangential- and cross-points between these 
methodsl12-t5/ 
2. From mathematical point of view many of the proposed by different 
authors deviation equations can be obtained from the s.c. generalized 
deviation identity (generalized deviation equation) in L -spaces/13• 141 

n 
\7u'vuE. = - [R(E.,u)]u + 'vaE. + T(E.,a) - v7)T(l,u)] +[~r(E.,u)]u, 

or in index form (3) 

(c.i .uj) uk = Ri .ukullj + li .aj + T ilkal - (T ilkul) uj + /J /k klJ /J kl , kl /j 

where 

i k 1 
+ cilricl. u u 

a= 'vu= ui .ujE = aiE. 
U /J i 1 

u, c. E: T(;,i) , 

R(E.,u) is the curvature operator 

(JI) 

R(c.,u) "' 'vl 'vu - 'iluv'E. - v'o!lu = (v'l' v'u] - v'[E.,u] ' (4) 

ctr (E.,u) is the deviation operator/13/ 

ot'r(l,u) = otE.'vu - v'u.il - ~llu = [cl15.,'vu] - 'v(c:;u]' (5) 

~E.u is the Lie derivative of the vector field u along the 
vector•field E., 

clE.u = ~u - 'vuE. - T(l,u) = [l,u] , (6) 

'vuE. is the covariant derivative of the vector field E. along 
the vector field u 

i j i ik j 
'vl=E. 1 .uE.=(E.E. +I:'k.l.)uE. (7) 

U J 1 J J 1 

J. In general relativity (GR) notions such as shear (shear velocity)O', 
rotation (rotation velocity}W and expansion (expansion velocity) G 
are used. These notions/16- 181 can be defined in Ln-spaces in analo
gous way, as in Vn- and Un-spaces by means of representation of the 
covariant derivative of a vector field along (another) non-isotro
pic vector field u (g(u,u) =er 0) in the form 

, 1 - 1 ] 'v c.= -.g(u, 'v l) .u + g(h (-.a - ..e',u) + u e u ue c 

+ g[O'(l)] + g[w(E.)] + _.1_
1

.G.g[h (E.)) , (8), 
n- u 

1 d = er+ w + n- 1 .G.hu , (9) 

or in index form 
i, ,j 1 k 1 m i ij 1 'k k 

E. /ju = e·gklu E. /mu .u + g [hjk(e.a - ctlu) + 

2 

',, 

1, 

Here 

+ (crjk + wjk + n~,.G.hjk)E.k] 

dij 
1 

crij + wij + n-1 ·G.hij 

1 . . 
hu = g - e.g(u) ® g(u) = hijE1.EJ ' 

k 1 
g = gklE .E' 

a is the shear velocity tensor (shear): 

i j 1 { ( - - 1 ( [ - - '} a= crijE .E = 2 hu Vug - ~ug)hu - n-1 hu 'vug - ot'ug] )hu ' (10) 

Wis the rotation velocity tensor (rotation): 

W = w.jEiAEj = h (k )h, k = S - q, S = lcuk/ gD1 
1 uau a c.,n ul gDk)EkAEl, 

/n 

1( k ml 1 mk) n E. E 
q "'~ Tmn g - Tmn g u • k. 1 ' ( 11) 

G is the expansion velocity invariant (expansion): 

1 [ - -] 1 kl m kl 
G = 2·hu 'vug - ~ug = 2·hkl(g /mu - ,iug ) ( 1'2) 

In this way the notions of shear, rotation and expansion are 
generalized for Ln-spaces. In analogous way (after some more compli
cated computations) for the second covariant derivative notions such 
as shear acceleration, rotation acceleration and expansion accelera
tion can be introduced in Vn-• Un- and ~-spaces. These notions can 
be also connected with the generalized devi!ltion 'identity which can 
be written in the form113/ -

'vu'vuE. = ¾.g(u,'vu'vuE.).u + g[hu('vu'vuE.)] • ( 13) 

g[h ('v 'v E.)] = g(h )[1.'v a - 'v,, u - 'v (ot,u) + T(~. u,u)) + 
U U U U e U "",!:ll U G c;, 

+ g[sD(E.) + W(E.) + n~1 .U.hu(c.)] , (14) 

or in index form 

( .i j) k 1 k(~l j) m i ijb (•k 1) m 
G /ju /ku = e·gklu C. /ju /mu .u + g jk c;, /lu /mu ' 

ij k 1 m ij [l k 1 k 1 k 1 
g hjk(l 11u );mu = g hjk 8 .a ; 1u - u /lo!E.u - (.tE.u )11u + 

k m n] ij ( 1 )E. k 
+ Tmn .tlu u + g sDjk + wjk + n-1.U.hjk 

Here: D = FD - TD + Mis the shear acceleration tensor (shear 
S S O S O S 

acceleration) constructed by three terms: sFDo is the curvature- and 
torsion-free shear acceleration, TD is the shear acceleration, ins 0 
duced by torsion, sM is the shear acceleration, induced by curvature, 
W = FW - TW + N is the rotation acceleration tensor (rotationaccel-o O · 
eration) which has ,also three terms: FWo is the curvature- and tor~ 
sion-free rotation acceleration, Two is the rotation acceleration, 
induced by torsion, N is the rotation acceleration, induced by cur
vature, U = Fuo - Tuo + I is the expansion acceleration invariant 
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(expansion acceleration) with the three terms: Fuo is the curvature
and torsion-free expansion acceleration, TUo is the expansion accel
eration, induced by torsion, I is the expansion acceleration, induced 
by curvature (this term appears as a generalization of Raychaudhuri 
identityl18/ for L -spaces). n 

By means of different representation of the generalized devi-
ation identity possibilities can be considered for writing down theor
etical schemes in gravitational theories (and particular in GR theory) 
for construction of gravitational waves detectors. 
4. In the present paper ·the deviation equation of Synge and Schild is 
generalized for L -spaces and specialized for description of an ortho-n .. 
gonal to the non-isotropic {tirnelike) vector field u variation of the 
second covariant derivative of vector field E. (which has been inter
preted as a deviation vector). In sec. I. the generalized deviation 
equation of Synge and Schild and its projected form (projected devi
ation equation of Synge and Schild) is considered in L -spaces aswell 

n 
as an analogous deviation equation for the square of a non-isotropic 
(spacelike) vector is found and investigated. In sec. II. the projec
ted deviation equation of Synge and Schild for the square of an auto
parallel ('vu= 0) (non-isotropic) and normalized (g(u,u) = e =const. •' u 
# 0) vector field u in L -, U - and V -spaces is considered and , n n. n 
examples for the case of V -spaces are given which can lead to an n 
equation in the form of an osc,illator equation. 

I. DEVIATION EQUATION OF SYNGE AND SCHILD IN SPACES WITH AFFINE 
CONNECTION Arm METRIC 

1. The deviation equation of Synge and Schild in Ln-spaces can be ob
tained from the generalized deviation identity by means of the addi
tional condition 

i 
.tiu = 0 or c!,!:U = O 

in the form 

'vu v'ul = [R(u,l)] u + v'l.a 
or in index form 

v'u [ T( l, u)] 

(E.i /juj) /kuk = R\ljukulE.j + ai ;l·j - (Tk/c:kul) i juj 

At the same time the conditions 
v'ul= v'l.u - T(E.,u) or !i/juj 

i j . u ;·l _ T l~k 1 
J kl c. u 

and 
[otr(E.,u)]u = otla 

are fulfilled. 

or 
i . 

.,tl.!7ik'uJuk cl'!ai 

( 15) 

( 16) 

( 17) 

( 18) 

The way of getting the deviation equation of Synge and· Schild 
gives the possibility for proving the following proposition: 

4 

It 

,/ ,,, 
,; 

\ '1 
·, 

Proposition 1. Every vector field E., which satisfies the equations 
ol'l.u = O ( o!l. ui = 0) for an arbitrary vector field u is a solution 

of the deviation equation of Synge and Schild. 
Proof: There are at least two ways113 • 151 for proving this proposition: 
1. The proof follows immediately from the generalized identity and the 
condition (15), 2. Expression (17) follows from (15) and after covari
ant differentiation along u with condition (15), the deviation equa
tion (16) follows. 
Corollary: The condition (15) is a "first integral" for the-deviation 
equation of Synge and Schild (for arbitrary vector field u). 
Remark: l:nder "first integral" here one can define a quantity whose· 
cov~riant derivative along an arbitrary vector field u leads to the 
deviation equation of a concrete type Chere of Synge and Schild). 

Proposition 2. The necessary and sufficient condition for the exist
ence of the deviation equation of Synge and Schild is the condition 
(18): otla = [~r(E.,u)]u or 
Proof: a) Necessity: From the 
b) Sufficiency: From (18) and 
(16) follows. 

ol! ai = of r.i ukul 
l. l. kl' 

identity (3) and (16) it follows (18). 
the identity()), the deviation equation 

Remark: In finding out devittion equations different authors used only 
sufficient (or "first integi'als") condition for these equations (like 
those of proposition 1.).<They don't take into account that the ob
tained equations can fulfill also other sufficient condition than the 
considered one (s. for example/13/ and/ 151). 

2. The second covariant derivative of a vector field E. along a non-iso
tropic vector field u can be writLen in two perts: the one is collin
ear to u, t'ie ot!1er is orthogom1l to the vector field u ( s, ( 1J, 14)). 

The second term can be interpreted as a relative acceleration between 
twci points, lying on a hypersurface orthogonal to the vector field u. 

Since the (infinitesimal) vector has also to lie on this hypersurface, 
then in this case l has to obey the condition 

g(!,u) = 0, (19) 
or E. has to be ir t',e form 

E.J. = g(hu(l)) , g(E.J.,u) 0 • (20) 

The deviation equation which is obtained for hu ('vu 'vul) under .. 
the conditions 

ot'E. u = o', g ( u, l.L) = o , E. J. = g ( hu ( E.) ) ( 21 ) 
~ ' 

can be defined as a projected deviation equation of Synge and Schild. 
It follows from (14) that this equation can be written in the form 

g[hu(v'Uv"UE.J.) = g[A(E.J.)] = g(SD(E.J.))I + g[W(E..1.)J + n~,.U.lJ. , (22) 
or in index form 

5 



where 

ij ( k 1) m g hjk E.J./lu /mu = 

_ ij , k 
- g (sDjk + wjk)E.J. + 

ij k 
g Ajk!J. 

1 . 
- U rl n-1 • .c. J. , 

pk kl m ( ) - ( c;.J. = g him' • hu E.J. = hu(g)hu !) 

g[hu (E. J.)] = g[hu (l)] = lJ.. 

hu(E.) ' 

The equation (22) can also be written in an equivalent form 

hu(v'uv'uE.J.) = sD(E.J.) + W(E.J.) + n\.u.g(E.J.) • (23) 
Every vector field !J. (for arbitrary non-isotropic vector field 

u) which fulfills the conditions (21), is a solution of equation (22) 
or (23). Therefore the solution of equation ~!. u = 0 (or .t c.J. = O) 
for a vector field !J.(xk) and given vector field u(xk) is a~so a sol
ution of the deviation equation (22). It follows in this case that if 

· i k the components of the vector field l = l Ei = l ak should be sol-
utions of a homogeneous (or nonhorrogeneous) oscillator equation, then 
an additional equation for the vector field u has to be proposed, 
which could lead to such properties of l. 

3. A deviation equation under the same condition (21), used forgetting 
the deviation equation (22), can also be written for the square of !J., 

i.e. for g(lJ.,E.J.) = t 2 ~ 0. If the vector field u is considered as 
a timelike vector field which is orthogonal to !J., then lJ. could be 
interpreted as a spacelike vector field which length is considered as 
the length of a material object or the length of the distance between 
two particles, lying on an orthogonal to u hypersurface. 

By means of the relations 

'ii' c. = 
1

v + g(v' h ) (E.) + (v' g)(h (E.)) 
u<.L re u u u u 

- ij k 1 
l v = g[h (v' E.)] = g h.kE. /lu E. re u u J 1 

(24) 

(25) 

v'uv'uc.J. = rela + 2g('vuhu)(v'ul) + g(v'uv'uhu)(l) 

+ 2(v' g) ('v h ) (E.) + (v' "-ug)s(E.J.) , u u u u 
_ ] ij k 1) mE 

rela = g[hu(v'uv'ul) = g hjk(l /lu /mu 
0

i 
- i" k 1 -

('vug)g(relv) = g J/ku gjl•relv Ei = (v'ug)(g)(relv) 

+ 2 (v'ug)g(relv) + 
I 
(26) 

the deviation equation for L2 can be obtained in the form 

u(uL2) = 2 [g(E.,, 
1

a) + 2g(E.J.,g('v. h )(v' E.)) + g(E..,g(v' v' h ) (E.))+-... re u u u ... u u u 

+ 2g(lJ.,(v'ug)g(relv)) + 2g(E.J.,('vug)('vuhu)(l.)) + 

+ g(!J.,(v'uv'ug)g(E.J.))] + 2 [g(relv'rclv) + 2g(relv,g(v'uhu(E.)) + 

+ g(g(v'h )(E.),g(v'h (E.)) + 2g( 1v,(v'g)g(l,)) + u u u_u re u ... 
+ 2g(g(v'uhu)(l),(v'ug)g(E.,)) + g((v'g)g(E. ),(v'g)g(l ))] + ... 

6 
u J. u J. 

:1 
f 
! 

,, 
·}1 t' 

? 
; 

+ 4 (v'ug)(E.J.,v'UE.J.) + (v'uv'ug)(E.J.,E.J.) 

For Un- and Vn-spaces (v'ug = 0 for 'tut: T(~)) this equation 
will have the form 

u(uL2 ) = 2(g(l, 1a) + 2g(l ,g(v' h )(v' E.)) + 
J. re J. u u u 

+ g(E..L,g(v'uv'uhu)(E.))] + 2 (g(relv'relv) + 

(27) 

+ 2g(re1v,g(v'uhu)(E.)) + g(g(v'uhu)(E.),g(v'uhu)(E.))] • <28 ) 

If the additional condition 

'vb =0 (29) 

is req~i~ed, then the equation (28) for L2 will have the form 

u(uL2) = 2[g(c..L'rela) + g(relv'relv)], (JO) 
or in index form · 

2 i j k 1 k 1 
((L) iu) J.u = 2(gkllJ."rela + gkl"relv ·relv) 

' ' 
The next task is to consider the deviation equation for L2 for 

autoparallel (v'u =a= 0), non-isotropic (g(u,u) = e ·,1: 0) and nor-u . 
malized Ce= canst.# 0) vector field u. 

II. PROJECTED DEVIATION EQUATION OF SYNGE A.t~D SCHILD FOR t 2 IN 
THE CASE OF AUTOPARALLEL VECTOR FIELD u IN Un~SPACES 

1. If the condition for autoparallelism is given for the vector field 
u, i.e. 

v' u =a= ui ujE = aiE. = O 
U /j i 1 ' 

then by means of the expression for v' h in L -spaces 
1{1 u u n v' h = v' g + - -(ue).g(u) ® g(u) - (g(a) ® g(u) + g(u) u u u e e 

- [(v'ug) (u) ® g(u) + g(u) ® (v'ug) (u)]} 

(31) 

s g(a)] -

(J2) 

the following propositions can be proved for the case of U -spaces: n 

Proposition J. For a non-isotropic, normalized and autoparallel vec
tor field u in U -space the condition n 

'vul.J. = relv (JJ) 

is fulfilled. 
Proof: From the conditions v'ug = 0 (v'ug = 0) (Un-space), g(u,u) = e = 
= const. ~ 0 (i.e. ue = uiaie = O), v'uu =a= 0 and (32) it follows 
v'uhu = O. From the last expression and (24) the expression (JJ) fol
lows. 
Proposition 4. For a non-isotropic, normalized and autoparallel vec
tor field u in Un-space the condition 

v'u v'u E. J. = rel a "" v'u (relv) (J4) 

is fulfilled. 
7 



Proof: 1. From proposition 4. after covariant differentiation along 
the vector field u it follows 

'vu'vuE.i = 'vu(relv). 

2. From the definition (26) for rela and Vuhu = 0 (from the prerequi
sites for u) one obtains 

l a = g('v 'v (h (E.))) = 'v 'v (g(h (E.) )] re u u u u u u ='v'vl. u u .L 
Proposition 5. For a ·non-isotropic, normalized and autoparallel 
field u in Un-space the condition for L2 = g(lL,E.i) 

u(uL
2

) = 2 [g(E.i•rela) + g(relv•relv)] 
is fulfilled. 

vector 

(35) 

Proof: The condition (35) follows immediately from (28) and (29)(which 
is fulfilled in this case). 

2. Using the representation for 'v E.i by means of (8) and for 'v 'v c..L 
u ' u u 

by means of (13) under the conditions of proposition 5, the express-
ion (35) can be written in the form 

2 2 2 [ -( ] u(uL) - n-1 .U.L = 2 sD(E.i,E..L) + g(d E.i),d(E.i)), 
where 

k 1 
sD(l~,l.L) = (li)(sD(li)) = sDklE.ici 

and the following relations are fulfilled 

g(relv•relv) = relv
2 = g(d(E.L),d(E.i)) , 

g(E..L'rela) = g(E.i,g[sD(E..L)]) + n~1.U.L2 

g(E..L,g[W(E.i)]) = 0. 

(36) 

(37) 

(JS) 

(39) 

(40) 

If one uses the explicit form of d from (9) and after intro
ducing the following abbreviations 

l = - n:1 {g[O'(g)O'] + g[w(g)w] + Q' + 
2 • i SD(E.i,E.i) = D' QI = Q = uQ = u aiQ 

O'(E.i) = 0 ' W(l..L) = 12 ' 

2 2} --.Q ' n-1 
i 

u G,i 

2G 2Q 2 
n-1·cr(E.i,li) = n-1·(E.i)(a(E.i)) = a • 

ujEjQ 

cs+ 72,2 = 82 + 28,z + 71, 2 = gCS,8) + 2gC8,1Z) + gC'?,,"l) , 
2 d 

L = y , u = as , 

(41) 

( 42) 

(43) 

(44) 

( 45) 

then after some computations·equation (36) can be obtained in the 
form 

d2y 
- 2 + '.Ms) .y = f(s) , 
ds k . k k 

where y = y(x (s)) = y(s), x = x (s) , 

f(s) = 2[D2 + (8 + ~) 2 + a2] , 
n2 = n2(xk(s)) = D2(s), 8 = 8(xk(s)), 

8 

"' 
O' = O' (xk(s)) 

(46) 

(47) 
(48) 

l 

The explicit form of A(s) and f(s) determined the explicit form of 
equation (46) and therefore its solutions as well. 

It is worth to mention that the explicit form of 1 and f can be 
found after solving the equations for the vector fields u and E.:. 

'vu= O, ~ E. = O under the additional conditions g(u,u) = e = const. u u ,, 
#: 0, g(u,E.) = O. 

From the form of equation (46) one can draw a conclusion that 
(46) could have a form of oscillator equation (homogeneous or non-ho-

mogeneous) under the condition 
A ( s) = A.

0 
= const. # 0 , 

which is a very special case, requiring additional discussion •.. 
In the case of U -space admitting non-isotropic, autop~rallel 

n . 
and normalized vector field u with shear <:t = 0 and rotation w = 0 

2 2 2 .A= - -(Q• + -.Q ) n-1 n-1 · ' 
D2 = 0 , 8 = O, rt,= 0 •·, a 2 = 0 , 

the equation (46) will have the form 

y" = {(g(s)] 2 + g' (s)}y , y' 
2 2 * 

d2y 
y"= 2' 

ds 

(49) 

(50) 

( 51) 

g(s) = - 1.G , g•(s) = - 1 .G• n- n-
One solution of equation as (51) has been found by Ielchin1191 

in the form 
y = expJg(s)ds (52) 
In the case of Vn-space (n=4) under the conditions (21) and 

the conditions for u to be non-isotropic, normalized and geodesic 
vector field for L2 = g(E.i,E..L) the following deviation equation can 

be obtained: 

u(uL2) - n'.:rI.L2 = 2[sM(c.i,c.J.) + g(d(E.i),d(E.i))], (53) 

which follows from equation (36) under the conditions 
U = I ( FU = 0) , D = M • ( 54) 

0 S S 

Equation (53) (if u = ¼s,, 'vu=~) can be written therefore 

in the form (46) as 

where 

.d2 y, 
- 2 + 1(s).y = f(s) 
ds 

2 1 2 
A(s) = - n-1{I + n-1•Q) ' 

-r - 1 -r ,- 1 1 2 I= g <:t(g)O' + g w g)w + Q' + n-T•Q 
{Raychaudhuri identity1181), 

[ 
2 c- 2 2 

f c s ) = 2 11: + ( o + 72 ) + a ] 1.;
2 

= SM( li, E.i) 

9 

k 1 
sMklE..1. C. .1, 

(46) 

(55) , 



For Vn-spaces with Ricci 
form 

2 2 

= 0 (Rij = 0) equation (46) takes the 

dy 
y" 

( 
-:--:72"·g .y.= f(s) 

n-1) · ' 
y' = 

ds 
(56) 

If for such a type of spaces the conditions rr = O, w = O are ful

filled, then 
s1! = 0 , o = 0 , 'T/, = o , f( s) = O • 

Equation (56) will have the form 

Y" = 2 .G2.y 2 (n-1) 
which by mea~s of the substitution1191 y' = 

in a Riccati equation 
' ' 

v' + v2 = 2 2·g2 
Cn-1) 

(57) 

(58) 

y~v(s) can be transformed 

(59) 

If v(s) is one solution of this equation, then the solutions of (58) 
are solutions of a 1st order linear differential equation1191 

y' - v(s).y = C.exp(- f v.ds) , C = const.. ·(60) 

For. the special case, when Q = G
0 

= c.onst. # O, equation (56) 
has the form 

y" + A •Y = 0 .:\. = - 2 ,G2 <O (61) 
0 ' 0 ( )2 0 ' /19/ n-1 

and solutions of a type 
2 V2 y = L = a.Cosh(n-T.G0 .s) + b,Sinh(~1.G0 .s) , (62) 

a,b = const •• 
Therefore, a deviation equation with non-isotropic, normalized 

and geodesic (timelike) vector field u for the square of a non-iso
tropic (spacelike) vector field E. can be considered as an eventual 
candidate for the theoretical scheme of gravitational waves detectors 
because such equations of type (46) could have, under certain condi
tions in Un- and Vn-spaces, the form of an oscillator equation. 

CONCLUSION 

1. The deviation equation of Synge and Schild in Ln-spaces can be 
considered as a corollary of the equation o!!u = 0 (~ul = 0) for a 
vector field E. and an arbitrary vector field u. The last equation 
appears only as a sufficient, but not necessary condition for the 
existence of the deviation equation of Synge and Schild, which, there
fore, allows other "first integrals" as well. 
2. A deviation equation can be also considered for the square L2 of 
a non-isotropic (spacelike) vector field t, which equation appears in 
fact as _equation for an invariant, carrying information about the 
length of this vector field. In the case of non-isotropic, normalized 

IO 

and aut.)parallel vector fields u in Un- and Vn-spaces this equation 
can have the form of an oscillator equation under certain conditions. 
This fact can be explored when theoretical schemes for gravitational 
waves detectors are considered in a fixed gravitational theory in Un

and Vn-spaces. 
3, In cases, when the deviation equation of Synge and Schild is con
sidered in (pseudo)Riemannian spaces without torsion and with Ricci 
tensor equal to zero, the only acceleration, induced by curvature, 
which.is not vanishing, is the shear acceleration (induced by the cur
vature). This fact should be taken into account in the theoretical 
sc~eme8 for eravitational waves detectors on the basis of general 
relativity theory. 
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