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1 Introduction 

Many problems of modern particle physics rely on spontaneous symme
try breaking as, for instance, the electroweak model with Higgs bosons 
(see, for example [1]), or the color confinement in QCD which can be 
explairied by vacuum instability [2]. There are many papers [3-12] de-· 
voted to investigation of the problem of the vacuum phase structure. 
using a scalar field model g<.p4 as an example. The theory is simple 
enough and it is widely used for testing new ideas and methods in 
quantum ~eld theory. 
· · On the '.classical level, the theory is stable and has a unique sym
metrical trivial ground state. On the other hand, it has been found 
[3,4] that high order quantum corrections can give rise to the vacuum 
instability. A useful instrument for investigation of vacuum instability 
due to quantum effects is the method of the effective potential [5]. A 
symmetry broken phase of a system is associated with the absolute 
minimum oLthe effective potential V(rp0 ) for which rp0 = 0 . As the 
effective potential is described by non-Gaussian functional integrals, 
one needs to use some approximation schemes. These may be pertur
bative loop-expansion methods, variational approaches or numerical 
calculations on lattice. 

In two-dimension, the effective potential has been calculated [6] as 
a partial sum of "cactus-type" diagrams. This approximation method 
gives the first order phase transition. Nonperturbative Gaussian ap
proaches [7] also lead to similar results. On the other hand, there 
exist mathematical theorems [8,9] proving that the second order phase 
transition takes place in this model. There are papers [10-13] where 
variational methods have been used for investigation of the vacuum 
stability problem and the correct behavior of the vacuum energy in 
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the critical region was obtained. The variational methods were applied 
to the Hamiltonian of the system under consideration but not to the 
functional integral defining the effective potential. 

In this paper we obtain a variational estimation of the effective po
tential using the methods introduced in [14,15]. We show that there 
exists the second order phase transition in the 'Pi model and give the 
estimation for the critical coupling constant. Our result is in agreement 
with the Simon-Griffiths theorem. 

2 Leading Term of Effective Potential 

We will consider. the scalar field theory 'Pi . The theory is supernormal
izable in ti.~o-dimension. All ultraviolet divergences in this model can 
. be removed readily by using the quantum Lagrangian density 

£ = ½<p(x)-[82 
- m2 ]·cp(x) - ~-Nm {cp4(x)}, (2.1) 

where Nm denotes the normal product of the fields cp(x) with the mass 
m: 

Nm {cp4{x)} = cp4{x) - 6-~2(x)•Dm(0) + 3-D!(O), (2.2) 

D (x) = 1~ exp{ikx}. 
m (2·11/ m2 + k2 

and g is the self-coupling constant. Here x C h, n is a finite volume 
in R 2 • 

We will investigate the effective potential defined as 

V(cp0 ) = - lim ~ lnln(cp0 ), 
0-+oo ~, 

'In(cpo) = Cm J D<p·D{ <p0 - ~ Jd2xcp(x)} exp Jd2x-£[cp(~)], (2.3) 

n n 

Cm= Jdet{-82 + m2}. 

It has the meaning of the vacuum energy density [16,17] in the vacuum 
state of which the expectation value of the field is cp0 • The functional 
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integral in (2.3) is normalized in the following way 

In('Po,9 = 0) = 1. 

All integrations are performed in the Euclidean space. 
Let us do some transformations of the functional integral In(cp0 ) in 

(2.3). First, we introduce [15] a transformation of the field variable: 

cp(x) = 'Po + </J(x), (2.4) 

where <p0 is a constant field and ¢(x) satisfies the condition . 

.jd2x¢(x) = 0. (2.5) 

n 

We can substitute (2.4) into (2.3) and perform integration over d¢0 

taking into account the functional differential D<p = d¢0 8¢. Then, we 
obtain 

In('Po) =· emf 8¢• exp{Ja2x-C[cp0 + ef>(x)]} ·. (2.6) 
n 

Second, we go over to the normal ordering in the new fields ¢(x) 
with a new massµ using the well-known [3] formula as 

Nm{ exp{,Bcp(x)}} = Nµ{ exp{,6(cp0 + ¢(x)) + ~
2 

~(m, µ)}}, 

~(m,µ) = Dm(O) - Dµ(O), (2.7) 

D X . 1~exp{ikx}·..:.. ~-
µ( ) (21r)2 µ2+ k2 µ20 

Then, substituting (2 .. 7))nto (2.6) we ()ptain. 

In(cp~) = e-0 ~<~~> j daµ· exp{Jd2x 
. n 

Nµ { ½·(µ2 
- m 2 + 3g(~ - cp!)]·<l(x) - f [ ¢4(x) + 4cp0 ¢3(x)]}}, (2.8) 
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J duµ = Cµ J 8¢· exp{-½ Jd2x¢(x)(-D
2 + µ2)¢(x)} 

. n 
where the leading term Vo(r.p0 ) of the effective potential is: 

- . 1 J dk .[ . - m2 - J-.l2 m2 - J-.l2] 
Vo(r.po) = -2 (21rf ln~l + p2+ k2) - J-.l2 + k2 

1, 

2 

+ ~ r.p~ + ~(r.p! - 6~<p~ + 3~
2
). (2.9) 

There are no linear field configurations~ ¢ in (2.8) due to the condition 

(2.5). 
According to our method·(15],;:we require that all the quadratic field 

configurations be concentrated in the Gaussian measure cla-µ. The re
quirement leads to the following constraint equation for the parameter 

p: 
µ 2 

- m2 + 3g(~ - <p~) = 0. (2:10) 

Thus, we finally obtain the formula for the effective potential 

V(r.po) = ¼(r.po) + ½c('Po), 

½c( 'Po) = - lim ~ In Jn( 'Po) , (2.11) 
fl-+oo ~G 

where 

Jn(r.p0 ) = J duµ• exp{-~ Jd2xNµ [¢4(x) + 4¢
3
(x)<p0]}. (2.12) 

- . n 

Eqs (2.9)-(2.12) define completely the effective potential at arbitrary 
coupling g. '. . .' 

We note that our leading term ¼(r.p0 ) and constraint equation (2.10) 
are identical with the Hartree:-type potential and corresponding con
dition of its.minimum on the parameterµ , obtained in (10] .. This 
coincidence may be explained by our particular choices· of linear field 
transformation (~._4) and Gaussian type of measure duµ in (2.8). It is 
well known [6,7] that the potential (2.9) withiti the limitation for J-.l by 
(2.10) corresponds to:the sum of ;cactus-type' diagrams and indicates 
in favor of a first-order phase transition at : 
. · ... g .. •_,'-> ·•. . . -. · .. ' • .· -. g . ·. . . 

( 2)cactus = 10.211 or Gcactus = (-
2 2 }cactus = 1.6251 ' , (2:13) 

m 1rm 
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The 'cactus-type' potential has the following asymptotic behavior 

1
n

2 

{ } V(<po) = 2 <p~ + O(<p!) (2.14) 

as <p0 -t O at any g. 

3 Variational Upper Bo:und of Effective Potential 

In the previous section we have defined an expression for the effective 
potential consisting of two parts. Considering of only the 'cactus-type' 
part ¼(r.p0 ) leads to a conclusion in favor of a first order phase transition 
(6,7] in the scalar <p~ theory. This!is in contradiction with statements 
of mathematical theorems [8,9]. Tb answer the question about. the na
ture of phase transition in this theory, one should consider also the 
other part ½c(r.p0 ) of the effective potential, defined in (2.12). At weak 
coupling limit one can estimate it eXJ)anding the exponential in (2.12) 
in perturbative series. ~ut explicit calculation of the non-Gatissian 
functional integral Jn(<p0 ) in (2.12) at arbitrary values of coupling con
stant g and r.p0 is a very complicated problem. However, we are able to 
estimate it for small values of r.p0 at arbitrary g. 

Let us rewrite (2.12) in the form which is correct for small <p0 ~ 0 : 

Jn(r.p0 ) = J duµ•exp{-~ Jd2xN1,·¢\x) + g
2

:~ [Jd2xN1,-¢
3(x)f}. 

n n 
(3.1) 

This representation can easily be obtained clue _to validity of the fol
lowing transformation in (2.12): 

exp(-r.p0 W) = cosh( r.p0 lV) ~ exp{ ½<p~lV2 + O(<p~)} 

for infinitesimal r.p0 and finite functional lV . Then, applying to the 
integral (3.1) the variational techniques [14,18] one can get 

½c(r.po) ,:.._ - J~ ~ lnJn('Po) -~ v:!('Po)_, 

+( ) . { 1 J dk [ 2 q(k
2

) ] ½c r.p0 = min -
2 
--2 ln(l + q(k )) - (k2 ) 

q,A (21r) l+q 
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where 

I 
. 2A2 

+ !!._ + g[J'1 - 6 42.6. + 3.6.2] 2 4· , 'I q 

-3m Jd2x jd2y [ D;(x - y) + 3.42 D,;(x - y)]}, 
n n n 

\ 2 
.6. _ J dk ,q(k ) · iJ(l-2) 

q- (21r/1fq(k2) ' 

D (x - ) = 1· ~ exp{ik(x -y)} D(k2) 
q y (21r)2 \ 1 + q(k2) 

.1. 

µ 2(1 + ;q(0))O ' 
. .i 1 - 2 ' 

D( k ) = -2- k2 . µ +. 

(3.2) · 

(3.3) 

Here µ.is defined by equation (2.10). The constant A. and the function 
· q(k2) are variational parameters ( see Appendix ). The optimal form 
of th'.e function q(k2) is · · 

q(k2) ~ f µ2 D(k2)' (3.4) 
~ . . -

as it follows from the variational equation. ~ere f is a variational 
parameter. · . . · . . . 

It will be convenient to work in units of m dealing with numerical 
r~sµlts. We define ' 

,, 
1 0 . · 2 · · . 2 2 · 2 . 2 . e = (µ/m) , <I> 0 = 41rcp0 and B = 41rA . (3.5) 

For <I>~~ 1 eq. (2.10) has the solution : 

C - l 3G 2 4 
'- - + 2 + 3G <I>o + 0( <I>o ) (3.6) 

All integrals in (3.2) and (3.3) for. the fmiction (3.4) are calculated 
explicitly. An upper bound ofthe "strong-connected" potential can be 
written for <I>~ ~ 1.' in the ~otatiohs (2. ii) as follows: . . 

½!(<I>~) = ;; { Et(G) + a!:(G).<I>/ + 0(<1>0
4
)}, (3.7) 
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where 

Et(G) = ~\n {f-ln(l+ f)+B 2+ ~ [n 4 -6B2ln(l+ f)+3ln2 (l+ f)]} 
(3.8) 

and 

+ ( ) - 3G [f l ( ) 2] 3G2 [ . 2] . 
asc G - 2 + 3G - n l + f + B - 2(1 + f) Q + 3iJ , (3.9) 

1 

Q = {{{ dad/3 d-y o(l - a - /3 - 'Y) = 2.3439. 
}}} . a/3 + a-y + /3-y 

0 

The functions f ( G) and B( G) define the minimum Et ( G) in ( 3. 8). 
They satisfy the following equations 

2f - 3G[B2 
- ln(l + !)] = 0, 

B{2 + G[B2 ~ 3ln(l + !)]} = 0. (3.10) 

Equations (3.10) have nontrivial real solutions at 

. f + 3 = 1.4397. G >Go= Il}lll3zn(l + f) . (3.11) 

When G < G0 the solutions are trivial: f ( G)= B( G) = 0. 
Substituting (2.14), (3.6) and (3.7) into (2.11) one gets an upr/er· 

bound of the effective potential : 

V(<I>o) ~ v+(<I>o) = ;; { E+(G). +~~(?)·<I>>+ ~(<I>o~)},. 

. g+.(G)' . Et(G), (3.12) 
~ , , . ·' 

,, .a+(G) = 1+ o:;::(G) 

for small <1>0 • The coefficient o:+(G) plays an impprtant role [13,14]: it 
depends on a+(G) ·whether we obtain a minimum at the origin <1>0 ·. · 0 
ora'maximurn. At'weak coupling.limit a+(G) = 1. Forincreasing G 
this coefficient becomes. smaller and vanishes at G = Gt . It indicates 
that there is a second order phase transition provided that v+(<1>0 ) is 
positive at firiite <1>0 • 
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The numerical value of the critical coupling constant Gt can be 
found from our formulae. Let us consider the region G < G0 • The only 
solutions of (3.10) are 

and the coefficient 

becomes negative for 

f(G) = 0, B(G) = O 

a+(G) = 1 - ~ QG2 

2 

G > G+ = - = 0.5333 [ 
2 ] 1/2 

C 3Q 

or 
(g/m2

) > (g/m2)t = 3.3508 

(3.13) 

(3.14) 

(3.15) 

Note that the critical value (3.15) of the coupling constant is cal
culated only for the upper estimation v+(<I>0 ) but not for the true 
effective potential V(<I> 0 ). Nevertheless, ,ve believe that the true crit
ical coupling constant Ge lies not far from Gt. Then, we pay one's 
attention to the hierarchy ( see (2:14) and (3.11) ): 

Gt <Go< Gc~ctus (3.16) 

This means that a second order phase transition comes earlier than 
a. first order one. 

4 Conclusion 

In this paper we have investigated the problem of phase transition 
in two-dimensional quantum field theory <p~ . The functional integral 
describing tp.e effective potential is estimated by a variation.al approx
imation. We have obtained the expression for an upper bound of the 
effective potential at small values of its argument. We have shown that 
it describes only a second order phase transition in contrast with· the 
"cactus-type" ,approximation of the effective potential giving a first _or
der phase transition at a larger coupling constant. Thus, in_ the theory . . . 

. under consideration the symmetry <p +---+ -<p turns out to be sponta-
neously broken through the second order phase transit.ion. 
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Appendix 

Herc we formulate our variational tedmiqnes (for details see [14,181), 
i.e. show how to obtain (3.2) and (3.3) from (3.1). ·we work in a 
Euclidean space volume n - R 2 • Let the int<'gral (3.1) be given 

0. Jn(g) = j do-<I>•exp{-g J~t2xU(<I>)} 
n 

with the measure 

cla<I> = Cµ«5<I>.'exp {-~ jc12x<I>(x)(- □ + ri2)<I>(x)}, 
n . 

(A.I) 

(A.2) 

where U( <I>) is a real functional, C/1 = det 112
( -□ + p2

) and <I>(x) satisfies 
(2.4). Let us diagonalize the quadratic form in (A.2) by introducing 
the functional variables <I>(x): 

<I>(x) = (-□ + ri2)-112¢(x) = jd2yb.(i, y)</>(,y} (-6., ¢)(x), (A.3) 

where 

n 

L<.{x, y) -fc:1:i,{k2 + /'2t 1
/
2 exp (:Cik(; ~ 'y)], 

jc12x,<f>(x) = 0. 
n ...... 

Then, (A.1) can be rewritten 

Jn(g) ~ 'J da<I>• exp{-g f c12x U[(b., ¢)(x)]}, 
n , : 
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da,;, = CD</>· exp{-~ j~i2xqi(x)}. 

n 
C obeys the condition fdaq, = l. 

Now we will proceed to the variational estimation of the integral 
(A.5). Let us introduce the new variables v(x) and A(x) 

</>(x) = (1 + q(□ ))- 1 12 v(x) + (- □ + 11 2 )112 A(x), (A.6) 

where the variational function q(k2) satisfies the condition 

J dk q2(k2} < oo. 
(21r)2 

(A.7) 

Substituting (A.6) into (A.5) we have the equivalent form 9,f Eq.(A.l): 

Jn(g) = IT (1 + q(□ ))- 112 j dav 
q 

•exp{½ jd2xv(x)q(□ )[l + q( □ )t 1 v(x) 
n 

- ½ jd2x [ 2A(x)(-□ + µ 2)(~q, v)(x) + A(x)(-□ + l)A(x)] (A.8) 

n 

where 

-g jd2xU[(~q, v)(x) + A(x)]}, 

n 

~q{x} = J dk 2 [(k
2 + µ2)(1 + q2(k2) )t112 exp (-ikx) . - (A.9) 

. . (21r) _-

Now we choose the function A(x) in the form 

Jd2xA(x) = 0,. A2(x) = A2
, 

n 
where A is an arbitrary number. Let us use the inequality: 

fdaex~{-W} ~ exp{- fdalV}, 
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(A.11) 

which is valid for any positively defined measures da and. any real 
functionals lV. Then, taking into account (3.1) one can obtain as · 
n- oo 

1 {" Jt
2
A

2 

l1~c(<t?o) ~ °!\n n L(q) + ~n 

+ g f dav Jd2xU[(tlq, v)(x) + A(x)]}, 
n 

n J dk [ 2 - - q(k
2

) ] 
L(q) = 2 (21r)2 ln(l + q(k )) ~ 1 +q(k2) . 

After integration over dav we obtain (3.2). 

0, 
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•, (i)aJOBbliii nepeXOA 8 TeopVIVI g<P2 
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YCTOiiiYVIBOCTb BaKyyMa 8 CKan~pHOVI <P 4 TeOpVIVI VICCneAy
eTCR B ABYMepe. HavitJ,eHa sapV1a4V1OHHafl OU.~HKa sqxpeKTVIB;_; 
Horo noTeH4L11ana, KOTopas:i yKa3blBaeT Ha cy111ecTsosaHV1e 
qia3osoro nepexoAa BTOporo poAa. nonyYeHHblVI pe3ynbTaT 
HaXOAl-1TCR B cornac1-11-1 c TeopeMovi CaviM0Ha-fpV1qiq>V1i"ca·. · 

. Pa69Ta ~~nrinHeHa B na~o~aTOPVIVI TeopeTV14jCK00.q>Vl3~KVI 
mrnv1. 
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The vacuum stability of a seal ar gcp 4 theory: 'in two
dimensi on .is studied. A variational approach is ·applied 
to estimation of the effective potential .in thii model. 
We find that the second-order phase tran'si ti on takes 
place. It is in complete agreement with the Simon-Grif
fiths theorem. 
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