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1 Introduction 

It is shown in refs.(l]-[4] that the only object of gauge theories (Abelian 
and non-Abelian), transforming as a bilocal tensor [l ], is the exponential 
line integral P exp(i f A,,dx1'). All gauge invariant structures must be 
built of it. The configuration pointed out corresponds to· the coherent 
excitation .of the field A,, on an integration contour. It is easy to be 
convinced [2)-[6] that the energy corresponding to the excitation is pro
portional to the contour length: It is natural to identify the state created 
by the expon~ntial line integ~~1 with, the. string that is usually done ... The 
fact of the proportionality of the excitation energy to the contour length 
is· not yet sufficient for, this identification. It is necessary for this con
figuration to keep the string properties during its time evolution. The 
present letter is devoted to the investigation of this problem. 

By itself the problem proposed is rather difficult. Fortunately, there 
are explicitly solvable gauge theories where there exist "strings" like that 
and where this questiori · can b~ ·precisely investigated. There are free 
quantum electrodynamics (QED) and QED with static sources in the 
framework of which the problem formulated above can be.solved. . ,, 

In' Scc.2, 'the evolution oc'a:n ai:bid:~ry cohere1~t 'state for. a mass
less scalar field taken as an example is studied. All calculation~ ~an be 
easily extended to electrodynamics and allow us to elucidate the future 
of the "closed string" exp(i fA,,clx") 'in free electrodynamics (Sec.3). 'In 
Sec.4, the problem of the "string" evolution.in the model of static sources 
(the "string with cha_rges at its ends") is solved, which is important for 
understanding the ~a.ture of, th,ese excitations. It _is ~hown that· -~u~h 
~stri~gs" ~~eak down, ~oi'i;yer~ing int~ ;the ,field. o( two Coulo~b sources 
after emissfon,of a surplus energy1 ,The questions of the nature of strings 
in. el~nientafy part~cle physics ,and of. the correspondence betwee~ latti,ce 
and pure field cai~ul~tioris are discussed in Sec.5. 

2 A free scalar"·~~ssless· field 

For clarifying the main point of the problem under.investigation, consider 
the simplest model of a free scala1; field ip with ie1·0 mass. The Lagrangian 
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. . 
density and the Hamiltonian operator, respectively, read _ 

. - :; :· ,.· i'F .'. 

1 2 r, = 2(8,,<p) . 

fe = : !/ d3x[i2 +, ( 8rp)i]-', 
2 .. ' '. , . . . 

; ~-

(1) 

. (~) 

where the operators rj, and¾ obey the canonical equal-time commu_tation 
relation · 

[cj,(x), ir(y)Jxo=yo ,= i6(x - y) . · · ,(3)! 

We'•are interested in the evolution ofthe coherent ;e'x.citation ' 1 
'· 

IJ) = E'JID), HID)= EolD)' • (4f 

with ID). being the ground state and ;,(-.• 

· EJ = exp [if d3xrp(~;?)J(x~] · ". ' (5) 
'U 

when!J(x}'is a dassicafr~~l f~nc~ion.. '. . ';'i 

Let u~ find out' wh~t happ~ns with the state IJ) in due course. At 
the.initiaf time moment 't = 0 ~e 'have . . . . 

. . ' -~ . '' . . . : 

<pJ(x, 0) = (Jlrp(x, 0)IJ) = 0 ; 

1rJ{#,Q) = (Jl¾(x, 0)IJ) = J(~) , 

(6)' 

(7) 

i.e., the field oscillators are -~xcited in the sp~ce region where_ J(x) =I ff; 
and J(x) is the average value of the canonical morrientum'bscillations. 
In ot~er words, ,r(x) i's the"displacement of'the oscillatio": center on the 
phase plane .(cp(x,0),1r(x,0)). At some.time t, the state IJ) becomes 
Ii, t) ,,.; exp(-itk)°IJ)' so that the averages (6),(7) of the canonical vari~ 
ables change · •·· · · : ' 

'PJ(X, t) = (J, tlrp(x, 0)IJ, t) = (Jlrp(x, t)IJ) = 

= j d3yD(X; - y, t)J(y) (8) 

1fJ(X, t) = (J, tli(x, 0)IJ, t) = (Jli(x, t)IJ) = 81cpJ(x, t) (9) 
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_, ~~i 

,._,.,.! 
'"'_,., 

r 
~ 

-~ 

\ 

" 

where ir(x, t) = o1rp(x, t) and 
' . ,' : ~ ~ 

cp. (x,t) = exp(itH)rp(x,D)exp(-itH) = 

= 81! d3 yD(x-y,t)rp(y,D)+ j d3yD(x-y,t)i-(y,0) (10) 

are the Heisenberg field operators being solutions of the Heisenberg equa
tions of motion. The kernel D(x - y, t) is the commutator of the field 
operator cp(;r) · 

D(:r -y) = i[rp(:r),rp(y)J = t:(xo
9
-Yo) 6((x -y)2), (11) 

-7f 

where t = Xo-Yo- Therefore, the averages (8) and (9) obey the D'Alem
bert equation 

D<pJ(x,t) ~ 0, 

under the initial conditions 

D = -D; = -8; + fl 

81<f'J,(X, t)lt=o = J(x), <pJ(x.t)li=o = 0. 

(12) 

(13) 

Now the meaning of the time evolution for the state IJ) becomes 
clear. Equalities (8) and (9) show that., even if the field is excited inside 
a compact region at the initial time moment t = 0, in due course the 
excitation can reach infinitely distant points, i.e. the energy confined 
into the region where J(x) =/ 0 is outgoing to the spatial infinity. Thus, 
we conclude that a local field excitation of the field breaks down. 

3 .,_'Cl~sed strings"· in free QED 

Now it is easy to predict what happens with the state generated •by the 
gauge-invariant operator Ee = exp(i fc A.,,d;r 11 ) ( the "closed string", C 
is the integration contou_r) iri. free QED determined by the Lagrangian 
density · · · · 

1 . 
.r, =•-.:...F2 4 1w• 

F1,,, = oµA,, -:&,;A,,. i(14) 

Defining the quantity . 
~ ' ; 

' 1 . . 

J(x) =·/ 6(;x - x(s))x(s)ds c== .f 8(x -y)dy, 
·.• O · · , C 

x(O) = x( 1) .. (15,) ' 

-' ~ ; 
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• 
, ~ • ,. .; : ; ~. •• - _ _. .<; - - ': -: > r ·;! 

we see that the evolution problem for the state EclO} is reclucecl to the 
one considered in Sec.2. Indeed, by taking irito account. ( 15) Ee can be 
written in the form 

Ee= exp [i J d3
x A(x'.Q)J(x)] 

< •• 

(16Y 

,· 
•' {I' ',~ j 

(for the integration contour being on the plane t = 0). Introducing;the· 
transverse field A.t (A=. +.L +A11, 8A.L = 0) we obtain the, Hamiltonian 

A '1 ! 3 [ A 2 A 2] 
Ho:= 2 .···°'· x Eh+ ,B .. .p:n 

and 

Ee = exp [if Aidx] = exp [ i j d'x,ii(x, O),J C (x)] (}f) 

where A.t = A - a~-1(8.A), analogously for J.L(x);,~-t is the inverse 
Laplace operator. The electric field and vecto1~ potential operators have 
the following commutation relations 

[Ak(x'. O),'Ei(Y, 0)] = i8ki8(x-:- y); 
, . . . '' ' '> 

(19) 

the transverse operator E.t is defined is A.t. 
Using calculations (6}-(13) of Sec.2, we immediately discover that the 

evolution of the electromagnetic field excitati_on generated by, the "closed 
string" (IC} = EclO} with I0) being the gr~urid state of the Hamiltonian· 
{17), (A)o = {E)o = 0), is described by the field averages 

Ec(x,t), = {C,tlFh(x,O)IC,t) = Ot j d3yD(~ -y,t)J.dy) (20) 

Bc(x, t) = {C,tlil(x,O)IC, t) = curl j d3yD(x - y, t)J.t(y)(21) 

that obey the Maxwell wave equations with the initial condition~: 
Bc(x, t)lt=o = 0, Ec(x, t)lt=O = Jl.(x) (i.e. the magnetic field is absent 
but the electric field is excited on the closed contour C). Therefore, for a 
while t, the state IC) with the field oscillators excited just on the contour 
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C turns into ·a sfat~ ",vith the oscillator~ excit~d insicte a: 3-dimensional 
region that widens with the li~ht velo~ity [7f ·, 

Thus, the "closed string" Ee in free QED breaks down, i.e. there are 
,no ,stable one-dimensional extended ·excitations :in-the theory described 
by the Lagra~gian (14). ·· · ! 

l ! 1 . 1 ·' ), ''-'"J :~ 

4·-· "~~rings~.,- in' QEO wit~'stc!ticj~oui-ces· 
{. - .. ' . '-. t~' ' . ' '. • - ' . . . ' ,,. ,.. " . ' 

A quantum fieldtheory with)a static source is aiso explicitly solvable: Let. 
us investigate what happens with the electromagnetic field excited on a 
,line connecting two ~pposite charge ~oi.1r~~-s: ,_':l'he th~ory is determined 
bf the action · · ·· · 

S = j d4y [-iF;., -,-:AoJo],:• Jci{y) = -g [8(y '-·x)-' 8(y . ..,- x',)] (22} · 

,vith g being an ~lectric charge: · Actio'n · (22) ·1s invariant under gauge 
tr1:1.p~~?{matio11s_Aµ .--::t Aµ+. 81,w with an _arbitrary function w, [~(~,t) 
-w(x, -t)] -+ 0 when t -+ oo. The constraints and the Hamiltonian, 
respectively, read · · · · 

''8.C 
1l"o = 8.Ao = 0, 8E - Jo = 0 

·n -~:"t !J·· d3y [E2 + B2].'; , • 
2-

~!, 

' 
(23) 

(24) 

In quantum theory the first-class constraints (23t must a~nihilate 
vectors cI> from the physical 

1
Hilbert subspace 'H.ph 

n-ocI> = o, ·; -(BE.;... Jo)cI> ·:::;; o/ (25) 

Representing the electric field operator in the form E = El.+ En, 8El. = 
0, we derive the Hamiltonian operator in the physical subspace ' - ' 

, ' . ~ 

A 11 _,3 [A2 A2 , 1 ] A.. . -n = 2 a-y E.l ~ ,B, - Joa- Jo "=_H~ + c. · . . . 

(26} 

-~i1ere i10 co~ncides with (fr) and C is a const~nt. E!qual t~ ·the C<>~lo~b
energy of the sources (including the self-interaction). The ground state 
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energy is equal to E0 + C with E0 being the vacuum energy for ( 17). The 
corresponding vacuum functional has the form 

«I>o[A} = exp [-i J;d3yd3y' Jo(y)L\;;,8A~y')] ¢0(~], 

where ¢o[A] is the vacuum functional for free QED. It is easy 
convinced th~t «T>0 [A] satisfies the constraint equations (25 ), '. i.e. 
1-lph if (8E)¢o[AJ = 1i-0¢o[A] = 0 (1i-0 = -i6/6A~, E ~ :._i6/6A.). 

We are interested in the state generated by the operator 

Er,, = e~p [ig lA;drf] , j = 1, 2,3, 

being.applied to the vacuum ¢0 of the free theory, 

«l>xx1 [A] = E'xx•'Po(A]. 

· (27) 

to be 
«l>o E 

.;;;;, 

(28) 

(29) 

Let us demonstrate that «l>xx' E 1-lvh· Substituting the following obvi6{1~ 
identities· · · · 

A= A·_ aL.\-1(8A) + ~L\-1(8A) ~.Ai+ aL\- 1(8A), (30) 

X ,, 

9 J dy 8 f L\;;,( 8A(y') )d3y' = -! d3
~~

3 y' J0(y)L.\;;,8A(y') (31) 

x' 

into rn9),we obta!n~· ,.,, 

.. 
, . , , • . . : :: ·:.,\ l .: ' 

~~;A) F exp [ig l ALJdY;] ~,IA). (32) 

C (: < ~• ,, : ; •',,,: '.- ' 

The expo11(!nqp. (32) is invariant under the gaugeJransformations,, i.e, 
it is a bundle of closed strings with the integration. contours consisting of 
the segment of the.straight line x- x', and the field.lines oHwo Coulomb 
charges (the latter ~ccurs thr~ugh th~'term aL\-1(8A) in Ai (see (30)). 
One can easily cp.eck this using the represe_ntation of the Coulomb field 
by'the·~xp6i"ientj_al'line integrals [1]-[2}. 'Y . ',,,... ·. ,,, . <. ' .. , 

·,.;'~!' .. ,.: '.•· :_,-~·-?·::'~;,i;-) "•~--~:~'"t::·,,·. -:~;.:;~»·: ~:··- :·'j_,.-
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The state <I>0 [A] is the ground state of the system, and the evolution 
of, th~ exponential factor in (32) is described, in fact, by the free Hamil
toniah· (i7), i'.e.' 'the ·problem coiiles to the one solved ii1 Sec.:3. The field 
config~ration corresp'onding to the state (32) is the'Cotilomb field of the 
sources (the ground state of the system ,vith the Hamiltonian (26)) plus 
the field 9f the above mention~<l bundle· of the "dosed. strings". · The 
energy stti-pfos of the latter is radiated to the spatial infinity.· Therefore, 
in this model there are no stable ·string-like excitatio~s of the field too. 
The'field, being concentrated on ·a line, breaks down into the Coulomb 
field of two opposite charges and radiation. ' 

5· Conclusion. 

We see that the stable string-like .excitations are absent in free QED 
as well as in QED with static sources. The exponential lit!e integral 
exp(i § Aµdx") naturally appearing in the fiber bundle theo11y• represents 
the unstable field configuration completely converting into radiation (Sec. 
3). Does it mean that the notion of the electrfc charge is not ,compatible 
with the sting-like structures?, Presumably, not. There are two possible 
points of view on electrodynamics. Firstly, it c~n be considered as the 
field theory determined by the Lagrangian ( 14) ( or the more complica:ted 

· one). In this case,,the field is a fundamental object and the "strings" 'are 
unstable. The other viable point of view is to consider the string as a 
fundamental object, but the field as a notion arising when investigating 
a large number of the strings (like the description of matter consisting 
of atoms by. continuous functions)'. Unfortunately,; this approach h~ not 
yet beeri .worked out. . 

Another question is conne~ted with the Wil~on result [SJ ab_out the 
confinement,phase in the lattice electrodynamics of massive fermions in 
th; strorig io~pli~i 'iimit. A charged particle in the limit m -+ co 'tunis 
into the static source. As all calculations in Sec.4 · do not depend on the 
magnitude ·or the charge g; the model (22) co,ntains the case of the Wil
son limit (8]. However, the stable string-like excitations are impossible in 
QED with static sources and, as a consequence, there_ is no a linearly ris
ing potential. This circumstance rises the question of the correspondence 
between lattice and field calculations. The difference is obvious. So, it is 
important to clarify the situation. In the models considered above it is 

easy to do. 
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The potential energy (that corresponds to 1/2 J d3xB 2 in QED) iii' the 
Wilson model is bounded from above by a constant proportional to g-2 

[9]; therefore, in the strong coupling limit, g -+ oo, it becomes inessential 
as compared with the kinetic energy fhin = 1/2J d3:1.·E2

• A~'a result, 
the: state· (32) turns into the eigenstate of the Hamiltonian fl = if kin, 
i.e. the string-like excitations become stable (the field oscillators are not 
coupled to each other; hence, excitation of some of t,hem does not excite 
the others). , 

The difference of the field and lattice calculations just pointed out 
may occur in non-Abelian gauge theories too. In our opinion, this feature 
forces to be more cautious in comparing the results of lattice calculations 
with those of the field theory. 

References 

[1] L.~.Prokhorov, l'estnik LGU, N .18 (1990) 3 (ii1 Russian):, 

[2] L.V.Prokhorov and S.V.Shabanov, Invariant ;tructures in gauge the
ories and confinement, JINR preprint E2-91-19,5, JINR, Dubna, 1991. 

{3] L.V.Prokhorov and S.V.Shabanov, Invariant structur~ .and static 
forces in gauge theories, JINR preprints E2-91-266, JIN,R, Dubna, 
1991. 

[4] L.V.Prokhorov, l'estnik LGU, N 4 (1992) 3 (in Russian): 

[5] L.V.Prokhorov, in: The Pmceedi~gs of the X Seminar on f!igh,E!lergy 
· Physics and Field Theory , Nauka, Moscow, 1988, p.131. 

[6] L~V.Prokhorov, The string 'model of electric cha1j/e,~ Pi·eprint' 89-04, 
Carleton University; Ottawa, 1989. '' ' · · · '' · · 

<'', ,, 

[7] :y J.Smirnov, The ,.Course ,of Higher Mathematics,· v.2; {.GITTL,· 
Moscow, 1953 (in Russian). ·-:, ,,- ,· '<, 

[SJ K.Wil~on, Phys.Rev. 10 (1974) 2445. · . 
-·~' 

[9] A.M.Polyakov, Gauge Fields and S'frings, Hardwood Academic Pub
lishers, Switzerland, Chur, 1987, p.42. · 

Received by Publishing Department 
on April 16, 1992. 

8 

iJ 

( 

I 

) 

\ 

I 

f 

, 

111; 
i 

npoxopoB n,-8., ll>ypcaeB ,ll.·B.; Wa_6aHOB C.B. 
CTpyHonoA06Hble Bo36Y1KA.eH1--u:1 s K3ll 
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. . tfayl.feHa 3BOnto4111s:i CTpyHonOA06HblX 8036,Y>KAeHli!~ none~ 
(ynopRAOl.feHHblX BAOnb nyTIII' 3KcnoHeHT) 8 CB060AHO~ K3,ll , 
li! K3ll co cTai'111YecK111Mli! 111cToYHli!1<aM111. noKaaaHo, '-!TO aTli! 
B036YIKAeH~R HecTa:6111nbHbl. OHIII pacnaAalOTCR 'B 3neKTpo
MarHWTHOe 1,13nyl.feH111e .111 KynoHoBo none. Pea'ynbT,iTbl cpasHw-•· 
BaJOTCR C Bbll.fll!CneHl'!RMIII. 8 peweTOl.fHO~ K~tl- . 

Pa6oTa BblnonHeHa B na6opaTop111li! TeopeTl'!l.fecKo,~ QM3111K~ 
Ot-1Slt-1. ' · , 
' 

• llpenpHHT OObe.IIHHeHHOro HHCTHT}'Ta 11.llepHblX HCCJll!,lOBaHHH. Jly6Ha 1992. 
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' The evolution of string~like excitations of fields 
(exponential line integrals) in free QED and in QED 
with.static sources is investigated. It is shown that 
~hese excit~tions are not stable. They break down into· 
electromagnetic radiation and the Coulomb field. The' 
reiult~ are compared ~1th.calculations in the lattice 
QED. · . 
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