





INTRODUCTION

1. In general relativity, as a basis for the theoretical scheme for
gravitational waves detectors proposed by Webér/1/ in 1958-1959 and
.‘discussed by many authors/2"5/, the deviation - geodesic equation
(pronosed by Levi-Civita in 1925/6/) in the form

2¢i s . .
DeE i i Jo_
a2 = R jklu uket , u,sut = o, (1)
or in the indexfree form
v, V& [R(ua)]u, a=vu=0, (1)

has been used. Its generalization for non-geodesic tragectorles (a#O)
(which has been proposed by Synge and Schild in 1956) in the form

p?et i, i_ 13

;1—52— R Jklu u 5 + a ;ji‘-]’ ’ a’ = u ;juJ , (27)
or in the indexfree form . _ .

Y, %¢é = [Ru,O)u +Ya , (2)

has also been used by Weber in a special form for construction of
gravitational waves detectors of the type of massive cylinders reac-
ting to periodical gravitational processes. The application of these
equations in experiments for defecting gravitational waves turned the
attention of meny authors to considerations and proposals for new de-
viation equations. Two types of prerequisites for obtalnlng suchequa-
tiong are usually used: :

a) Physical interpretation of deviation equations as equations
for the relative acceleration between particles, moving on trajecto-
ries in (pseudo)Riemannian spaces without torsion (V. —spaces) consi-
dered as models of space-time in general theory of relat1v1ty, or in
relativistic continuum media mechanics 8- 11/.

b)Mathematical models for obtaining deviation eqpations by means
of (covariant) differential operators, acting on vector fields in
spaces with affine connection and,mgj;jg_jLn-spaces) (special case:
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(pseudo)Riemannian spaces with torsion (Un—spaces) or without torsion).

In both types of methods problems arise, connected with the
physical interpretation of the quantities defined in the equations as
well as with finding exact solutions of the proposed equations. At the
csame time there are many tangential- and cross-points between these

methods”/ 12-15/
2. From mathematical point of view many of the proposed by different

authors deviation equations can be obtained from the s.c. generallzed
- deviation identity (generalized deviation equation) in T ~-gpaces
V%t = - [REEWu + VE + T(E8) - 7 [T(E,0)] +[£T (2,u)]u,
(3)

or in index form

Bl wd) ok - R uKuled o gl ad ikl _ irki1ly 3
( /3% )/ku k1% Y & + ¢ /52 Tkl £ a” (Tkl &% )/ju +
P %1 ~
+ J%I&i.uﬂu . : (3")
where
\a’= VLu

= ul/jqui = alEi s u,&e T(W)

R(&,u) is the curvature operator

R(E,u) = %4V, - UV, - v, = [Va', v,]

£ (£,u) is the deviation operator/13/

oer(au)_otv-v,gé = You " (% ,,] - [Eu],

d%u is the Lie derivative of the vector fleld u along the

(5)

vector 'field &, :
of(!_u = Vzu - vua - (&,u) = [aiu] ’ (6)
Vha is the covariant derivative of the vector field & along
the vector field u .

i ik, j
v = &t /3% (E £ kja Ju E; . (7)

3. In general relativity (GR) notions such as shear (shear velocity)G,
rotation (rotation velocity) W and expansion (expansion veloclty) o
are used. These notlons/16 =18/ can be defined in Ln-spaces in analo—
gous way, as in Vn— and Un-spaces by meens of representation of the
covariant derivative of a vector field

pic vector field u (g(u,u) = e ¥ 0) in the form

1 !
VL&: ;.g(u,VLE).u + g[hu(g.a - d%uﬂ +
+ Blo@)] + glw@)] + L.e.gn (8)] , ) (8)
d=6+w+ H}T'g'hu , ' (9
or in index form
i 1 1
3 /juj = .gklu kgl /o .u1 + g j[hgk ;.ak - xkuK) +

2

3,14/

along (another) non-isotro-

L

Cietame L

1 k
+ (o'jk + uﬁk + ﬁ:T'G°hjk)£ ],

_ 1
dij = cij + ‘Dij + E:T'Q’hij .
Here : K 1
h, =g - %.g(u) e glu) = hy JE B ». & = gnE .E,
0 is the shear velocity tensor (shear): . - .
= i3 12 = _ 43 - = _ 43 ‘
o= 06;,8 .5 = 2{hu(vug £@h, - oor(n [V - £E] )hu} , (10)
w is the rotation vélocity tensor (rotation)- '
- 1,83 = =5 - - 1 _ 1 k
w = wijE AE h,(kdh,, k =8-aq, s E(u /ngn u gn )n NE

lep Xk ml 1_mk .
q = (T g™ - Ty g u? .Ek E, (11)

© is the expansion vélocity invariant (expansion):

2 kl(g /mum - dhgkl) . (fz)'

In this way the notions of shear, rotation and expansion are

-1 = =1
¢ =3.n[ve - eeug]

generalized for L, -spaces. In analogous way (after some more compli-
cated computations) for the second covariant derivative notions such
as shear acceleration, rotation acceleration and expansion accelera-
tion can be introduced in Vn" Up- and I,-spaces. These notions can
be also connected with the generalized deviation didentity which can
be written in the form 13 ‘

Ve = Lg, 998 .+ g0, (98] , (13)
glh (79 8)] = gh)(i.va - T - 7 (fpu) + DO, u,u)] 4
+ g0 D) + W) + .U ()] (e

or in index form

(Ei/juj)/kuk = %.gkluk(zl/juj)/ mouloy g Jh (a /iul))mum ,

ij re K 1 m i 1l k 1 k k 1
g thk(a /14 )/mu =g jhjk[g.a /1w - u /ld%u - (d%u )/1u +

+ Tmnkd%umun] + glJ(sD.k + ij + ;%T.U.hjk)ik .
Here:sD = SFDo - TDo + sM is the shear acceleration tensor (shear
acceleration) constructed by three terms: sFDo is the curvature- and
torsion-free shear accgleration, TDo is the shear acceleration, in-
duced by torsion, sM is the shear acceleration, induced by curvature,
W = Fwo - % + § is the rotation acceleration tensor (rotationaccel-
eration) which has aleso three terms: FW is the curvature- and torT
sion-free rotation acceleration, pW, is the rotation acceleration,
induced by torsion, N is the rotation acceleration, induced by cur-

vature, U = FUo - TUo + I is the expansion acceleration invariant
3 .



(expansion acceleration) with the three terms: FUo is the curvature-
and torsion-free expansion acceleration, TUb is the expansion accel-
eration, induced by torsion, I is the expansion acceleration, induced
by curvature (this term appears as a generalization of Raychaudhuri
1dent1ty/18/ for L -spaces)

By means of dlfferent representation of the generalized devi-

ation identify possibilities can be considered for writing down theor-

etical schemes in grav1tat10nal theories (and particular in GR theory)
for construction of gravitational waves detectors.
4. In the present paper ‘the deviation equation of Synge and Schild is

generalized for Ln—spaces and specialized for description of an ortho-

gonal to the non-isotropic (timelike) vector field u variation of the
second covariant derivative of vector field & (which has been inter-
preted as a deviation vector). In sec. I. the generalized deviation
equation of Synge and Schild and its projected form (projected devi-
ation equation of Synge and Schild) is considered in L - Spaces aswell
as an analogous deviation equation for the square of a non-lsotroplc
(spacelike) vector is found and 1nvestigated In sec. II. the projec-
ted deviation equation of Synge and Schild for the square of an auto-
parallel (tLu = 0) (non-isotropic) and normalized (g{u,u) = e =const.
# 0) vector field u in L -y U ~ and V - Spaces is congidered and
examples for the case of V —spaces are given which can lead to an

equation in the form of an 0801llator equation.

I. DEVIATION EQUATION OF SYNGE AND SCHILD IN SPACES WITH AFFINE
CONNECTION : A¥D METRIC ’

1. The deviation equation of Synge and Schild in L,-spaces can be ob-
tained from the generalized deviation identity by means of the addi-
tional condition

#&u = 0 or d%ui =0 ’ k (15)
in the form }
V A & = [R(u,&)]u + V@a - v [T(& w)] |, (16).

or in 1ndex form
i 3 _ gl k. 1,3 i .3 igk, 1y .3
(& /3% )/ku RY wuEd + a /ja ('I‘kl &% )/Ju
At the same time the conditions

Vs Veu - mEw) or gl ud - uted - oo Tt (17)

[cfl_'(&,u)]u = otaa or ctil_ilt'u'juk = Jaal

are fulfilled.

The way of getting the deviation equation of Synge and Schild
gives the possibility for proving the following proposition:
4

(18)
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Proposition 1. Every vector field &, which satisfies the equations
du =0 (o!,'zui = 0) for an arbitrary vector field u is a solution
of the deviation equation of Synge and Schild.
713,15/ for proving this proposition:

Proof: There are at least two ways
1. The proof follows immediately from the generalized identity and the
condition (15)., 2. Expreseion (17) follows from (15) and after covari-
ant differentiation along u with condition (15), the deviation equa-
tion (16) follows. o
Corollary: The condition (15) is a "first integral" for the: dev1ation
equation of Synge and Schild (for arbitrary vector field u). '
Remark: Under "first integral" h“ere one can define a quantlty:whosé‘
coveriant derivative along an arbitrary vector field u leads to the

deviation equation of a congrete type (here of Synge and Schild).

Proposition 2. The neceESary and sufficient condition for the exist-

ence of the deviation equation of Synge and Schild is the condition
(18): oe‘aa—[oel"(a wlu or .,!éa = o-‘.'al"l ukul | ' .
Proof: a) Necessity: From the identity (3) and (16) it follows' (18)
b) Sufficiency: From (18) and the identity (3),
(16) follows. :
Remark: In finding out deviation equations different authors used only

the deviation equatlon

sufficient (or "first integfhls") condition for these equatione (like
.*They don't take into account that the ob-
tained equations can fulfill aleso other sufficient condition than the

those of proposition 1.)

considered one (s. for example/13/ and/15/).

2. The second covariant derivative of a vector field & along a non-iso-
the one is collin-
(13,14)).
The second term can be interpreted as a relative acceleratior between

tropic vector field u can be writlen in two parts:
ear to u, the other is orthogonal to the vector field u (s.

two points, lying on a hypersurface orthogonal to the vector field u.
Since the (infinitesimal) vector has also to lie on this hypersurface,
then in this case & has to obey the condition .

g(é,u) =0 , ) . (19)
or & has to be ir the form :

£, = E(ny(8) , gl&,,u) =0. (20)

The deviation equation which is obtained for hu(<LVh&) under
the conditions - .

a% = 0, glu,&,) =0, é(h (&)) ) (21)

can be defined as a projected dev1at10n equation of Synge and Schild.
It follows from (14) that this equation can be written in the form
g, (V&) = 2[AE)] = B[ D(E, )] + g[w(a )]+ -—T U.E, (22)

or in index form 5



i3 k 1y .m_ i k
g hjk(al/lu Sl JAJREL =
= pld W I
g (sDj + )& + n—1'L 51 ,
where
k k1l -
a.L =g hlmam N hu(E.L) = hu(g)hu(a) = h\l(&) *

é[hu(él)] = gln (&)] =¢, .

The equation (22) can also be written in an equivalent form

h (V&) = (DE)) + W(E)) + 1 U.gle)) . (23)

Every vector fleld & (for arbltrary non-igotropic vector field
u) which fulfills the conditions (21), is a solution of equation (22)
or (23). O (or o£ &) = 0)
for a vector field El(xk) and given vector field u(x ) is also a s0l-
ution of the deviation equation (22). It follows in this case that if

the components of the vectorifield E=£ Ei = & 8 should be sol-

utions of a homogeneous (or nonhomrogeneous) osclllator equation, then

Therefore the solution of equation JE

an additional equation for the vector field u has to be proposed,
which could lead to such properties of &.

3. A deviation equatlon under the same condltlon (21), used forgetting
the deviation equation (22), can also be written for the square of &1y
i.e. for g(&i,&l),= 1° # 0. If the vector field u is considered as
a timelike vector field which is orthogonal to &, , then &; could be
interpreted as a spacelike vector field which length is considered as
the length of a material object or the length of the distance between
two particles, lying on an orthogonal to u hypersurface.

By means of the relations

g : 2
V&, = pe1V t g(thu)(é? + (zhg)ihu(é)) , (24)
© pe1V = gl (78] = gthjka AW E , (25)
VUV, = per8 + 28(Vyny,) (R8) + E(YVyhy) (B) + 2%l re1?) +
(26)

+ 2(vu§)(vuhu)(&) +
= g[h,(V,v,8)]

SAGLERE

iJ k 1 m
rel? h k(& /1 )/mu B
- it 1 -
(Vu8)elpe1V) = glJ/ku 851 relV B4 < (V&) (&) (pe1¥) »
the deviation equation for 12 can be obtained in the form
atur?) = 2[gle,, qa) + 28(8,B(T,0,)(T,8) + gl
+ 2g( &, (V@) e(pev)) + 2g(&,,(V, 2)(Y,h,) (€)) +

v gl (Vv BeE ] + z[g(relv,rclﬂ + 28l VBV R, (8)) +
+ g(g(vuhu)(e) g(Vh (2)) + 2g( 4V, (V2)el&)) +
+ 2g(g(v h, y(&), T 8)g(£ ) + g((V g)g(& ), (v 8)elE M+

6

£,,8(Y,v,h ) (E)+

e

A\

+4(Vg)(£ va)+ (VVg)(«E . (27) -

For U,- and V -spaces (V W& = 0 for ¥ueT(M)) this equation
will have the form

2 _ -
u(ulL) —v2[g(£l, ela) + 2g(£l,g(thu)(Vh£)) +
+ g(al’é(‘ﬁ‘shu)(a))] + 2[8( g1 ViperV) +

+ 2g(ha1v,8(Vh ) (E)) + g(é(thu)(5),§(thu)(5))] (28)

If the additional condition

Vi =0 - (29)
is requirgd, then the equation (28) for 1% will have the form

ulul®) = 2[g(£l rela) + g(rel relvﬂ’ (30)

or in index form

2 i J_ k 1 -k 1
((L7),5u7) jud = 2(g1& . re12 + Bk1vrelV rre1V ) -
The next task is to consider the deviation equation for 1° for
autoparallel (th = a = 0), non-isotropic (glu,u) = e # 0) and nor-

malized (e = const. # 0) vector field u.

IT. PROJECTED DEVIATION EQUATION OF SYNGE AND SCHILD FOR L2 IN
THE CASE OF AUTOPARALLEL VECTOR FIELD u IN U, -SPACES

1. If the condition for autoparallelism is given for the vector field
u, i.e.

vu-=a-s= ui/jqui = s , (31)
then by means of the expression for Vh_ in L -spaces
Vo, = Ve + %{-}e—(ue).g(u) 8 glu) - [gla) @ glu) + glu) s gla)]
[(Y8) () & glu) + glu) s (V) (w)]} (32)

the following propositions can be proved for the casge of Un?spaces:

Proposition 3. For a non-isotropic, normalized and autoparallel vec-

tor field u in Un-space the condition
vu E'.L = re1V

ig fulfilled.

Proof: From the condltlons v =0 (Vg =

(33)

0) (UnQBpace), glu,u) = e =

= const., # 0 (i.e. ue = u a e =0), th = a =0 and (32) it follows.
VY, = 0. From the last expression and (24) the expression (33) fol-
lows.

Proposition 4. For a non-isotropic, normalizeo and autoparallel vec-
tor field u in Up-space the condition .
vhzla = V (_ )

is fulfilled.

(34)

L = rela rel



Proof: 1. From proposition 4. after covariant differentiation along
the vector field u it follows

thh&i = V:.l(rel")‘

2. From the definition (26) for .8 and YV h,
gites for u) one obtains S

a = g[V,v,(h GN] = v 7 [&h (£))]

0 (from the prerequi-

rel thh&l
Propogition 5. For a non-isotropic, normalized and autoparallel vector

field u in U -space the condition for L% = g(&,,&)

2 B
u(ul®) = 2{g(& ,.qa) + g(relv,relv)] ; (3%)
is fulfilled. .

Proof: The condition (35) follows 1mmedlate1y from (28) and (29)(which
is fulfilled in this case)

2. Using the representation for V & by means of (8) and for V’V E
by means of (13) under the conditlons of proposition 5, the express—
ion (35) can be written in the form

uut?) - Z=u.2? = 2[ D(E,8) + E(aE)),a(e)], (36)
where o .
(8,8) = (E)(_D(E)) = sDkla.La.L . (37
and the following relations are fulfilled
8lre1Vrre1?) = perVo = B(A(E),d(8))) , (38)
B(E), o8) = e(&,B[ D(E)]) + Lp.u.12 (39)
(&, ,glW(&)H]) =0 . : (40)

If one usee the explicit form of d from (9) and after intro-
ducing the following abbreviations

A= - 2 {E0(@0] + Elw(@w] + 0+ n—-— ®}, | G
GD(E,,6,) =D, 0 =6 =ub=ud0 =0, = wBe ,  (42)
o(¢,) =8, w(al). =7, - (43)
20 20 ' 2

008y, 8) = o EELE))) = 07, (44)

(g )2 = 82 : 287 + 1% = g(8,8) + 28, + g, ,  (45)

L=y, u = g9g
then after some computations-equation (36) can be obtained in the

form
2 , ;
v o
E—E + AMg).y = £lg) , (46)
8 N
where y = y(xk(s)) y(s), ¥ = xk(s) s ) N
£(s) = 2[D% + (8§ + )2 + 021, (47)
p2 = D2(x¥(s)) = D2(s), & = 8(xK(s)), 0= 0(x¥(s)) . (48)
8

The explicit form of A(e) and f(s) determined the explicit form of
equation (46) and therefore its solutions as well.

Tt is worth to mention that the explicit form of 2 and f can be
found after solv1ng the equations for the vector fields u and &:
‘h“ = Q, J Z = 0 under the additional conditions g(u u) = e = const
# 0, glu,t ) = 0.

From the form of equation (46) one can draw a conclusion that
(46) could have a form of oscillator equation (homogeneous or non-ho-
mogeneous) under the condition :

a(s) = = const. # 0 ,
which is a very speclal case, requiring additional dlscu551on.“‘

In the casgse of U - Space admitting non-isotropic, autoparallel
and normalized vector fleld u with shear ¢ = 0 and rotation w= 0

A= - ;7‘-(9' +r—]_-i'.9) . o ' - (49)
-0, 8§=0, 7=0% 0%=0, (50)
the equation (46) will have the form :
v y .
y" ={[g(5)]2 veey 0 oy =, s T (51)
s E "

gls) = 2 7€, & 1(g) = —27 o' .
One solution of equation as (51) has been found by Ieichin/19/
in the form h
y = expyg(s)ds .o ’ ’ - (52)
In the case of V -space (n=4) under the conditions (21) and
the conditions for u to be non-isotropic, normalized and geodésic
vector field for 12 = g(él,él) the following deviation equation ‘can
be obtained:
: 2 2 2 _ - ‘
w(ul?) - £ 1.1 = 2( M, &) + gla(E),a(E, 0], (53)
which follows from equation (36) under the conditions ,
= = = I .
U=1I (z, =0, D= ¥ (54)
. Equation (53) (if u = %g y Yy T gg) can be written therefore
in the form (46) as ’ v
a%y.
— + Als).y = £(a) , | - (46)
ds
where

Als) = - E’ET(I 4 3'17-92) ,

I = é[o’(é)d] + glw(zg)w] + o' + ;1.?-92 | . (55)

(Raychaudhuri -identity’ '8/),

£g) = 2[¥% + (8 + 7)2 +02]
B 9

.2 k.1
M = SM(EJ.’E_L) = sMklﬁJ_EJ_ .



Por V, -spaces with Ricei = 0 (Rij = 0) equation (46) takes the

form .
- 2 2 dy

y"* - ——=.0%y = f(s) , yt=—. (56)
(n-1) ds

If for such a type of spaces the conditioﬁs ¢=0,w=0 are ful-
filled, then

H=0, §=0, =0, f(s) =0 . . (57)

Equation (56) will have the form _

y"= ——g-—g-OZ.y ) - (58)
(n-1)

/19/ -

which by means of the substitution = y.v(g) can be transformed

in a Riccati equation

2 . L (59)

v! + v© = ——2---—2.92
(n-1) ‘
If v(s) is one solution of this equation, then the soluti?ns/of {(58)
« 19 .

are solutions of a 1et order linear differential equétion
y!' - v(g).y = C.exp(- jv.ds) , C = const.. -(60)
For the special case, when © = Qo = const. # 0, equation (56)
has the form

y"+ A.y =0, A = - —2 .02 <0 s (61)
0 o
e e /197 (071D
and solutions of a type
y = 12 = a.Cosh(%?T.Oo.s) + b.Sinh(ggT.Oo.s) s ' (62)

. a,b = const.. )
Therefore, a deviation equation with non-isotropic, normalized
and geodesic (timelike) vector field u for the square of a non-iso-
tropic (spacelike) vector field & can be considered as an eventual
candidate for the theoretical scheme of gravitational waves detectors
because such equations of type (46) could have, under certain condi-
tions in Un— and Vn—spaces, the form of an oscillator equation.

CONCLUSIOK

1. The deviation equation of Synge and Schild in L,-spaces can be
considered as a corollary of the equation ou =0 (£,6 = 0) for a
vector field ¢ and an arbitrary vector field u. The last equation
appears only as a sufficient, but not necessary condition for the
existence of the deviation equation of Synge and Schild, which, there-
fore, allows other "first integrals" ag well. ;

2. A-deviation equation can be also considered for the square 12 or
a non-isotropic (spacelike) vector field &, which equation appears in
fact as equation for an invariant, carrying information about the

length of this vector field. In the case of non-isotropic, normalized
10

and autoparallel vector fields u in Un— and V, -spaces this equation
can have the form of an oscillator equation under certain conditions.
This fact can be explored when theoretical schemes for gravitational
waveg detectors are considered in a fixed gravitational theory in Uy~
and>Vn-spaces.

3, In cases, when the deviation equation of Synge and Schild is con-
sidered in (pseudo)Riemannian spaces without torsion and with Ricci
tensor equal to zero, the only acceleration, induced by curvature,
which, is not vanishing, is the shear acceleration (induced by the cur-
vature).‘This fact should be taken into account in the theoretical
schemen for pgravitational waves detectors on the basis of generél
relativity theory.
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