СООБЩЕНИЯ Объединенного института ядерных исследований дубна

E2-92-16

V.A.Bednyakov, A.A.Osipov

STRANGENESS-CHANGING VECTOR CURRENTS IN τ-LEPTON DECAYS

1992

Бедняков В.А., Осипов А.А. Векторный ток с изменением странности в распадах т-лептонов

Рассмотрены запрещенные слабые Кабиббо-распады т-лептонов на каон и нестранный псевдоскалярный мезон в U(3)версии кварковой модели сверхпроводящего типа с учетом фА-смешивания. Вычислены полные и дифференциальные ширины четырех распадов т-лептонов указанного типа. Получено ожидаемое число таких распадов в год на с-т-фабрике. Отмечена роль фА-смешивания.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1992

Bednyakov V.A., Osipov A.A. Strangeness-Changing Vector Currents in τ -Lepton Decays

The Cabibbo suppressed τ -lepton decays into a kaon and a non-strange pseudoscalar meson have been investigated in the U(3)-version of the superconducting quark model with allowance for ϕ A-mixing. The total and differential widths of four τ -lepton decays were obtained. The number of these decays per year at the c- τ -factory was calculated.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

E2-92-16

E2-92-16

The high luminosity of planned Charm- τ factories [1] will open good opportunities for investigations of Cabibbo suppressed τ -lepton decays. It is worth mentioning that systematic investigation of τ -lepton decays into open strange final states has only begun [2]. Observation and exploration of these decays will yield information about the structure of the strangeness-changing part of the weak hadron current in a new kinematic region. Here we bring a short review of our calculations of four τ -decays induced only by the vector part of the weak hadron current. We consider semileptonic τ -decays into strange and non-strange pseudoscalar mesons:

- $\tau^- \rightarrow \nu_r + \bar{K^0} + \pi^- \tag{1}$
- $\tau^- \to \nu_r + K^- + \pi^0 \tag{2}$
- $\tau^- \to \nu_r + K^- + \eta \tag{3}$
 - $\tau^- \rightarrow \nu_\tau + K^- + \eta' \tag{4}$

In our calculations we used the phenomenological effective meson Lagrangian of the Superconductor Quark Model (QMST) [3], which stemmed from the well-known 4-fermion Nambu-Jona-Lasinio theory and uniformly describes interactions of scalar, pseudoscalar, vector and axial vector meson nonets at low energy.

In the τ -lepton rest frame the differential widths of the τ -decays can be calculated by a standard formula

$$d\Gamma(\tau \to \nu_{\tau} \phi^{-} \phi^{0}) = \frac{\delta^{4}(p_{\tau} - p_{\nu} - p_{0} - p_{-})}{(2\pi)^{5}} \frac{\frac{1}{2}\Sigma|T|^{2}}{2m_{\tau}} \prod_{i=1}^{3} \frac{dp_{i}^{3}}{2E_{i}}$$
(5)

where $i = (\nu, 0, -)$ corresponds to the neutrino, neutral and charged final state mesons respectively.

The amplitudes of all decays can be expressed in the form

$$T(\tau \to \nu 2\phi) = -\frac{G_F}{2} \sin \theta_c \bar{\nu}_\tau (1+\gamma_5) \gamma_\mu \tau \{f_+(q^2) p^\mu + f_-(q^2) q^\mu\}, \quad (6)$$

where $p = p_{-} - p_0$, $q = p_{-} + p_0$ and p_{-} , p_0 are the momenta of the charged and neutral final state mesons. Note that $m_0^2 = p_0^2$ and $m_{-}^2 = p_{-}^2$.

1	BUTCHAP . WILLIN KECTERYY	Á
	HEARBORST HEERBOBANNE	
ļ	ENSILIOTEHA	U

Figure 1: Diagrams contributing to τ -decays

For example, in the case of the $\tau \to \nu_{\tau} \bar{K^0} \pi^-$ reaction we have $p_- = p_{\pi^-}$, $p_0 = p_{\bar{K^0}}$. Two formfactors $f_+(q^2)$, $f_-(q^2)$ are determined by dynamics of strong interaction. We calculated them in QMST using two weak vertices depicted in Fig.1 (the filled dot in Fig.1b denotes a $V\sigma$ -transition).

The first lepton weak vertex (Fig.1a) generates an intermediate vector (V) strange $K^*(892)$ -meson with mass $m_{K^*} = 891.83 \pm 0.24$ MeV and width $\Gamma_{K^*} = 49.8 \pm 0.8$ MeV [4].

The other weak vertex (Fig.1b) appears in QMST due to $V\sigma$ -mixing and generates exchange with a scalar strange meson — $K_0^*(1340)$. The full weak Lagrangian is:

$$\mathcal{L}_{w} = G_{F} \sin \theta_{c} \frac{m_{K^{*}}^{2}}{g_{K^{*}}} \overline{\nu}_{\tau} \gamma_{\mu} (1 - \gamma_{5}) \tau \left[K_{\mu}^{*+} + i\kappa Z_{K_{0}}^{1/2} \partial_{\mu} K_{0}^{*+} \right] + h.c.$$
(7)

Here κ and $Z_{K_0^*}$ denote $V\sigma$ -mixing and scalar field renormalization parameters and for K_0^* -meson are equal to

$$\kappa = \sqrt{\frac{3}{2} \frac{(m_s - m_u)}{m_{K^*}^2}} = 0.27 \ GeV^{-1}$$

$$Z_{K_0^*} = \left(1 - \frac{3(m_s - m)^2}{2m_{K^*}^2}\right)^{-1} = 1.06$$
(8)

In calculations we used $g_{\rho} = 6.15$ and QMST-determined quark masses $m \equiv m_u = m_d = 280 \ MeV$ and $m_s = 450 \ MeV$.

So for formfactors we obtain expressions:

$$f_{+} = \frac{m_V^2}{q^2 - m_V^2} \frac{g(\phi^+ \phi^0) - g(\phi^0 \phi^+)}{g_V}$$
(9)

$$- = -\frac{m_{-}^2 - m_0^2}{m_V^2} f_+ - \frac{g(\phi^+ \phi^0) + g(\phi^0 \phi^+)}{g_V}$$
(10)
$$-2\kappa Z_{K_0^*}^{1/2} \frac{m_V^2}{q^2 - m_\sigma^2} \frac{g_s(\phi^0 \phi^+)}{g_V}$$

Here squared masses of intermediate mesons are complex values $m_V^2 = m_{K^*}^2 - im_{K^*}\Gamma_{K^*}$, $m_{\sigma}^2 = m_{K^*_0}^2 - im_{K^*_0}\Gamma_{K^*_0}$ and $m_{K^*}^2$, Γ_{K^*} , $m_{K^*_0}^2$, $\Gamma_{K^*_0}$ are experimentally determined values [4].

Hadron vertex constants $g(\phi^+\phi^0)$, $g(\phi^0\phi^+)$ and $g_s(\phi^0\phi^+)$ are determined in the model after removing ϕA -mixing and pseudoscalar field renormalization. The constants can be obtained from hadron Lagrangians:

$$\mathcal{L}_{K^{*-\phi^2}} = K_{\mu}^{*-} \left[g(K\phi)\phi\partial_{\mu}K + g(\phi K)K\partial_{\mu}\phi \right]$$
(11)

$$\mathcal{L}_{K_0^{*-}\phi^2} = K_0^{*-}g_s(K\phi)\phi K.$$
(12)

In two equations above we assume summation over ϕ where ϕ denotes a physical π^+ field for $K \equiv K^0$ and physical fields π^0 , η , η' for $K \equiv K^+$. Vertex constants are collected in <u>Table 1</u>. Here for pseudoscalar field renormalization constants Z with physical masses of appropriate axial-vector mesons $m_{a_1} = 1260 \ MeV$, $m_{K_1} = 1270 \ MeV$ and $m_{f_1} = 1425 \ MeV$ one obtains

$$Z_{\pi} = \left(1 - \frac{6m^2}{m_{a_1}^2}\right)^{-1} = 1.43$$
$$Z_K = \left(1 - \frac{3(m + m_{\star})^2}{2m_{K_1}^2}\right)^{-1} = 2.04$$
$$Z_{\eta'} = \left(1 - \frac{6m_{\star}^2}{m_{\star_1}^2}\right)^{-1} = 2.70$$

Other vertex constants are expressed through those given above:

$$g(K^{+}\pi^{0}) = g(K^{+}\eta) = \frac{1}{\sqrt{2}}g(K^{0}\pi^{+}),$$

$$g(\pi^{0}K^{+}) = g(\eta K^{+}) = \frac{1}{\sqrt{2}}g(\pi^{+}K^{0}),$$

$$g_{*}(K^{+}\pi^{0}) = g_{*}(K^{+}\eta) = \frac{1}{\sqrt{2}}g_{\sharp}(K^{0}\pi^{+}).$$
(13)

Hadrons	Κ+η'	$K^{0}\pi^{+}$	
g(K¢)	$ig_{ ho}\sqrt{\frac{Z_{\kappa}Z_{\eta^{i}}}{2}}\left[1-\frac{2m}{m+m},\left(\frac{Z_{\kappa}-1}{Z_{\kappa}}\right) ight]$	$-ig_{\rho}\sqrt{\frac{\mathbb{Z}_{K}\mathbb{Z}_{T}}{2}}\left[1-\frac{2m_{s}}{m+m_{s}}\left(\frac{\mathbb{Z}_{K}-1}{\mathbb{Z}_{K}}\right)\right]$	
g(φ K)	$-ig_{\rho}\sqrt{\frac{Z_{\kappa}Z_{\eta'}}{2}}\left[1-\frac{3m_{\bullet}-m}{2m_{\bullet}}\left(\frac{Z_{\eta'}-1}{Z_{\eta'}}\right)\right]$	$ig_{ ho}\sqrt{rac{Z_KZ_T}{2}} \Big[1-rac{3m-m_s}{2m}(rac{Z_T-1}{Z_T})\Big]$	
g.(K¢)	$g_{\rho}2m\sqrt{\frac{Z_{K_{0}^{*}}}{3}}$	$g_{\rho}2m_{\bullet}\sqrt{\frac{Z_{\kappa_{\bullet}}}{3}}$	

With above formulae we calculated the total $\Gamma(\tau \to \nu \phi^- \phi^0)$ and differential width $d\Gamma/dq^2$ of decays (1)-(4). We used an SU(3) relation $g_{k^*} = g_{\rho}$. The relation yields good value for $Br(\tau \to \nu K^*)$.

The total widths (in GeV), $\Gamma(\tau)$, branching ratios, Br, contributions from f_+ -proportional term, $\Gamma(f_+)$, and f_- -proportional term, $\Gamma(f_-)$, contributions from K^* , $\Gamma(K^*)$, and K_0^* , $\Gamma(K_0^*)$, intermediate states and the expected number of useful events, N, per year for all decays in question are collected in <u>Table 2</u>. We used the input value of planned 10⁷ τ -pairs per year and the total τ -decay width equal to $0.2 \cdot 10^{-11}$ GeV [4]. The first two decays with "light" final state (1),(2) have a distinct resonance structure at q^2 in the vicinity of the K^* mass. This region yields general contribution to the total decay width. Accurate q^2 -scanning of the resonance shape would bring a good chance for precise extraction of the mass and width of the intermediate strange vector meson. It is not a priori obvious that these parameters will coincide with the K^* mass and width extracted from pure hadronic reactions. The vector strange meson K^* dominates due to a big contribution to the formfactor f_+ . In τ -decays the weak formfactor can be studied in another kinematic region which

4

Figure 2: Differential width of decay $\tau^- \rightarrow \nu_\tau \bar{K^0} \pi^-$

differs from the low q^2 -region of the K_{l3} -decay. The scalar strange meson K_0^* contributes only to formfactor f_{-} .

Due to a big τ -lepton mass the f_{-} -formfactor contribution is sufficiently large as compared with that from K_{l3} -decay. In all kinematic domains the f_{+} -contribution disguises a near-three-time lower contribution from the formfactor f_{-} . But their destructive interference seems to bring good opportunities for experimental extraction of q^2 -dependence of f_{-} for large momentum transferred. In accordance with the Ademollo-Gatto theorem [6], the ϕA -mixing practically doesn't contribute to form-factor f_{+} . Unfortunately, their contribution to f_{-} is not big enough to be noticeable in the decay width.

For example, differential widths $d\Gamma/dq^2$ of decay (1), contributions from f_+ - and f_- -proportional terms are depicted in Fig.2.

Those "heavy" τ -decays into η and $\eta'(3),(4)$ do not have a distinct resonance structure due to a sufficiently great invariant mass of the final state, therefore the total widths are considerably smaller. But here the role of the intermediate scalar K_0^* -meson and the f_- -proportional term becomes visible and important. Here we neglect $\eta - \eta'$ mixing.

5

Figure 3: Differential width of decay $\tau^- \rightarrow \nu_{\tau} K^- \eta$

The most interesting case is the decay $\tau^- \rightarrow \nu_{\tau} K^- \eta$.

There is no significant ϕA -transition contribution to f_+ , but the decay formfactor f_- is determined practically totally by the ϕA -transition and the f_- -contribution becomes equal to f_+ -ones (see Fig.3 and Table 2). As a result, due to the ϕA -transition, the total width is doubled.

As the detailed analysis shows, ϕA -mixing and K_0^* -meson destructively interfere, changing however f_- . q^2 -dependence and the total differential width too (see Fig.3). Study the decay shape one might chance to obtain ϕA -mixing manifestations. Another way for that is to study the ordinary Dalitz-plot. The manifestations of ϕA -mixing are clearly seen from comparison of two plots in Fig.4.

The Cabibbo suppressed τ -lepton decays into a non-strange pseudoscalar meson and a kaon were investigated. Our calculations ware performed in the superconducting quark model on the basis of U(3)-violated effective Lagrangian from [3]. Two-particle vertices (A ϕ and $V\sigma$) in the Lagrangian were eliminated, which resulted in a new effective hadron Lagrangians (11),(12).

We used a tree-level approximation and, only for simplicity, U(3) protected relation $g_{K^*} = g_{\rho}$. This value for g_{K^*} doesn't contradict the experiment and can be made more precise due to extraction from the data if it is necessary.

Figure 4: The role of ϕA -mixing in decay $\tau^- \rightarrow \nu_{\tau} K^- \eta$

We suppose that taking into account U(3) violation in determination of the g_{K*} and consideration of loop contributions in our exploration of decays in question as well as a very important problem of background processes acquire real significance only in seting up a new special experiment or in processing data obtained.

The most interesting results are depicted in figures 2-4 and table 2. The open question is the role of axial-pseudoscalar and vector-scalar mixing in extension of the QMST to U(3) violated case. Experimental verification of these results is very important.

It is shown that the planned number of τ -interactions at the Charm- τ factory is practically enough for detailed investigation of all above mentioned decays without probably the $\tau^- \rightarrow \nu_{\tau} K^- \eta'$ - one.

Up to now the structure of the strange component of the hadron weak vector current has been studied in detail only in ordinary K-meson decays. Due to smallness of the final state lepton mass only f_+ -formfactor can be reliably determined. For τ -decays this limitation is lifted and one can try to investigate the f_- formfactor too.

6

	$ au^- ightarrow u_ au ar{K^0} \pi^-$	$ au^- o u_ au K^- \pi^0$	$\tau^- ightarrow u_{\tau} K^- \eta$	$ au^- ightarrow u_{ au} K^- \eta'$
$\Gamma(f_+)$	2.013 ·10 ⁻¹⁴	1.044 ·10 ¹⁴	0.669 ·10 ⁻¹⁶	0.240 ·10 ⁻¹⁷
Γ(f_)	0.566 .10 ⁻¹⁴	0.284 ·10 ⁻¹⁴	0.700 .10-16	$2.222 \cdot 10^{-17}$
Γ(<i>K</i> *)	1.437 ·10 ⁻¹⁴	0.740 ·10 ⁻¹⁴	1.270 · 10 ⁻¹⁶	0.248 ·10 ⁻¹⁷
$\Gamma(K_0^*)$	0.012 ·10 ⁻¹⁴	0.006 ·10 ⁻¹⁴	0.363 ·10 ⁻¹⁶	2.127 ·10 ⁻¹⁷
Γ(τ)	1.442 .10 ⁻¹⁴	0.756 ·10 ⁻¹⁴	1.286 · 10 ⁻¹⁶	0.635 ·10 ⁻¹⁷
Br	7.2 ·10 ⁻³	3.8 · 10 ⁻³	0.6 • 10-4	0.3 ·10 ⁻⁵
N	7200	3800	600	30

Table 2: Calculated widths (in GeV)

References

[1] J.Kirkby, CERN-EP/87-210 (1987) Cr-factory proposals

[2] Goldberg M. et al., Phys.Lett.B 251 (1990) p.223-228

[3] M.K.Volkov, Annals of Physics v.157 (1984) p.282

[4] Particle Data Group, Phys.Lett.B239 (1990) p.1

[5] D.Ebert, H.Reinhardt, Nucl. Phys. B271 (1986) p.188

[6] M.Ademollo, R.Gatto, Phys.Rev.Lett. 13 (1964) p.264

Received by Publishing Department on January 15, 1992.