


1 Introduction

It is shown in refs.{1]—[4] that the only object of gauge theories (Abelian
and non-Abelian), transforming as a bilocal tensor (1], is the exponential
line integral Pexp(: { A,dz"). All gauge invariant structures must be
built of it. The configuration pointed out corresponds to the coherent
excitation of the field A, on an integration contour. It is easy to be
convinced [2]—[6] that the energy corresponding to the excitation is pro-
portional to the contour length: It is natural to identify the state created -
by the exponential line integral with the string that is usually done. The
fact of the proportionality. of the excitation energy to the contour length
is-not yet sufficient for this 1dent1ﬁcatlon It is necessary for this con-
figuration to keep the strlng properties during its time evolution. The
present letter is devoted to the investigation.-of this. problem.

By itself the problem proposed is rather difficult. Fortunately, there
are explicitly solvable geuge theorjes where there exist "strings” like that
and where this question can be precisely investigated. There are free
quantum electrodynamics (QED) and QED with static sources in the
frameworl\ of which the problem formulated above can be. solved o

In’Sec.2, the evolution of ‘: an a1b1t1a1y coherent ‘state for a mass-
less scalar ﬁeld taken as an example is studied. All calculations ca.n be
easily extended to electrodynamlcs and allow us to elucidate the future
of the "closed string” exp(i § A Jdzh) i in free electrodyna.mlcs (Sec.3). Tn
Sec.4, the problem of the "string” evolution'in the model of static sources
(the "string with charges at its ends”) is solved, which is important for
understandmg the nature of these excrtatlons It is shown that such

"strings” break down convertmg mto the field. of two Coulomb sources
after emission, of a surplus energy. ‘The quest1ons of the nature of strlngs
in elementary partlcle physlcs a.nd of the correspondence between lattrce
and pure field calculations are discussed in Sec.5. e

2 A free scalar’ massless ﬁeld

For claufylng the main point of the ploblem under 1nvest1gat10n consider
the simplest model of a free scalar field  with zero mass. The Lagrangian
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density and the Hamiltonian operator, respectively,’ read .

L= 3@l . o

il / R N € )

where the operators go and a obey the canomcal eiqu‘al tnme commutatlon

relation - . . .. Gl

' [go(x)’ﬂ.(y)]:o_yo = ?6(x y) B UREETERE RPN ’(3)3

We are 1nterested in the evolutlon of the coherent exc1tat10n a ;_ji;i{

. )= Eslo), Hw) Eou» oy
W1th IO) belng the- ground state and S T S

EJ—exp[ /d%:gox O)J(x)] C (5)

S G T

where J (x) is a class1cal real functlon v
Let us find out what happens with the state IJ) in due course. At
_the 1n1t1al t1me moment t =0 we have

Ci(x,0) = (JIp(x, 0)|J>—0 ey

mE0) = WEEON=JE, (D)

. i.e., the field osc1llators are excited in the space region where J(x) # 0;

" and ‘J(x) is the average value of the canonical momentum' oscxllatlons
In other words, J(x) is the dlsplacement of ‘the oscillation center on the

'pha.se plane (¢ (x, 0), 7 (x, 0)). At some time t, the state |J) becomes’

[J,t) = exp(—itH)|J) s so that the averages (6) (7) of the canon1cal varl—‘
ables change

wa(x,t) = (J,t|p(x,0)}J, t) = (Jlp(x,1)lJ) = :
= / d3ny y,)J(¥) (8

mi(%,t) = (L elr(x, 0 8) = (Jr(x,)J) = Bps(x,)  (9)

?

J

PN

where #(x,t) = (),go(x t) and
LG (x,t) = e;\p(th)a,o(x 0) exp(—itH) = ‘ |
= o [ EyD(x-y.063.0)+ [ LuDx=y,0(v,0) (10)

are the Heisenberg field operators being solutions of the Heisenberg equa-
tions of motion. The kernel D(x Y,t) is the commutator of the field
operator ga(r) k
. ,' R €lTg — ‘ ‘ '
D(z ) = ilp(@), 3 = L2 gy, ()

where £ — xo — yo. Therefore, the averages (8) and (9) obey the D’Alem-
bert equation '

Dps(x,1) =
under the initial condltlons

3t<PJ(x )= o—J( )

Now the meaning of the time evolution for the state |J) becomes
cleal Equalities (8) and (9) show that, even if the field is excited inside
a compact region at the initial time moment ¢ = 0, in due course the
excitation can reach infinitely distant points, i.e. the energy confined
into the region where J(x) # 0 is outgoing to the spatial infinity. Thus,
we conclude that a local field excitation of the field breaks down.

O=-4,=-8+A (12)

‘P X, t)|i=0 = 0. (13)

3 :”Clvos,ed strings” in free QED
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Now it is easy to predict what happens with the state genelated by the

gauge-invariant operator Ec = exp(z §C 4 dx*) (the closed string”, C
is the integration contour) m free QED dctelmlned by the Lagrangian
dens1ty ' :

L=—= Fz'

47 - lw = a A, “‘a Au o (14)

Deﬁmng the quantlty

J(x) f 6(x x(s))x( )dg,—f o - y)dy," x(0>—x( (15)“
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we see that the evolution problem for the state pos |0) is 1ec1uced to the
one considered in Sec.2. Indeed by taking into account (15) E¢ can be
wntten m the form Lo

2N, H . R R R

Ec = exp{ /d31' A(x O)J(x)] . .. (16)

transverse field A | (A A_L+A||, BA_L = 0) we obtam the Hamlltoman
/da [EL+B N ¢ X f)
and o )

Bo = exp [ fndx} —op i [ €2 Aux 00| (19)
een o] eonf e bionss] a0

v;'here A = A YN (OA) analogously for Jl(x), A1 is the inverse
Laplace operator. The electric field and vector potentlal opexatms have
the followmg commutatlon relat]ons : '

[0 B0 -y ('19)'»

the transverse Operator‘E | is defined as A 1

Using calculations (6)-(13) of Sec.2, we immediately discover that the

evolution of the electromagnetic field excitation generated by, the ” closed
string” (|C) = ECIO) with |0) being the ground state of the Hamlltoman
1, (A)o = (E)o = 0 is descrlbed by the field averages .- x

I

CEelxt) = (CHBL0IC) =0, / SyDix—y,031() (90)

Bo(x,t) = (C,tB(x,0)|C,1) = curl / EyD(x —y,)31() (21)
that obey the Maxwell wave equations with the initial conditions
Be(X,t))i=0 = 0, Ec(X,t)|i=o = J1(x) (i.e. the magnetic field is absent
but the electric field is excited on the closed contour C). Therefore, for a
while ¢, the state |C) with the field oscillators excited just on the contour

(for the 1ntegratlon contour belng on the plane {= 0) Introducmg the“

C ‘tuns into a state With the osc1llators excxted 1ns1de a'3- d1mensnona.l ‘
region that widens with the hght velocity [7]. o ,
Thus, the "closed string” E¢ in free QED breaks down, i.e. there are

10 stable one-dimensional extended excltatlons 1n—the theory described

by the Lagla.nglan (14).

; SEL a8 »‘\"::i D T LR T
”Strmgs” m QED Wlth statlc sources
A qua.ntum field’ theory w1th a'static source is a.lso exp11c1tly solvable. Let .

us investigate what happens with the electroma.gnetlc field excited on a
line connecting two opposne charge sources: The theory is determined

{by the action

5= / aiy [—-F —AOJO], Jo(Y)-:—g[5(y )= dly=x) (22)

thh g being an electric charge ACthIl (22) is invariant under gauge
transformatlons A, — A, + 0w with an arbitrary function w, [w(x,?)

‘—w(x —t)] — 0 when t — o0o. The constraints and the Hamlltonlan,

respectively, read

S
o

a[: R S
= 0 OFE — J =0 - 23
" aAo B T 23)
B / L

In quantum theory the first-class constraints (23) must annihilate
vectors & from the physncal Hllbert subspace ’H,,;. B
7r0@ 0, (8E Jo)® = o ' (25)

Representmg the electric ﬁeld operator in the form E E i+ E", ok L =
0 we denve the Hamiltonian operator m the physxcal subspace R

H""—/day[E_L-l-B -—'Jo -lJo] H0+C (26)

'where Hy comcxdes with (17) and C i isa constant equal to the Coulombt

energy of the sources (including the self-interaction). The ground state
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energy is equal to Ep+ C with Eo being the vacuum energy for (17). The
correspondlng vacuum functlona.l has the form

QO[Al = exp ["1/‘13!/‘13' ’JO(Y)Ayy'aA(y) ¢0lAl ' (27)

where ¢g[A] is the vacuum functional for free QED. It is easy to be

convinced that ®y[A] satisfies the constraint. equatlons (25), i.e. (I>o €

Hon if (8E)¢0[A] = Fodo[A] =0 (Fp = —i6/6A0, E = —i6/5A).
We are interested in the state generated by the operator

:

B = exp ig/'/l,-dyf . =123, (28

being applied to the vacuum ¢ of the free theory,

q)xx’lA] Axx"ﬁolAl - cos (29) .

Let us demonstrate that fbxx» € 'H,,h Substltutmg the followmg obvxous
identities "

A=A- aA-¥(aA) + A (aA) - Ay +0A” (8A), (30)

X
/dy B/Ayy, 8A( ’))c{“‘y = —-/(13 d3 'Jo(y)Ayy, Aly) (31)
x ) .

into (29),we obta‘rngn . T S B T

Lo ‘I’xxflAl =exp [ig / Au{lyj DofA]. - _ - (32)

xl
The exponent, in (32) is invariant .under. the.gauge transformations,:i.e:
it is a bundle of closed strings with the integration contours consisting of
the segment of the:straight line x —x/ and the field. lines of.two Coulomb
charges (the latter occurs through the term &A™~ (@A) in A, (see (30‘))
One can easily. check this using the representatron of the Coulomb ﬁeld
by the exponentlal lme mtegrals [1] [2] ' B

The state ®o[A] is the ground state of the system, and the evolution
of the exponential factor in (3‘)) is described, in fact, by the free Hamil-

'ftonlan (17), i.e. the problem coines to the one'solved in Sec.3. The field

conﬂguratlon corresponding to the state (32) is the'Coulomb field of the
sources (the ground state of the system with the Hamiltonian: (76)) plus
the field of the above mentioned bundle of the’ "closed strings”." The
energy sur plus of the latter is radiated to the spatral mﬁmty Therefore,
in this model thete are o stable strmg-hl\e eXcitations of the field too.

" The field, being concentrated on ‘a line, breaks: down into. the Coulomb

ﬁeld of two oppoerte charges and radratlon

5« "%Conclusion.

We see that the stable string-like.excitatlons are absent in free QED
as well as in QED with static sources. The exponential line integral
exp(i § A,dz*) naturally appearing in the fiber bundle theox3 represents

~ the unstable field conﬁguratron completely converting into radiation (Sec.

3). Does it mean that the notion of the electric charge is not compatxble‘
with the sting-like structures?. Presumably, not. There are two possible
pomts of view on electrodynamrcs Firstly, it can be consndeled as the
field theory determined by the Lagrangian (14) (or the more compllcated

~one). In this case, the field is a fundamental object and the "strings” are’
-~ unstable. The other viable point of ‘view is to consider the string as a

fundamental object, but the field as a notion arising when investigating
a large number of the strings (like the description of matter consisting
of atoms by contlnuous functions). Unfortunately, thxs appxoach has not
yet been worked out.. .. : -
Another questlon is connected w1th the Wllson result [S] about the
the stroné couplmg llmlt A charged particle in the limit m — oo turns
into the static source. As all calculations in Sec.4'do not depend on the

~ magnitude of the charge g, the model (22) contains the case of the Wll- ‘

son limit [8]. However, the stable string-like excitations are impossible in
QED with static sources and, as a consequence, there is no a linearly ris-
ing potential. This circumsta.nce rises the question of the correspondence
between lattice and field calculations. The difference is obvious. So, it is
important to clarify the situation. In the models considered above it is

easy to do.
T



The potcntlal energy (that corresponds to1/2 [ PzB?in QED) in the
Wilson model is bounded from above by a constant proportional to g2
[9]; therefore, in the strong coupling limit, g — oo, it becomes messentlal
as compared with the kinetic energy Hin = 1/2 [ P2 ‘B2 Asa result,
the:state (32) turns into the elgenstate of the Hamiltonian H = H;.,,,,
i.e. the string-like excitations become stable (the field oscillators are not
coupled to each other; hence, excitation of some of them does not e\c1te
the others).

The difference of the field and lattice calculat:ons just pomted out
may occur in non-Abelian gauge theories too. In our opinion, this feature
forces to be more cautious in comparing the results of lattice calculations
with those of the field theory.
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