


1 Introduction

Many problems of modern particle physics rely on spontaneous symme-
try breaking as, for mstance, the electroweak model with Higgs bosons
(see, for example [1}), or the color confinement in QCD which can be
explainied by vacuum instability [2]. There are many papers [3-12] de-
“voted to investigation of the problem of the vacuum phase structure.
using a scalar field model gp?! as an example. The theory is simple
enough and it is widely used for testing new ideas and methods in
quantum field theory.
~On the ‘classical level, the theory is stable and has a unique sym-
metrical trivial ground state. On the other hand, it has been found
'[3,4] that high order quantum corrections can give rise to the vacuum
instability. A useful instrument for investigation of vacuum instability
due to quantum effects is the method of the effective potential [5]. A
symmetry broken phase of a system is associated with the absolute
minimum of the effective potential V' (¢,) for which ¢, = 0-. As the
effective potential is descrlbed by non-Gaussian functional mtegrals,
one needs to use some approximation schemes. These may be pertur-
bative loop- expansmn methods, varlatlonal apploaches or numerical
calculations on lattice. -

In two-dimension, the effective potential has been calculated [6] as

a partial sum of ”cactus-type” diagrams. This approximation method
gives the first order phase transition. Nonperturbative Gaussian ap-
proaches [7] also lead to similar results. On the other hand, there
exist mathematical theorems [8,9] proving that the second order phase
transition takes place in this model. There are papers [10-13] where
variational methods have been used for investigation of the vacuum
stability problem and the correct behavior of the vacuum energy in
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~ the critical region was obtained. The variational methods were applied
to the Hamiltonian of the system under consideration but not to the

* functional integral defining the effective potential.

- In this paper we obtain a variational estimation of the effective po-
tential using the methods introduced in [14,15]. We show that there
exists the second order phase transition in the ¢} model and give the
estimation for the critical coupling constant. Our result is in agreement
with the Simon-Griffiths theorem.

2 Leading Term of Effective Potential

- We will consider.the scalar field theory ¢4 .The theory is supernormal- - - -
izable in two-dimension. All ultraviolet divergences in this model can.

‘be removed readily by using the quantum Lagrangian density

_4,.__A,3-\_—-..;‘—ws;.‘.a‘.«,\ o

£ = JH10" = mihpl) - $NulgG0}, @D

where V,,, denotes thé normal product of the fields go(x) with the mass
m: '

; Nm {()04(}()} = ¢4(X) - 6302(X)Dm(0) +'3'D3n(0)’ (22)

. _ [ dk exp{ikx}
Dp(x) = _/(27r)2 mZ+ k2
‘ and g is the self-coupling constant. Here xCQ, 0 is a finite volume
in R2. ‘ ' : o : '
f * We will investigate the effective potential defined as

o Vig) = - lim = Inla(p0),
j, IQ(%)= Cm/580-5{300— %/d2x<p(x)} exp/d2x-£[go(x.)], (23)
o S Q Q. ‘

Cm.= v'\/det{—a2 + m?}.

Tt has the inea;niﬁg of the vacuum energy density [16,17] in the vacuum

- state of which the expectation value of the field is ¢, . The functional - :
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integral in (2.3) is normalized in the following way
Io(¢o,g=10) = 1.

All integrations are performed in the Euclidean space. .
Let us do some transformations of the functional integral In(p,) in
(2.3). First, we introduce [15] a transformation of the field variable:

p(x) = ¢o + B(x), (2.4)
" wliere ¢, is a constant field and #(x) satisfies the condition . '
| _/d2x¢(x) 0. (2.5)
Q', ) : . s <.

We can substitute (2.4) into (2.3) and perform integration over d¢,
taking into account the functional differential 6¢ = d¢,6¢. Then, we
obtain 3

In(¢s) = Chn / 56 egp{ /d2x-£[<po 4 ¢(x)]} L (e
Q

Second, we go over to the normal ordering in the new fields ¢(x)
with a new mass p using the well-known [3] formula as

No{exp (Bt} b = No{ exp(Blpo+ 6) + G A(m ) |
 Amu) = Du(0) - DuO), (2.7)
v f dk exp{ikx} - 1
- D#(x) = (27r)2"ﬂ2:+'k2 - 20
Then, substituting (2.7) into (2.6) we obtain =

) = ) [ fx
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, / do, = C, /5¢-exp’{—'-;- /d2x¢(x)(—02+u2)¢(x)} =1,
.0 ’

where the leadmg term V ((,oo) of the effective potentlal is:

, _ dk o om?—p? m? — p?
%(('of?) - (27r) ,[1 .(1 + pn2+ k? ) u?+ k2]
2
+ %—993 + 2 (s — 6007 +347). (2.9)

There are no linear field configurations ~ ¢ in (2.8) due to the condition
(2.5).

According to our method {15], we requlre that all the quadratic field
configurations be concentrated in the Gaussian measure doy. The re-
quirement leads to the followmg constramt equatlon for the palameter

75

p?—m +3g(A 0 =0. (210)
Thus, we finally obtain the formula for the effective potential
Vigs) = Vilpo) + Vaelwo),
1
Vee(wo) = — &HEO Q In Ja(p,) , (2.11) ,

where

() = / doy exp{—— /deN ¢4(x)+4¢3(x)%]}. @12

Egs (2 9) (2 12) define completely the effectlve potentlal at arbitrary
coupling g.

- We note that our leadmg term V (goo) and constralnt equation (2.10)

are identical with the Hartree-type potentlal and-corresponding con-
dition of its. minimum on the parameter u,
coincidence may be explained by our particular choices of linear field
transformation (2.4) and Gaussian type of measure do, in (2.8). It is
well known [6,7] that the potentlal (2.9) within' the limitation for it by

(2 10) corresponds to the sum of ’cactus-type’ diagrams and indicates

m favor of a ﬁrst order phase transition at :

( Q)Cactus - 10 211 01‘ : Gcactus.‘T‘n'(ﬁz;grnQ)cactus = 1. 6251 (213)
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obtained in [10] . .This. -
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The ’cactus-type’ potential has the following asymptotic behavior

77?,2 )
V(ga) = 7{993 + O } (2.14)

as o, — 0 at any g.

3 Variational Upper Bound of Effective Potential

In the previous section we have defined an expression for the effective
potential consisting.of two parts. Considering of only the ’cactus-type’
part V,(p,) leads to a conclusion in favor of a first order phase transition
[6,7] in the scalar ¢j theory. Thislis in contradiction with statements
of mathematical theorems [8,9]. T answer the question about the na-
ture of phase transition in this theory, one should consider also the
other part V,.(y,) of the effective potential, defined in (2.12). At weak
coupling limit one can estimate it expanding the exponential in (2.12)
in perturbatrve series. But explicit calculation of the non-Gaussian
functional integral Jo(y,) in (2.12) at arbitrary values of coupling con-
stant g and ¢, is a very complicated problem. However, we are able to
estimate it for small values of @, at arbitrary g.

Let us rewrite (2.12) in the form which is correct for small @, ~ 0 :

' 2,2 ' 2
Ja(wo) = /daﬂ-exp{f%fd2le,-¢4(X) +% [/d2x]\7;,’.¢‘3(;3’()] }
Q ‘ Q )

This representation can easily be obtained due.to validity of the fol—
lowing transformation in (2. 12) '

exp(—p,W) = cosh(p,} V) ~ e\p{2 w? 4 O((,oo)} 7‘

for infinitesimal ¢, and finite functlonal W . Then, applying to the

integral (3.1) the variational techniques [14 18] one can get

Vie(@o) = — lim o) ln JQ(‘PO) < V (990) )
. dk q(k2) |
V(o) = min {5 == Srsalnt + a0 - 10
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/12A2 :

2
—3g%p? /d2x/d2y [Dg(x ~y)+34°Dj(x ',Y)] } ‘

where ik ! (12)
: ' ‘ - 4 P12

A, = —D(k*),
q (2 )2 1 + q k2) ( )

dk e\p{zk (x — y)}

(2m)* |

- Dy(x—y) = D(k?)

? 1+ q(k?)
L
2(1»+‘Q(0))Q ’
1 -
D) = - ,,
Here p is defined by equation (2. 10) The constant A and the function

“ q(k?) are variational parameters ( see Appendl\ ). The optinal form
of the functlon q(k2) is : : ,

(3.3)

q(k2)-fu2D(k2), - L (3.4)

as 1t; follows from the varxatxonal equatlon Hele fisa vauatlonal
parameter. ; . e :
It will be convenlent to worL in unlts of m deahng ‘with numerical

results. We define ’

(,u/m) <I>¢,2 = 4mp?  and B2= »4‘—'7rA2 . (3.5)
- For @3 < 1eq. (2.10) has the solution :
§’—1+2+3G<I> +O( o)) . (36

All mtegrals in (3.2) and (3.3) for the functlon (3.4) are calculated
exphc1tly An upper bound-of the’ strong—connected” potentlal can be
written for @2 << 1'in the notations (2 11) as follows

m? :
V@) - 8{ 1) + at(G)B. + 03, b e
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where

E;(G) = min { f~In(1+ f)+35+% [34—6321n(1+f)+3ln2(i-{; f)] }

5 (3.8)
and
0t(G) = =28 (f— 1+ )+ B - —°F 0 +35Y, (39)
sc 2+3G 21+ /) W
—a—-F-7v)
Q= ///dadﬁd T = 2339,

The functions f(G) and B(G) define the minimum E}(G) in (3.8).
They satisfy the following equations

2f = 3G[B = In(1 4 )] =0, o
" B{2%+G[B*-3In(1 +f)]} =0. - (3.10)
Equations (3 10) have nontrivial real solutions at ' :
_ f+3
G>G,= mm3ln(1 7 1.4397. (311)
When G < G, the solutions are trivial: f (G) ‘B (G) =0.

Substituting (2.14), (3.6) and (3.7) into (2.11) one gets an upper’
bound of the effective potential :

V(®.) < VH(Bo) = {E*(G>+a+(G><I’ +0<‘1’ )}

"EJ'(G)" £(G),
o o*(G) =1+ ak(G) S
for small ®,. The coefﬁc1ent at(G) plays an 1mportant role [13 14] it
depends on a+(G) ‘whether we obtain a minimum at the origin ®, =0
or-a maximum. At ‘weak coupling limit o (G) = 1. For increasing G
this coefficient becomes smaller and vanishes at G = ‘G¥ . Tt indicates

that there is a second order phase tran51t10n prov1ded that V+(<I> ) is
positive at finite @, 4

. :"v},./(?’il_‘?)



The numerical value of the critical coupling constant G¥ can be
found from our formulae. Let us consider the region G < G,. The only
solutions of (3.10) are

f(G)=0, B(G)=0 (3.13)
and the coefficient 3
at(G)=1- 5 QG? E (3.14)
becomes negative for
9 1172
+ | 2 - ,
G>G! = [3Q] 0.5333 (3.15)

(g/m?) > (g/m?)F = 3.3508

Note that the critical value (3.15) of .the coupling constant is cal-
culated only for the upper estimation V f(@o) but not for the true
effective potential V(®,). Nevertheless, we believe that the true crit-
~ical coupling constant G lies not far from,G;F. Then, we pay one’s
attention to the hierarchy ( see (2.14) and (3.11) ):

- Gf <G, < Geactus (3.16)

This means that a second order phase transition comes earlier than
a first order one.

4 Conclusion

In this paper we have investigated the problem of phase transition
in two-dimensional quantum field theory @4 .The functional integral
describing the effective potential is estimated by a variational approx-
imation. We have obtained the expression for an upper bound of the
effective potential at small values of its argument. We have shown that
it describes only a second order phase transition in contrast with the
”cactus-type” approximation of the effective potential giving a first or-
der phase transition at a larger coupling constant. Thus, in the tl;eqry
. under consideration the symmetry ¢ «— —¢ turns out to be sponta-
neously broken through the second order phase transition.
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Appendix

Here we formulate our variational techniques(for details see [14,18]),
i.e. show how to obtain (3.2) and (3.3) from (3.1). We work in a
Euclidean space volume © — R2 . Let the integral (3.1) be given

o Talg) = [dowespl-g [xU@) A

with the measure

dogy = C,6®-exp {—% /d2x<1>(x)(—l:| + ;LQ)(I)(X)} . (A.2)
J .

where U(®) is a real functional, C), = det'/?(— D+/,t ) and ®(x x) satisfies
(2.4). Let us diagonalize the quadratic form in (A. 2) by 1ntroducmg
the functional variables ®(x):

Bx) = (-0 4 1)) = [Pyl yIo) = (A o), (43)

Q
where N,
e i -k iy
Ax,y) /(2 ® ‘+;¢) e\p[ .L xy)] (A.4)
| /d2x¢(x)—-0 i
'VVQ ‘ S e
Then, (A.1) can be rewritten
JQ(g) - daq, e\p{ g deU[A ¢ )]}" . (AS)



dog = C&(f)-exp{—%/d?xgﬁ?(x)}.
Q
C obeys the condxtxon Jdo, = 1.
Now we will proceed to the variational estimation of the integral
(A.5). Let us introduce the new variables v(x) and A(x)

o) = (1+q(@) " v(x) + (-0 + 4f) 2 Ax), (A.6)
where the variational function q(k2) satisfies the condition
dk 5., '
k%) < AT
pok (k) < occ. (A.7)

Substituting (A.6) into (A.5) we have the equivalent form of Eq.(A.1):

= [t +q@)" [ do,
I fa

| eXP{ /d2XV(X)q(‘:l [1 +q(O )]KIV('X)

Q

N =

Jx|2aG(-a -+ (800100 + AGI-0 + w0 (49

Q
—g [d*xU[(Ag, v)(x) + A(x)] ¢,
‘()/ A ‘ ' }
where

A= / (::)2[(k2 +p5)(1+ @)V exp (~ikx) . - (A9)

Now we choose the function A(x) in the form
/d"’xA(x) =0, A2(x) = A?, (A.10)
where A is an arbitrary number. Let us use the inequality:
| /dani){—W} > exp{—/daW'} , (A.11)

10

which is valid for any positively defined measures do and.any real

functionals W. Then, taking into account (3.1) one can obtain as -

1 — oo 2A2
V() < min l{L( +40
+g |do, d?xU[(Aq,u)(x) + .4(x)]} , C (A12)
o e ,

L

dk oy q(k?)
2n)? [’"“,* (k) - rm] '

After integration over do, we obtain (3.2).

11
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