


"‘genera.lrzatron of the Grassmann analysxs [6] that proved to be so successful in de-‘
+scribing supersymmetry. .+ | ‘ -
L Recently, some apphcatrons of PGA have been dlscussed in. llterature In Ref [7], .

a’parasupersymmetric generalization of quantum mechamcs had been proposed. . -

Ref.[8] has attempted at a more systematic conslderatlon of the algebraic aspects of o
"PGA based on the Green ansatz [4] and mtroduced in that frame, a sort of para- o
- ‘grassmann generahzatron of the conformal algebra Apphcatxons to the relatlvxstxc i

‘theory of the ﬁrst quantized spinning partrcles have been drscussed m Ref [9] Fur-_ S

e

- ~1 Introduction - ', et Sl
_Paragrassmann algebras (PGA) are mterestmg for several reasons “Fi 1rst they are:.
" relevant to conformal field theories [1],[2]). Second, studles of the topologxcal field

theories show the necessity of unusual statistics [3] and in partlcular, of the Green-

'Volkov parastatistics which was earlier dlscussed ma.mly in the context of the stan-
dard field theory [4]. There are also some hints (e.g., Ref. [5]) that PGA havea

connectlon to quantum groups. Fmally, it looks aesthetically appeahng to find a

ther references can be found in (2],[5], (7108]. By

The aim of this paper is to construct a consistent generallzatlonof the Grassmann
algebra (GA) to a paragrassmann one preservmg, as much as posslble, those features |
- of GA that were useful in physics appllcatlons ‘The crucial point of our approac.h is -
: deﬁnmg a generalized derivative in paragrassmann variables. This i is shown to relate:

" PGA/,in a natural way, to q-deformed algebras and quantum groups with g bemg a’
:'root ‘of unity. In'this paper, we mainly concentrate on the algebraic aspects leaving
" the applications to future publications. It should be stressed that we do not use the -
Green ansatz although natural matrrx realrzatlons of the algebralc constructlons arer
ngen S : ] Lo - : o
Section 2 treats the algebra generated by one paragrassma.nn varrable 6’ 6”’“ = 0 i
and automorphisms of this algebra. In Section 3,"a notion’ of generahzed differen- .\
~tiation is introduced and discussed. It uses specral automorphxsms preserving the ./ o
" natural grading and naturally introduces into action the foots of unity, g (¢°*1 = 1)

The generahzed drﬂ'erentratron coincides with the Grassmann oneforp=1,and with
the standard differentiation when p — oo. For mtermedrate cases 1 <'p < oo, the

-structure of the algebra depends on the arithmetic nature of its order p+ 1. This ~.0 - \
is bneﬂy discussed in Section 4 where the simplest’ "PGA with many varrables 8;
are defined (PGA with N variables will be denoted as T,(N)). They. satrsfy the
nilpotency condition P43 = 0. where 6 is any linear combination of 6;, and appear. o
-] to be naturally related to the non-commutatwe spaces satxsfymg the commutatlon RO o
relations 8;8; = ¢0;6;', i < j. These and other’ relations presented in this paper DRy
demonstrate a deep connection between PGA and qua.ntum groups with deforma- .- i
' |tion parameters q bemg roots of umty Two of the most obvxous are presented in o
theSectlons4and5 L AT ST : -

o
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2 Paragrassmann Algebra with One Variable

We start by defining the paragrassniann algebra I',(1) (or simply I"),‘generated by :

one nilpotent variable § (67+! = 0, p'is some positive integer). Any element of the

‘ algebra, @ € T, is a polynomial in 6 of the degree p,

’a=ao+a10+...+ap6’,‘ . (1)

where a; are real or complex numbers or, more generally, elements of some com-

mutative ring (say, a ring of complex functions) [10]. It is useful to have a matrix

rea.hzatlon of this algebra One may regard a; as coordinates of the vector a in the
., 67). Defining the operator of multiplication by 6,

N

6(a) = aof + ... + apa”, : (2)

“we see that it can be represented by the tnangular (p+1) x (p + 1)-matrix acting
on the coordinates of the vector a:

(0)mn = Om,n41 (0k)mn =~ Omn+k » (3)

m,n=0,1,... ,p. We may now treat elements of the algebra as matrices. In view

of Eq.(3), any'element a €T can be represented by the matrix

fm>n, '
ifm<n. (4)

(@) = { Gm-n

This matrix representation of the algebra is obviously an isomorphism.

A very important construction related to the algebra T is its group of auto- -

morphisms consisting of the hnear maps a — g(a) that preserve the multlphcatlon ?

Omrttmg the obvious summation symbols we have

§.a=8.ar 0% =ag- &6 = ag - ke 051,
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ie.,
L glaa +Bb) =ag(a) + Bg(b), - - - ()
a © g(ab) = g(@)g(b), )
. ‘where a, J are numbers. It is clear that any automorphlsm is defined by p param-
e eters 1, ,m=0...p—1:
g(8) = E Ym6™, ' (7).
. m=0 .
S or, in the infinitesimal form . e
. - ‘ ‘ A
50 =" enb™t1. o - (8)
m=0 :



bear = €m(G™)uay,

whereof the matrix elements of the Lie algebra generators G™ are
(C™ =164 tyn 9)
and the commutation relations of them are

[6™,6" = (n - m)G™+~, : (10)

mtn __ H S ; :
where G =0,if m+n > p. Being the generators of the automorphism group,

_ G™ define differentiations of the algebra T', the classical ones satisfying the Leibniz

rule. However, it is impossible to treat any of them as a differentiation with respect
to 6. In fact,

Gr(or) = | M in+m <y,
10 if n+m>p,

but we would rather expect a differentiation 8 =0/06 to act as -
1)=0,8(0)=1, 8(6") x 6™, n>1, © (1)

It is easy to see that the condition 3(9) =1 togethi;r with the sta.hda.rd Leibniz rule,
.c'i(ab),:-'- 9(a)-b+a-8(b), completely define the action of 9 on any a € T, but this
immediately leads to a contradiction :

0 = §(67*') = (via Leibniz rule) = (p+1)47

This is a manifestgtion of the general fact about nilpotent algebras known even
for thfa Grassmann case! once the normalization conditions of the type (11) are
established, the Leibniz rule is to be deformed.’ i

3 Generalized Differentiation

Tc; i;ltroduce a useful definition of & we suggest a generalized Leibniz rule (g-Leibniz
rule ' : ' : y

9(ad) = d(a) - b+ g(a) - B(b) , ‘ (12)
where g 'is some automorphism of the algebra T',. For the Graéglﬁann case (p =
1) we have g(a) = (=1)*a where (a) is the Grassmann parity of the element q.

The au.tonTorphism g and, hence, the derivative 8 are completely fixed by the
normalization conditions 8(6) = 1 and 9(6%) o< 8. These, by (12) and (7), give

7m?0form>0,

8(1) =0, 8(0") = (1470 + ...+ 75*)o"!
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and frénﬁ a(6r+1) =0 we get

' 1— +1 -’
1+’Yo+---+‘7‘35—1‘"_-1§0—=0 - (13)

so that v is fixed to be a root of unity. For the moment, we choose v to be the

prime root i.e.: ; o .
Yo=gq= ezﬁ/(p+1) ___7(_1)2/(p+1). . (14)

By introducing the notation

- “1=gq™ s
(n)qu+q+,.-+q"}T=‘1—_‘%, R : (15)

the action of & can be performed as

8(6") = (n)0", (16)
and so the matrix elements of 8 in the basis {#"},m=0,...,p are '
e (a)mn = (m + 1)96m+1,n . (17)

Since (p+ 1), = 0, the op‘eratorla is nilpotent, 87! = 0. It is not hard to see that

8 and 6 satisfy the g-deformed cdmmutatiqn relation

siE o

18,0), = 96— g0 = 1. | )

_The Grassmann case for p = 1 and the classical one in the limit p — oo are
ev‘ideynt‘IyH reproduped. The last equation is suggestive of a relation between PGA
and much discussed g-deformed oscillators a.)nd'q{l-a.ntum groups (see, e.g. Refs.[12]
— [14], [17], [18]) with the deformation parameter g being a root of unity. We will
return to this point at the end of the paper. _ T h

‘Consider now the algebra II,(1) (or, simply IT) generated by both 6 and 8. Since
Eq.(18) makes it possible to push all 8’s to the right of §’s, the complete basis of
H might be given by (p + 1)> monomials {#™8"}, m,n = 0,...,p. (Their linear
independence is quite evident in the matrix representation). Thus II is isomorphic,
as an associative algebra, to. the general matrix algebra of the order p + 1 with

natural "along-diagonal” grading v
deg(0™")=m —n . (19)

Note that this grading makes it possible to rewrite the g-Leibniz rule (12) in a
complete visual correspondence to the Grassmann case’ ‘

8(ab) = (Ba)b + (~1)77%9 %4(5b) (20)



L]
(one can interpret the quantity (a) = p—i-ideg a as the paragrassmann parity of the
element a) IR

N.ote also that since the automorphisms of T' can be represented by (p + 1)-
matrices, they must have an expression in terms of § and 8. In particular, the
operator g from Eq.(12) is expressed as

9=080-68=1+(g=1)d8. @)

Tts matrix elements are o |
, (9)mn = ¢"6mn (22)
In the mathematical literature (see, e.g. Ref.[11]), our generalized differentiation

(12) is called’ g-diﬁ'erentia.ﬁgqf Mathematicians also consider a further generaliza-
tion, called (g, g)-differentiation which satisfies the rule

RN

R

Bab)=8(e)-3(0)+g(a)-08). ()

Thi.s ‘ggneralization of the Leibniz rule is related to a special representation of the
algebra I' by 2 x 2-matrices with elements in T P -

0 g(a)

If g and g are algebraic hkomomm:phis‘ms, 1e,sia.tlsfymg Eq. ’(6), then Eq. (‘23\)'is

aH‘(g(a) a(a))é/’M(a),. ) .('24.)

equivalent to the homomorphism condition
| M(ab) = M(a)M(b).

_All this is obviously é.pplii’:‘ablé"t»ov‘t‘}ylje g"—_I‘,eibxkliz rule and to the standard one as well.

7 For physical applications, it :"s’e)cn"i‘s more reasonable to use for g and § some auto-
;morpllxig;qs rather than just homomorphisms.  Although we think that Eq.(12) 160ks
more natural than Eq.(23), the latter can be used to define “real” differentiation, i.e.
.the one with real matrix elements. In ’fa;ct, choosing for g and g the aﬁtbmbrp}i’iSms,

defined by, "

B 9(6) = ¢'%8', 5(6) = ¢/, C(28)
-we find that o L o
: o L O(0") = [n] G877 L (28)
with the popular notation . e
» nf2 _ _~nf2 .. .
_9q q i (1-n '
[n]ﬁ = m = q(l )/z(n)q . (27)

BN

This is obviously a real number. fThcoperé.to;s g and 57 have the niafrix elements
(g)mn = qm/26mn ’ (g)mn = q—"tlzamn l} (28)

6

and the following expression in terms of § and &
g=080—q"%8, §5=200-4%00. (29)

The first equation in (29) is an analog of Eq. (21) while the second one may be
considered as an analog of (18). - One can easily recognize in formulas (29) the
definition of the quantum oscillator (see, e.g. [12], [L7], [18]). We will exploit this
variant of differentiation in the last Section of this paper. '

In addition to the g-differentiation, one can also construct an inverse operation,
or g-integration, (8)~! = f;. To do that, one has to “regularize” 6 and 9 by intro-
ducing a formal parameter dependence to 8 and (n), , e.g., 8 = 8§ + € , g, = g'**.
Then, the following simple definition SR : -

N " B 9:.+1

\;/99:‘=—_—(n+1)q,’

makes sense and one can check that

o

in the limit € — 0. This definition satisfies the g-modified partial integration rule
SR /O(Ba)b= ab— Ly(a)@b .

In the limit p — oo this definition reproduces the usual indefinite integral. Our
definition of the f-integration has no relation to the standard Grassmann integra-
tion. A.possible definition of the integration over 8 that generalizes the Grassmann..
integration to the paragrassmann one has earlier been addressed in Ref.[15].

.- Up to now, we have been discussing the paragrassmann algebra and its satellites
with coefficients being complex (or real) numbers. In some applications (e.g., in
constructing parasupersymmetries) one has.to deal with a, (Eq.(1)) being taken
from a wider commutative ring, for instance, the ring of the differentiable functions
of a real or complex variable ¢ i.e., a, = a,(t). For such an algebra, it is possible to
define a sort of “covariant derivative” '

D=8, +,——(p1) 670, , (30)
X

where 8, E 8 énd the sté.nda.rd nkota.tion is used
(Pt =@)(p~1)g---(1)g. (31)

This derivative obviously satisfies the g-Leibniz rule (12) and may be considered as
a root of 8; since

DPtla(t:6) = H,a(t;8) . ’ (32)

7
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Unlike 8, the derivative D possesses ei‘ge'nfurictions,: the q—exponentials

e‘l(t 0)_6"_0( )'1

De (/\”“t ,\0) = /\eq(,\”“t /\0)
In the hmlt p — oo we have eq(t 9) — exp(t + 0)

4 Many Paragrassmann Varlables

Our dxscussron of the pa.ra.grassmann algebra.s r (1) and II (1) was completely gen-'i’

eral and did not rely on special matrix representations for 6 and 9. In fact, different
representations could be classified if we relaxed our ‘assumption for q to be the prime
root of unity, ¢, = exp(2ni/{p + 1)). Then, one would find that the structure of the

algebra II,(1) depended on the arithmetic properties of (p + 1). The simplest case. -

is when (p + 1) is a prime integer. Then, the multlphcatlve group of roots of unity,
- Z,41, has no subgroups; any root generates the whole group and may be used for
defining 8. If p + 1 is a composite number having divisors p;, the group of roots

contains subgroups, Zp,, generated by the roots ¢; = exp(2m /p:). Correspondingly,:
the algebra I,(1) has the subalgebras generated by 67’ ha.vmg the following prop-

erty: if we define 8, with g in Eq.(16) replaced by ¢:, we will find that 8 = 0 over all
suba.lgebra. generated by 67. It follows that we can choose ¢ only of the pmmztwe
roots, i.e., those that generate the entire group Zp4; not -just a subgroup.

“In summary, when (p + 1) is.a prime number, any root'is primitive (except
unity) and, hence, there are p.possibilities to define 8." For a composite (p'+ 1),

the number of possible differentiations is'equal to #(p + 1) which is the number of-

positive integers smaller than (p + 1) and’ relatxvely prime to it?Such an amblgmty

becomes’ crucial when we turn to the many-0 case ‘giving rise.to the existence of'a”
series of nonequivalent paragrassmann a.lgebras I‘,,(N ) Needless to sa.y, lt is a pure“

p >1 effect.-

Leaving these subtleties to some further paper we present here just the slmplestf

inductive construction of I',(N). Starting with N =2, define

. where 6 and g have been defined in prevxous sectlon It is easy. to see that

6,0, = qbs6; , 671 0. T (3g)

The crucial fact is that the definition’ (33) a.llows for mlpotency of any linear com-

bination of 8, and ;. In fact, as one can easily derive by induction, -

n

(@161 + a202)" = E(Z) alaz'l‘a""‘ﬂf , (35)
q

k=0

8'.

-

:—L;;‘f"‘ N S P T

———

S

I at

where

n ("')q :
e (36)
( ) *(k)g!(m — k) '

are g-deformed binomial coefficients, the polynomials in ¢ (a.k.a.. Gauss polynomi-

als). Remembering now the definitions (31) and (15), we immediately prove that
(a10, + azgz)P+l =0 s (37)
as long as q is a primitive root of unity. . R ' '
Suppose now that we have constructed the algebra I,(N) satisfying the relatlons

9;05:(]0,‘0;,4 <‘],1,_‘)_‘= 1...N, E (38)

(Eae)p+ —0 o _ | (39)

Then, N + 1 matrices 9; satxsfymg (38) and (39) can be constructed in analogy to
(33)

o 19-g®0,,z—1 N19N+1—-0®1 , (40)
The proof of the identity (39) is performed in full analogy with the N = 2 case.
Thus, the induction ensures the existence of the algebras I'y( V) satisfying the con-
ditiohs (38) for all N.” As has been noted above, it is a simplest construction of
the paragrassmann algebra with. ‘many generators The complete classification of all
admissible forms of I‘P(N ) is an interesting but a separate problem,

It is rather amusing that the consideration of paragrassmann algebras naturally
leads to the objects introduced in the context of quantum groups. In fact, the gener-
ators of the algebra I‘,,(N ), determined by the relations of type (38) and (39), might
be considered ‘as coordinates of a certain nilpotent quantum hyperplane similar to
those of Refs.[13], [14]. Such an object and, especially, its:9-extensions (defined by
its-automorphisms) look rather interesting both from’algebraic and from quantum-
geometric [16] pomts of view. Here, we _]llSt bneﬂy outlme ptoblems arising in this
area o BN e - ¥ v . Ve v . )

+Let us consider an algebra I‘,,(N ) thh the commutatxon relatlons

gg __quoﬂ,,z]—l N l S “(41‘)

where ¢ denotes the prime root of umty The requxrement for g° to be a primitive
root is equivalent to the requirement for p;; to .be invertible elements of the ring. -
Z,;1. Then, let us define differentiations 9; satisfying the normalization conditions,
and the g-Leibniz rulef” N ; T
Bi(ab) = 8;(a) - b+ gi(a) - Bi(B) e (43)

s



where the action of the automorphisms g; on 6 is

G(0) = g0 . (44)

These conditions determine the commutation relations in the operator form |
8;0;, = 8; + g¥*6:0; . (45)
ft can easily be shown that }
: ’ : 3.'35 = q""ia,-a.- , ’ (46)

and for; k
L] # ’ 3.'9k — quu, oka'.
Vik = pri = —Pik » (47)

\n;hile the dia.gona.l v;; remains not spéciﬁed. There were no problems so 1-'a.r. Bu.t
adding the requirement that any linear combination of &; must also be a differenti-
ation sé.tisfying (43) with certain g immediately gives

ECEOREONS @

and, therefore, . -
’ Vik = Vjk .« " o ;(49)

Thé conditions (47) and (49) are in general h_'iufd to be sa.ti"sﬁqd together. For N =2

the solution exists

Vi1 = Vg1 = —13 = —Vg; = (some invertible element of Zp+1‘) . (50)

Bukt for N > 2 the‘ equation (38) ensures the existence of the algebra (41) with
all p;; = 1 for i < j, which is evidently inconsistent with (49). Unless p = 1, of

course. This demonstrates the necessity. of a more detailed consideration of the:

algebra I',(N) and its automorphisms. .. :

It is possible to construct another interesting extension of T',(N) (where pis even-

number) with generators §; and &; if we even further relax the g-Leibniz rule (43)
to the form familiar from the theory of quantum groups (16]

6(ab) = 3i(a) b+ (@) - 8,0)

This makes it possible to construct operators 8; by the inductive procedure‘ similar
to (40) v

8;,=g®8;, it=1...N, én+x=3®1, . (51)
where we have also slightly modified the definition of 8 and 9. i
8 —q*08=1, . (52)

10

69—06:5]2 . (53)

From these equations and from definitions of §; and' &; (i = 1,..., N) we obtain the
following algebra ‘ : TS

0.0; = q¢0;6: i<j,
308, = ¢7'8;8 i<j,
88 = q8;8 i#j, - e
86~ @08 =1+("-1)3 6. . . (54)
: k}j ‘ o S
These are the well known formulas for differential calculus on the quantum,hj{ﬁ&-
plane [16]. These formulas may also be interpreted as the definition of the covariant
g-oscillators [18] or, else, as the central extension of the quantum symplectic‘,spé_.ce
relations for the quantum group S5pe(2N) (see L.D.Faddeev.a.0. [13]). Note. that
nilpotency of the linear combinations a;6; and 4;8; as well as nondegeneracy of,3(5?)
are guaranteed since both g and q* are primitive roots of unity (for p even integer
only). - .
This example demonstrates a dramatic relation between paragrassmann algebras
and quantum groups. Another example will be presented in the next section.

5 Discussion

In this paper, we have introduced the basic ideas of a rather general approach to
constructing paragrassmann algebras with differentiations. One may ask a question:
what are the relations an algebra must satisfy to be called paragrassmann? In fact,

“one of them is clear — it is the p-nilpotency of any linear combination of generators

6; (i =1...N) or, equivalently;" ‘

Y Boti)otin) - boiiy =0, (55)

o€Sp41

where the sum is taken over all permutations of the indices. It is clear that the
algebra with the only identity (55) would be very hard to handle. So, ‘one must

. & oy e - . . )
-1mpose some additional restrictions. A variant of those, known as the Green ansatz

(see Ref.[4]), consists in taking ea.ch(pa.ra.gra.ssma.nn generator ; to be asum of p
mutually commuting Grassmann numbers. In addition to Eq.(55), this gives the
condition Y
N . - [[01'“0"2])0":] =0 : e ~(56)
Such an algebra admits a sort of analysis (see [4]) which unfortunately quickly
becomes messy as p increases. L . LT
As has been shown above, using the. conditions (41) instead‘of.(56') (with cer-
tain restrictions on-p;; coming from (55)) gives a much simpler algebra’ possessing - -
1



matrix representation, differentiations and, as we might suspeqt, many other us_cfu;
properties analogous to its Grassmann ancestor. Thes'e are the algebras we shoul
call ‘pa.ra.grassmann. One can easily check that conditions (41) and (56) are not
particular cases of each other, and so the algebras I';(N) of the present paper are
different from those of Ref.[4]. e

The most curious is the connection between paragrassmann and q—deformefl alge-
bras. In fact, our interest to paragrassmann algebras was initiated by. searching for
the parafermionic extensions of the Virasoro algebra (w}u.ch we are going to present
in the next paper). So, coming into play of roots of unity, q-oscxlla.tors, etc. was
somewhat surprising. To make this connection more apparent, we give here a rep-
resentation of the g-deformed algebra U,(su(1,1)) in terms of .the paragrassmann
variable 6 and (g, §)-differentiation 8 (the analogous cons?ructlon for U,(su(1,1))
from g-deformed oscillator was considered in Ref.{17]). This can be done b);l rep}:e-
senting the homomorphisms g.and g from (23) as operators inverse to each other
(see Eq. (25)) ed am ey e

Then, defining the generators N, E; and E_
N=N+1/2,
SN S—— | (58
E, = (ql/Z + q—l/z)l/ze ! ( )
. X e

B = Qs

and using Eq. (29), it is not ilard to check that 'genérat‘o'rs (58) sa?tisfy the well-known
relations of the quantum algebra U;(su(1,1)) in the Drinfeld-Jimbo form

[N’ Ei:] = iEi
" gV

[E+,E—] = ’[2N]ﬁ = _ql/z - qfl/z ) .

There exists a matrix representation of ¢ and of (g, g)-differentiation 8, in’ ?vhich
(E+)t =E_and Nt =N (or ot = 8). This representation is related to the slightly
changed basis for the algebra I'(1) o o

gk — eu([k] 51 /76*

where ¢ are arbitrary real phases. Foreach p we obﬁt}a_xin diﬂv'er(\:nt (p+ 1)-d1mensllzx;)al
representations for the algebra U,(su(1, 1)) when g'is a .root”of unity. If. wc;u N e
interesting to compare these " parafermionic representat19ns of quantum algebras
with other known representations of the similar kind (see, e.g. [2]). i
One might suppose that larger g-deformed algebras ct:)uld. be construc?e y
virtue of PGA with many 8's and 8’s (see e.g. Ref. (18] in view of the existence

12

..of the PGA (54)). Anyway, for further applications one has to develop a detailed

theory of PGA with many variables. In particular, it would allow for a systematic
formal treatment of parasupersymmetries. ' . :

As a final remark, we would like to mention a possible relation of PGA to the
finite-dimensional quantum models introduced by H.Weyl in his famous book [19]
and further studied by J.Schwinger (Ref.[20]). They considered quantum variables
described by unitary finite matrices U; satisfying the relations: U;U; = qU;U; and
(Ui)P+! = 1. (Obviously, ¢ must be a root of unity). They realized that the p = 1
case is relevant for describing the spin variables'and treated the infinite-dimensional
limit p — oo as a limit in which usual commutative geometry is restored.
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. dununnos’ AT., McaeBA n., KypnMKOBA B. . Et2‘-92-:171°f B
: I'laparpaCCMaHHoe aHanu3 u KBaHTOBble rpynnbl B L T

L C anre6pamecxou rowxu 3peHml ‘Bea MCnOanOBaHMH aH3aua I’puHa
'paccmarpuearorcn naparpaccmaHHoebl anreGpsi ¢ oaHOM 1 MHOI’MMM naparpac- -

- CMaHHOBLIMY NepeMeHHbIMM. I'lyTeM ecrecraeHHoro 0606u1eva rpaccManHo- .

ro. AmbcbepeHuwaanoro Mcwcneuwn no naparpaccmaHHoro 88OANTCA : Andh- -

daepeHunpoeaHvre no naparpaccmaHHosou NEPeMEeHHOI, a Tarxe: BBOANTCA :
. KoBapwaHTHanA napacynepcnnuerpmnan nponaaonnan YcraHaBnuBarorcn ray- e

 BOKUe CBA3N MeXAY napal'paCCMaHHoBblMM anre6paMu " KBaHTOBbIMM rpyn-
- naMu c: napaMerpaMM necbopmauuu ABARIOWMMIACA KOpHHMVI wa EAMHMubI

Pa607a BbmonHeHa B J'Ia60paropvm Teoperwrecxou d)MBMKM OMFIM

| "»Frllppov AT, lsaev AP., KurdlkovA 8. O E282471 -
, Paragrassmann Analysns and Quantum Groups : R TR S

i

Paragrassmann algebras wnth one and many paragrassmann varlables are

f.':[_conSIdered from the algebralc pornt of vrew wrthout usmg the Green ansatz. B

A dlfferentlal operator wrth respect to paragrassmann varrable and a covarlant

;_'.para super-derlvatlve are lntroduced giving ‘a natural generahzatlon of the
- ;Grassmann calculus ‘to - a paragrassmann one. Deep relatlons between para-.

grassmann algebras and quantum groups wrth deformatlon parameters belng i

root of umty are estabhshed

The mvest\gatlon has been performed at the Laboratory of Theoretlcal

, _'Physxcs JINR.
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