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1 . In.'troduction 

Paragrassmann algebras (PGA) are interesting for several re~sons. First, they are 
· relevant to conformal field theories [l],[2). Second, studies of the topological field 

th~ries show the.necessity of unusual statistics (3) and,' iri p:articul~r·, of th~ Green­
. Volkov parastatistics which was earlier dis~ussed:mainly in the context.of tlie stan­
dard field theory (4). There ai-e also some hints' (ei, Ref.[5]) that PGA. have a 
connection to quantum groups. Finally, it looks aestheticallf appealing to find a 

, generalization of the,Grassmann analysis [6] that prnved to be so successful in de-
scribing supersymmetry. · ' · 

Recently, some applications of PGA have been discussed in,literature. In Ref.[7], 
a parasupersymmetric generalization of quantum mechanics had been proposed. 
Ref.[8] has attempted at a more systematic consideration of the algebraic aspects of 

· PGA based on the Green ansatz (4) and introduced, i~ that· frame, a s<>rt'of para: .., 
grassmann generalization of the 'conformal algebra. Applications to the relativistic 
theory of the ·first-quantized spinning particles have been discussed in Ref.[9]: Fur~ 
ther references can be found in [2],(5),[7],[8). 

F 

The aim of this paper is to construct a consistent generalization of the Grassmann · 
lllgebra (GA} to a paragrassmann one preserving, as much as possible, those features 
of ,GA that we~e useful in physics applications .. The crucial point of ~ur. approach is 
defining a generalized derivative in paragrassmann v~riables. This is shown to relate 
PGA, in a natural way,'to q-defonned algebras and quantum groups with q being a 
root of unity. In this paper, we mainly concentrate on the. algebraic aspects leaving• ;{ 
the applications to future publications. It should be stressed that we do not use the · 
Green ansatz although natural matrix realizations ofthe algebraic con;tructions are• 
given. . .. 

Section 2 treats the algebra generated by one paragra~smann variable 0, 0P+l = 0, 
and automorphisms of this algebra. In Section 3, a .notion of generalized differen­
tiation is introduced and discussed. It uses special automorphisms preserving the 
natural grading and naturally introduces into action the toots of unity, q (q"H = 1). 
The ge~eralized differentiation coincides with the Grassmann one for p = 1, and with 
the standard differentiation when p -+ oo. For intermediat~ cases 1 < p < oo, the • 
strudure _of the algebra depends on the arithmeiic n,ature of its order p + 1. This 
is briefly discussed in Section 4 where the simplest PGA with many .variables. 0; 
are defined (PGA with N variables will· be denoted. as r,,(N)). They satisfy the 
nilpotency condition QP+1 = 0 where 8 is any linear combination of-8,, and appear 
to be naturally relat~d to the non-commutative spaces"satisfy~ng the cc,mmutation 
relations 8;0; = q0;8/ , i < j. These and otherJ relations preseiited · in this paper 
demonstrate a deep connection between PGA and quantum groups with deforma­
tion para~eters' q being roots of unity. Two of the most obvious are p;esented in 
the Sections 4 and 5. · 
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2 Paragrassmann Algebra with One Variable 

We start by definin'g the paragrassrriann algebra r,,(1) (or simply f·), generated by 
one nilpotent variable B (OP+l = 0, p:is some positive integer). Any element of the 
algebra, .a E r, is a polynomial in B of the degree p, 

a = ao + a 1 B + ... + a,,B" , (1) 

where a; are real or complex numbers or, ·more generally, elements of some com­
mutative ring (say, a ring of complex functions) [10]. It is useful to have a matrix 
realizati_on of this algebra. One may regard a; as coordinates of the .vector a in the 
basis (1, B, ... , 0"). Defining the operator of multiplication by B, 

B(a) = a0B + ... + a,,-18", (2) 

we see that it can be represented by the triangular (p + 1) x (p + 1)-matrix acting 
on the coordinates of the vector a: 

(B)mn = Dm,n+l , (B"')mn = Dm,n+k , (3) 

m, n =·0, 1, ... ,p. We may now treat elements of the algebra as matrices. In view 
of Eq.(3), any element a Ef can be represented by the matrix 

( ) _ { am-n if m ~ n, 
a mn - 0 if m < n. (4) 

This matrix representation of the algebra is obviously an isomorphism. 
A very important construction related to the algebra r is its group of auto­

morphisms consi~ting of the linear maps a-+ g(a) that preserve the multiplication 

i.e., 

g(aa + f3b) = ag(a) + f3g(b), 

g(ab) = g(a)g(b), 

(5) 

(6) 

where· a, /3 are numbers. It is clear that any automorphism is defined by p param­

eters 'Ym , m = 0 ... p - 1: 
. p-1 

g( B) = L 'Ymom+I' (7) 
m=O 

or, in the infinitesimal form 
p-1 

Ii B = ""'f 9m+1 
i L.Jm • (s)' 

m=O 

Omitting the obvious summation symbols we have 

S,a = S,ar. • B"' = a,. • S,B"' = a,. • kfmor.+m, ----.... -.--. -~-~----· 
\ Pl•'t. ... M • •4"t •i\ !JU~ f 1 , ... 'JV .tl:-r})u lit' -'tifJ"i ;;uaw&u• 1 • 
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5,ak = €m(Gm)k1a1, 

whereof the matrix elements of the Lie algebra gen_erators Gm are 

( Gm)kl = l5k-l,m , (9) 

and the commutation relations of them are 

(Gm, Gn] = (n - m)Gm+n, (10) 

where Qm+n = 0, if m + n ~ p. Being the generators of the automorphism group, 
Gm define differentiations of the algebra r, the classical ones satisfying the Leibniz 
rule. However, it is impossible to treat any of them as a differentiation with respect 
to 0. In fact, 

. Gm(on) = { nom+n ~f n_+ m ~ p, 
0 1f n + m > p, 

but we would rather expect a differentiation 8 = 8 / 80 to act as 

8(1) = o, 8(0) = 1, 8(0n) oc on-l , n > 1, (11) 

It is easy to see that the condition 8( 0) ~ 1 together with the standard Leibniz rule, 
8(ab) = 8(a) • b +a• 8(b), completely define the a~tion of 8 on any a E r, but'.this 
immediately leads to a contradiction 

0 = 8(0P+l) = (via Leibniz rule) = (p + l)OP 

This is a manifestation of the general fact about nilpotent algebras known even 
for the Grassmann case: once the normalization conditions of the type (11) are 
established, the Leibniz rule is to be deformed. 

3 Generalized Differentiation 

To introduce a useful definition of 8 we suggest a generalized Leibniz rule (g-Leibniz 
rule) 

8(ab) = 8(a) • b + g(a) • 8(b), (12) 

where g is some automorphism of the algebra rP. For the Grassmann case (p = 
1) we have g( a) = ( -'-1 )<0 >a where (a) is the Grassmann parity of the element a. 
The automorphism g and, hence, the derivative 8 are completely fixed by the 
normalization conditions 8(0) = 1 and 8(02 )oc 0. These, by (12) and (7), give 

"Ym = 0 for m > 0 , 

8(1) = 0, 8(0n) = (1 +-yo+ ... _+ 1;;-1 )on-l 
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and from 8( OP+l) = 0 we get 

1-,K+l 
1 + "Yo + ... + To = 

1 
= 0 

-:- "Yo 
· (13) 

so that "Yo is fixed to be a root of unity. For the moment, we choose "Yo to be the 
prime root i.e.: 

"Yo= q = e21ri/(p+l) = (-1)2/(p+l). (14) 

By introducing the notation 

( ) - 1 + + + n'...l 1 - qn • nq= q .•. q =--, 
1-q 

(15) 

the action of 8 can be perform~d as 

8(0n) = (n)qon-1 , (16) 

and so the matrix elements of 8 in the basis {Om},m = 0, ... ,P are 

(8)mn = (m + l)q5m+l,n • (17) 

Since (p+ 1)9 = 0, the op~rator 8 is nilpotent, 8P+l = 0. It is not hard to see that 
8 and O satisfy the q-deformed commutati?n relation 

[8, 0]9 = 80 - q08 = 1 . (18) 

The Grassmann case for p = 1 and the classical one in the limit p -+ oo are 
evidently reproduced. The last equation is s~ggestive of a relation _between PGA 
a.nd much discuss~d q-deformed oscillators and q~antum groups (see, e:g. Refs.(12] 
- [14], (17], (18]) with the deformation pa.ram~ter q being a root of unity. We will 
return to this point at the end of the paper. · . · ·· 

Consider now the algebra Tip(l) ( or, siinply TI) generated by both O a11d 8. Sii{ce 
Eq.(18) makes it possible to push all B's to the right of O's; the complete basis of 
TI might be given by (p + 1)2 monomials {Oman}, m, n = 0, ... ,p. (Their linear 
independence is quite evident in the matrix representation). Thus TI is isomorphic, 
as an associative algebra, to the general matrix algebra of the order p + 1 with 
natural "along-diagonal" grading 

deg(Om8n) = m- n. (19) 

Note that this grading makes it possible to rewrite the g-Leibniz rule (12) in a 
complete visual correspondence to the. Grassm~nn case · 

8(ab) = (8a)b + (-l)#i'.kgaa(8b) (20) 
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• 
( one can interpret the quantity (a) = p!i deg a as the paragrassmann parity of the 
element a) , , 

Note also that since the automorphisms of r can be represented by (p + !)­
matrices, they must have an expression _in terms of (} and 8. In particular, the 
operator g from Eq.(12) is expressed as 

' g ~ 8() - ()8 ~ 1 + (q :__ l)B8. (21) 

Its matrix elements are 

(g )mn = qm bmn 
'i. , (22) 

In the mathematicalliterature (see, e.g. Ref.[11]), our generalized differentiation 
{12) is called g-differentiati9n. Mathematicians also consider a further generaliza­
tion, called (g, g)-differentiati~n which satisfies the rule 

8(ab) = 8(a) • g(b) + g(a) • 8(b). (23) 

This generalization of the Leibniz rule is related to a special representation of the 
algebra r by 2 ,X 2-matrices with elements in r 

( 
g(a) 8(a)) ~ M(a). a.__, o g(a) (24) 

,_ ' , \·:, ._,; ·: i,' ' . 

If g and g are algebraic homomorphisms, i.e., satisfying Eq. (6), then Eq. {23) is 
equivalent to the homomorphism 'condition ', ,• · · , 

' M(ab) = M(a)M(b). 

All 'this is obvioJsiy ~pplicabl6 to tne g~Leibniz rule and to the standard one as well. 
For physical applicati6ns;_it seeriis more reasonable to use for g and g sorrie autd­

, morphisms rather tha~ just ho~omorphisms., Although we think that Eq.( 12) looks 
, more natural than Eq.(23), the latte~ can be used to define "real" differenti~tion, i.e., 
, the .one with.real matrix elements. In fact, choosing for g and g the automorphisms 
defined by, · 

1

' • • · ·' · · ·· ' · • · 

' ·. g(B) ~ ql/2()', g(B) == q-1/2()' (25) 

.we find.that 

8(Bn) = [n]vg(Jn~l. , ·_. (26) 
with the popular notation 

n/2 -n/2 . 
[n] = q - q = q<1-n}/2(n) . 

vg ql/2 _ q-1/2 q (27) 

This is obviously a real number .. The operators g and g have the matrix eiements 

( ) _ m/2c (-) _ -m/2c [! mn :-- q · · Omn , 9 mn - q . Omn , (28) 
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and the following expression in terms of (} and 8 

g = 8(} - q-l/2()8 ' g = 8(} - ql/2()8. {29) 

The first equation in {29) is an analog of Eq. (21) while the second one may be 
considered as an analog of (18). · One can easily recognize in fo;~ulas (29) the 
definition of the quantum oscillator (see, e.g. [12], [1.7], [18]). We will exploit this 
variant of differentiation in the last Section of this paper. · 

In addition to the g-differentiation, one can also construct an inverse operation, 
or g-integration, ( 8)-1 = J,. To do that, one has to "regularize" (} and 8 by intro­
ducing a formal parameter depexidence to(} and (n)q, e.g.,(},=(}+ i 2 , q, = ql+•. 
Then, the following simple definition 

,. (Jn+l 

{ (}n == ( • l) , .. J, • n + q, 

makes sense and one can check that 

8 i =·1 

in the limit f -+ 0. This definition satisfies the g-modified partial integration rule 

/,<8a)b = ab- ig(a)8b. 

In the limit p -+ oo this definition reproduces the usual indefinite integral. Our 
definition of the B-integration has no relation to the standard Grassmann integra­
tion. A possible definition of the integration over (} that generalizes the Grassmann 
integration to the paragrassmann one has earlier been addressed in Ref.[15]. 

, Up to now, we have been discussing the paragrassmann algebra and its satellites 
with coefficients being complex (or real) numbers. In some applications (e.g., in 
constructing parasupersymmetries) one has, to deal with an (Eq.(l)) being taken 
from a wider commutative ring, for instance, the ring of.the differentiable functions 
of a real or complex variable t i.e., an= an(t). For such an algebra, it is possiLle to 
define a sort of "covariant derivative" 

n = 8, + ( 1) , BP81 , 
p q• 

where 89 = 8 and the standard notation is used 

(p)q! = (p)q{p - l)q ... (l)q. 

{30) 

(31) 

This derivative obviously satisfies the g-Leibniz rule (12) and may be .considered as 
a root of 81 since 

DP+la(t;B) = 81a(t;B). 

7 
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Unlike 8s, the derivative D possesses eigenfunctions, the q-exponentials 

. . t p on. 
eq(t;O)=e I:-() 1 , 

n=O n q• 

Deq(,\P+1t; ,\8) = ,\e9 (,\P+lt; ,\8) . . 

In the limit p-+ oo we have .eit.; 8)-;--+ exp(t + 8). 

' . '. . ', \ . 

4 Many Paragrassmann Variabl~s · 

Our discussion of the paragrassmann algebras fp(l) and rrp(nwas completely ge~s'· 
eral and did not rely on special matrix re,presentations for(} and 8. In fact, different 
representations could be classified if we relaxed our 'assumption for q to be the prime 
root of unity, qp = exp(21ri/(p + 1)). Then, one would find that the structure of the 
algebra Ilp(l) depended on the arithmetic properties of(p + 1) .. The simplest case 
is when (p + 1) is a prime integer. Then, the mult'fplicative group ~f roots of uriity, 

. Zp-t1 , has no subgroups; any root generates the whole group and may be used for 
defining 8. If p + 1 is a composite number having divisors p;, the group of roots 
contains subgroups, ZPi> gener,ated by the roots q; == ~xp(21ri/p;). Correspondingly,. 
the algebra fp{l) has the subalgebras generated by (}Pi having the following prop­
erty: if we define 8, with q in Eq.(16) replac~d by q;, we will find that 8 = O over all 
subalgebra generated by (}Pi. It follow~ that we can choose q only of the primitive 
roots, i.e., those that generate the entire ,group Zp+l not_just a subgroup. 

In summary, when (p + 1) is a prime number, any root is primitive (except 
unity) and, hence, there are p,possibilities to define 8.' For.a composite (p+ 1), 
the number of possible differentiations is equal to </>(p + 1) ·which is the nU:mber·of 
positive integers smaller than (p + 1) and relatively prim~ to it,'· Such an ambiguity 
becomes· crucial when we turn to the ma~y-8 case giving ris~,to the existenc~ ofa · 
series of nonequivalent paragrassmann algebras Ti(N). Needless to say, it is a pure 
p > 1 effect.· 

Leaving these subtleties to some further paper we present here just the si~plest 
inductive construction of fp(N). Starting with N:::;;, 2, define 

81 = g ® (} ' 82 = (} ® 1 , 

where (} and g have been defined in previous section. It is easy to see that 

8182 = q8281 , Of+i =·o: 

(33) 

(34) 

Th~ crucial fact is that the defi~ition'(33) ~lows for 11ilpotency of any linear com­
bination of 81 and 82 • In fact, as one can easily derive by induction, 

(a181 + a282r = t(~) a~a;-1co;-1co~ , 
lc=O q 

{35) 
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where 

(
n) (n)q! 
k q = (k)ql(n - k)9 ! 

(36) 

are q-deformed binomial coefficients, the polynomials in q ( a.k.a. Gauss polynomi­
als). Remembering now the definitions (31) and (15), we immediately prove that 

(a181 + a282)P+l = 0, (37) 

as long as q is a primitive root of unity; 
, S~ppose now that we have constructed the algebra rp(N) satisfying the relations 

8;8; = q8;8i , i <j , i,j = 1 ... N , 

N .. 

(L a;O;)P+l = 0 ; 
i=l 

(38) 

(39) 

Then, N+ 1 matrices{); satisfying (38) and (39) can be constructed in arialogYto 
(33) '. 

{); =g®8;_, ,i = 1. .. N ,{)N+l = 8® 1. (40) 

The proof of the identity (39) is perfor~ed in full analogy with the N = 2 case. 
Thus, the induction ensures the existence of the algebras fp{N) satisfying the con­
ditions (38) for all N. · As has been noted above, it is a simplest construction of 
the paragrassmann algebra.with many generators. The complete classification of all 
ad~issible form~ of r p( .N) is an in'.t~-r~sting but a separate problem, · · · 

It is rather amusing that the consideration of paragrassmann algebras naturally 
leads to the objects introduced in the context of quantum groups. In fact, the gener­
ators of the algebra fp(N), determined by the relations of type (38) and (39), might 
be,considered as coordinates of a certain nilpotent quantum hyperplane similar to 
those of Refs.[13), [14). Such an object and, especially, its 8-extensions (defined by 
its·automorphisms) look rather interesting both from'.algebraic and from quantum­
geometric [16) points of view. Here, we just briefly outline problems arising in this 
area; 

·Let us consider an algebra·r;(N) with the commutation relations 
• ·• , I •:t 

8;8; ='iii(};O; ',' i,j = '1 •· •• N, (41) 

where q denotes the prime root of unity. The requirement for qPij to be a primitive 
root is equivalent to the requir~nient for Pii to be invertible elements of the ring 
Zp+t• Then, let us define differentiations 8; satisfying the normalization conditions, 

and the g-Leibniz rule 
~ ... 

8;(8,.) = 8;1c 
\ ·1 ~-' 

8;( ab) = '8;(~-) ':"i, + g;(a) · 8;(b) 

9 
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where the action of the automorphisms g; on 81c is 

g;(81c) = q"i•8,. . 

These conditions determine the commutation relations in the operator form 

8;81c = 6;1c + q"i•8,.8; . 

It can easily be shown that 
8;8; = qPij 8;8; 1 

and, for i =I k, 
8;81c = q""81c8; 

V;1c = Plci = -p;1c ' 

(44) 

(45) 

(46) 

(47) 

while the diagonal v;; remains not specified. There were no problems so far. But 
adding .the requirement that any linear combination of 8; must also be a differenti­
ation satisfying (43) with certain g immediately gives 

gi(a) = g;(a) = g(a) (48) 

and, therefore, 
Vile= Vj/c •.. (49) 

The conditions ( 47) and ( 49) are in general ha.rd to be satisfie_d together. For N = 2 

the solution exists 

vu = v21 = -v12 = -v22 = (some invertible element of Zp+l ) (50) 

But for N > 2 the equation (38) ensures the existence of the algebra (41) with 
all p;; = 1 for i < j, which is evidently inconsistent with (49). Unless p = 1, of 
course. This demonstrates the necessity of a more detailed consideration of the 

algebra r p(N) and its automorphisms. , . 
It is possible to construct another interesting extension of r p( N) ( where pis even 

number) with generators 8; and 8; if we even further rdax the g-Leibniz rule (43) 
to the form familiar from the theory of quantum groups [16] 

8;(ab) = 8;(a) • b+ gf(a)· 8;(b). 

This makes it possible to construct operators 8; by the inductive procedure similar 

to (40) 
a;= u ® 8;, i = 1. .. N, aN+1 = 8 ® 1, 

where we have also slightly modified the definition of 8 and g 

88- q288 = 1, 

10 

(51) 

(52) 

88- 88 = g2
• .· (53) 

From these equations and from definitions of 8; and· 8; (i = 1, ... , N) we obtain tl:ie 
following algebra •' ,, . 

8;8; = q8;8; i < j , 

8;8; = q-18;8; i < j I 

8;8; = q8;8; i =I j , 

8;8; - q28;8; = 1 + (q2 
- 1) I: 8,.8,,,: 

k>j 
,.(~~) 

These are the well known formulas for differential calculus on the quantum.hy;er­
plane [16]. These formulas may also be interpreted as the definition of the ~ovariant 
q-oscillators [18] or, else, as the central extension of the quantum symplecticspace 
relations for th~ quantum group Spq(2N) (see L.D.Faddeev a.o. [13]): Note. that 
nil potency of the linear combinations a;8; and b;8; as well as nondegeneracy bf,8 (52) 
are guaranteed since both q _and q2 are primitive roots of unity (for p even integ~r 
only). 

This example demonstrates a dramatic relation between paragrassmann' algebras 
and quantum groups: Another example will be presented in the next section. 

5 Discussion 

In this paper, we have introduced the basic ideas of a rather general approach to 
constructing paragrassmann algebras with differentiations. One may ask a question: 
what are the relations an algebra must satisfy to be called paragrassmann? In fact, 
one of them is clear - it is· the p-nilpotency of any linear combination of generators 
8; ( i = 1 : .. N) or, equivalently, · 

L 8u(io)8u(i,) • • • Bu(ip) = 0 , 
uESp+t 

(55) 

where the sum is taken over all permutations of the indices. It is clear that the 
algebra with the only identity (55) would be very hard to handle. So, one_ must 
impose some additional restrictions ... A variant of those, known as the Green ~nsatz 
(see Ref.[4]), consists in taking each.paragrassmann generator 0; to.be a•stim of p 

mutually commuting Grassmann numbers. In addition to Eq.(55), this gives the 
condition 

[[8;11 0;,], 0;,] = O (56) 

Such an algebra admits a sort of analysis (see [4]) which unfortunately quickly 
becomes messy as p increases. · · 

As has been shown above, using the conditions (41) instead of(56) (with e'er: 
tain restrictions on-p;; coming fro_m (55)) gives a much simpler algebr~ possessing 

• -}~. C 
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matrix representation, differentiations and, as we might suspect, many other useful 
properties analogous to its Grassmann ancestor. These are the algebras we should 
call paragrassmann. One can easily check that conditions (41) and (56) are itot 
particular cases of each other, and so the algebras fp(N) of the present paper are 

different from those of Ref.[4]. 
The most curious is the connection between paragrassmann and q-deformed alge-

bras. In fact, our interest to paragrassmann algebras was initiated by searching for 
the parafermionic extensions of the Virasoro algebra ( which we are going to present 
in the next paper). So, coming into play of roots of unity, q-oscillators, etc. was 
somewhat surprising. To make this connection more apparent, we give here a rep­
resentation of the q-deformed algebra U9 (su(l, 1)) in terms of the paragrassmann 
variable 8 and (g, g)-differentiation 8 ( the analogous construction for Uq( su( 1, 1)) 
from q-deformed oscillator was considered in Ref.(17]). This can be done by repre­
senting the homomorphisms g and g from (23) as operators inverse to each other 

(see Eq. (25)) 
g = l· ' g = q-N . . (57) 

Then, defining the generators N, E+ and E_ 

N = N + 1/2, 

1 2 

E+ = ( ql/2 + q-1/2)1/2 O 
(58) 

1 2 

E_ = ( q1J2 + q-112)112 
8 , 

' . . 

and using Eq. (29), it is not hard to check that generators (58) satisfy the well-known 
relations of the quantum algebra Uq(su(l, 1)) in the Drinfeld-Jimbo form 

[N,E±] =±E± 

[E+,E-] = -[2N]..,1q = 
qN _ q-N 

ql/2 _ q-:-1/2 

There exists a matrix representation of 8 and of (g, g)-differentiation 8, in• which 

(E+)t = E_ and Nt = N (or ot = 8). This representation is related to' the slightly 

changed basis for the algebra fp(l) 

8,. -+ i4>•([k]..,1q!t1
/

291e , 

where 4>,. are arbitrary real phases. For each p we obtain different (p+ 1 )-dimensional 
representations for the algebra U

9
(su(l, 1)) when q is a root of unity. It would be 

interesting to compare these "parafermionic representations" of quantum algebras 
with other known representations of the similar kind (see, e.g. [2]). -

One might suppose that larger q-deformed algebras could be constructed by 
virtue of PGA with many O's and 8's (see e.g. Ref. (18] in view of the existence 
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of the PGA (54)). Anyway, for further applications one has to develop a detailed 
theory of PGA with many variables. In particular, it would allow for a systematic 
formal treatment of parasupersymmetries. 

As a final remark, we would like to mention a possible relation of PGA to the 
finite-dimensional quantum models introduced by H.Weyl in his famous book [19] 
and further studied by J.Schwinger (Ref.(20]). They considered quantum variables 
described by unitary finite matrices U; satisfying the relations: U;U; = qU;U; and 
(U;)P+l = 1. (Obviously, q must be a root of unity). They realized that the p == 1 
case is relevant for describing the spin variables and treated the infinite-dimensional 
limit p-+ oo as a·limit in which usual commutative geometry is restored: 
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· <1>11n11imos A.T., Vlcaes A.O., KypAl1KOB A.6. E2-92-17l' 
OaparpaCCMaHHOB aHai111J 11 KBaHTOBble rpynnbl 

. . . 

C anre6pa114ecKoi;; 104~11 3pett11si 6eJ • 11cno11bJ0BaH11A aHJaua fp11Ha 
paccMa1p11satoTCA naparpaccMaHHOBbl anre6pb1 c OAHOH 11 MHornMi1 naparpac-

. CMaHHOBblMl1 nepeMeHHblMl1. nyreM ecrecrneHHoro 06061J.1eH11A rpaccMaHHO· 
ro A11~cpepeHU11~JlbHOro 11CLfl1CJJeHl1A AO naparpaccMaHHoro. BBOAl1TCA A11QJ­
cpepeHu11posaH11e no naparpaccMaHHoBoo nepeMeHHOH, a TaK>Ke BBOA11TCA 
KOBap11aHTHaA napacynepC11MM4:lTPl14Ha!I npOl13BOAHaA. YCTaHaBJ111BalOTCR rny-
60K11e CBA311 Me>t<Ay naparpaccMa~~OBblM.11 a11re6paM11 11 KBaHTOBblMl1 rpyn-; 
naMl1 C napaMeTpaMl1 Aecf:iopMau1111, ABJ1AIOIJ.l11Ml1CA KOpHAMl1 113 eA11H11Ubl. 

I • 

Pa6oTa BblflOJJH~Ha B na6opa1op1111. TeopernLfeCKOH lpl1311Kl1 OVlAVl. 

Ilpenp11m Ofu.e.IlHHeirnoro 11Hcrnryra 1111epHbIX nccJ1e;ioaaH11it. L{y6tta 1992 · 

Filippov A.T;, lsaev A.P., .Kurdikov A.B. 
Paragrassmann Analysis and Ouaritum Groups 

· E2-92-171 

Paragrassmann algebras with one· and many paragrassmann variables are 
considered. from the algebraic point of view without using the Green ansatz. 
A di.ffere·ntial operator with resp~ct to paragrassmann variable and a covariant\ 
para-super-derivative are introduced giving a natural generalization of the · 
Grassmann calculus to a paragrassmann one. Deep. relations between para­
grassmann ; algebras an_d quantum groups with deformation parameters being 
root of unity are established. 

The investigation has been performed at-the Laboratory of Theoretical· 
Physics, JINR. 
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