


"1 Introduction

Ly
<

" Modern elementary particle physics iskblﬁed on. gauge«theories [2]. Equations of motion

s

of these theories are invariant with respect to gauge transformations’.containing arbitrary

functtrotns of coordinates and: time. meg to the principle of the gauge invariance, all physical -
1 quar(ri 1ﬁres (observables) must be gauge-invariant [3]. For instance, electromagnetic potentials-
are defined up to the gradrent of an‘arbitrary function, but electromagnetlc field strengths -

being observable ate ‘gauge-invariant. In'a quantum gauge theory, all pllysrcal dynanncal

" variables (operators) must also be gauge-invariant [3]. '
A charged field /(=) in electrodynamics cannot play the role ofa physrcal varxablc bceause

“it changes its phase under gauge transformatrons, : Gl st

!,b(z) — exp zew(z)) P )

[l] to use the gauge-mvarxant field .

,'» R '\Il._exp(—zeA"BA))'»b_exp(zc\)ll - | (1-3)

‘as a physrcal dynamlcal variable descrrbmg clrarged partxcles Ilere Al = l,..,& is the

\I/ectofggotentlal A 53°A;+ 0w under’ gauge transformations; A means the Laplace operatlor.
n QED the field ¥ describes creation and annihilation of charges together with their proper

electric field (the Coulomb one) being non-dynamical [1]. This proper field grves rise to the

. statlc interaction of charges that obeys the Coulomb law: - i b
Generallzlng Dirac’s idea one ‘could expect that determination of all gauge-lnvarlant op-

erators is a key for ﬁndmg a proper field of charges in any gauge theory and, hence, the la[tv‘

: ofa statrc mteractron of the charges, which is 1mportant for understandlng the conﬁnement -

: mechamsm in non-Abelian gauge theories.

“In the’ present paper we verify this idea with an example of electrodynamlcs We ﬁnd

out that except the choice (l 2) there exists an infinite number of ways to determine gauge- ‘

; 1nvar1ant variables in electrodynamics. (the choice of x in (1. 2) is not the conly. one)g( 'Ighc 4
proper field ‘of charges strongly :depends on the way: of separatmg physical variables. For: -

: example, it may be localized on a contour or on a surface [4],[5]. The electromagnetic ener, i
3 of‘,t‘wo opposite_charges surrounded. by the proper field of that l{iknd does not coincide\yi%ll S
";the" Coulomb one.". For the previous examples, it is proportional to the distance betv\ween- :

- them or to the logarithm of the distance, respectively [4],5). So, the natural question arises:

; what is & connection between gauge-invariant variables and the static interaction of charges7

.- A’subsequent analysis of the dynamics shows that all ‘the_ proper fields turn out unsta-

ble except the Coulomb one. . Their-decay is accompamed by radiation of clectromagnctlc
-waves outgomg to spatial infinity and creation of the Coulomb field surrounding charges,

. i.e., the Coulomb interaction ig restored in due course: Therefore, the. choice (1.2) of phys-

: 1cal dynamrcal variables suggested by Dirac stands out against all others. The. example of

“electrodynamics teaches that the choice of gauge-invariant variables (and/or gauge-invariant -

: states) does not guarantee yet finding the right law of the potential interaction of charges -

because states induced by these variables may turn out unstable.

'In Sec.2 the choice of gauge-invariant variables i in electrodynamrcs of polnt lrl\e partlcles o

"is discussed: The Hamiltonian dynamics in these variables is constructed.

In Sec.d we investigate the dependence of the proper field of charges on the clloxce of

. gauge-mvarlant variables... We prove that the Coulomb field is the only stable-proper field -
- of a charge. Other. proper field configurations break down with’ radratmg nlectroma netlc
" waves and creatrng the Coulomb proper ﬁeld of charges N g e

“(1"1)"

Withw = w(z) = w(x t) bemg an arbntrary functron eisa couplmg constant. Dxrac proposed -

-In Sec.4.we analyze in detail the decay of the classical electromagnetic strmg when in -

" an'initial state the proper electrlc ﬁeld of two opp051te charges is locahzed on a contour

“connecting them.: 7

Secs, 5 and 6 are deVOted to QED We calculate the proper ﬁelds in states’ 1nduced

" by different gauge-invariant operators describing dynamics of charges and mvest1gate their
“evolution. We demonstrate that the proper field of charges in QED behaves like in the

classical case, i.e., it breaks down with photon emission and creation of the Coulomb field

"“that is stable. In particular, the electromagnetlc field energy of the electromagnet1c ‘string

state-
X

;Z'(x)exp ie / s A) 12{(y) |0), o sy

TN : . Y

“where the lntegration is carried out over the contour connectlng pornts x and y, is propor-

tional to the contour length in the limit of infinite masses of charges [4]. Due to this fact,

;. the state (1 3) is usually identified with the string one. However, during the time evolution

the photon radiation takes away a part of this energy.: The remaining energy is equal to the
Coulomb interaction energy. The final state contains two charges (1.2) with their Coulomb’
ﬁeld and photons: going to infinity, therefore, the electromagnetrc “field conﬁguratron in'the

; state (1.3) turns out unstable. For this reason the state (1.3) cannot be treated as the strlng '

-In Sec.T an incomplete elnmnatlon of unphysical degrees of freedom (when there remarns )
a. re51dual gauge symmetry in the theory) is con51dered

2 Class1cal electrodynamlcs of pomt-hke part;1cles
Cin gauge—mvanant var1ab1es

Con51der classlcal electrodynamlcs of point- llke partlcles, as a simple example, to explarn a.

- connectlon between the choice of gauge—mvarlant variables and dynamlca.l descrlptron Let S

the Lagranglan read

L

i - Z[;ma" +e"'(l‘a,A(l’a))—eaAo(ra)] f)’(2.'12)

Il

/d” E2 B’)+L,m,' o (2;1)

' \yheregE Z_A- O0Ap, B= curl A are electr1c and magnetlc ﬁeld strengths, respectrvely, i

= (4;), Ao are vector and scalar potentials;- the brackets in the second term in (2.2)
denote the scalar product of vectors rg; @ enumerates partlcles, Ia, .€q are their posltlon
vectors and charges, respectively. Lagrangian (2.1) gets the total time derivative

. d )
L—»L+dtZeaw(ra,t) L o (23)

'Vunde‘rthe gauge tra_,nsformations'f‘ ) o

A A B, e Agme (2

\\: with'w bemg an arbltrary function of Zoordinates and time. Therefore, equations of motion
. mduced by the Lagrangian are invariant’ with respect to the gauge transformations.




.. The existence of the symmetry transformatlons contammg one arbitrary functlon does
not mean that the electrodynamic field has just one unphysical degree of freedom. Actually,
it has two such degrees of freedom. It follows from the Hamiltonian formalism for the theory
[1] [3] Indeed, deﬁmng canomca.l momenta in the standard way 7 = 5L/5A =-E,

Pae ' = al‘a = myTs + A(ra) N ; ) (2.5)
«7r&'* SL. 0
, , ° T EA, ' o (29)
one finds the Hamiltonian ) 3
H = /d3 ( ™ +B’+A°a) +H,,m,, (2.7)
 Hpat = Z‘ i~ eaA(ra)) R (28)
o = (a 7r)+J0, (29

where Jo(x)

" be satisfied at all time moments,” This requirement leads to the secondary constraint (the
‘Gauss law) [3]

S wp = {mo, H} ——a:O
here { 1 denotes the P01sson brackets By deﬁnltron ,
{Tcu » Pﬁ;} = 6 ‘50[3 ) (2 11)
{Ai x) T(y)} = 5'163(7( Y) 3

the Po1ss0n brackets for other canomcal varlables are equal to zero. It is easy to be convmced

that ¢ = {¢, H} =0, i.e., there are no more constraints in the theory [3]. The existence .

‘equations of motion,. satisfying also (2.6) and (2.10), contain two arbitrary functions of e l@,

of two constraints (2.6) a.nd (2.10) in the theory means that solutions of the Hamiltonian

: E ea6s(x—r,,) is the charge denslty Equatlon (" 6) shows that the momen- ~
‘tum conjugated to A vanishes. It is the primary constraint in the theory [3] which’ must

U@210)

(2.12)

‘coordinates and fime [3]. Thus, the electromagnetic field has only two physical degrees of TL ol t f

freedom corresponding to two independent polarizations of electromagnetic waves.

The variable Aq is pure unphysical since its canonical momentum vanishes. The second © -

unphysical variable can be selected with the help of a canonical transformation after whicho

becomes a new canonical momenturm, Thcn a generahzed coordmate conjugated too turns
out unphysical like ‘Ag.

There are an infinite number of such transformations [5] We restnct ourselves to llnoar
] transformatlons Conslder the ‘change of varlables (6] e

(2.'135' o

7 ) s A=« + Bx
Where the field o obeys the additional condition - :
o (K a)(x) = /(Pylx’;(x,y)a;(y) =0.. . : . ‘(2:14)
with\K; being a tinear operator. The inverse transformations read | ‘
Cx o= KONKA), (2:15)
Le = A-BKO)IKA) . (216)

i

D et it e e

for arbitrary functions f and g. For example, put K = 8, then a7 =
o B, €iipTi0, and cijp0;- - €4n 100 form a system of linearly md(pondonl opelators of \\lnch one
" can build the orthogonal operators'(2.20), (2.21): : A ‘

» llxc \anable x is translated under gange transl'ormatlons (2.4), but a remains untouched.-

One can take operators d; or .6 as examples of the operator Kj. ‘In the. first case o is.

a transverse field 1. in the second onc it is an axial field; a3 = 0. One should emphasize-

_that the condition (2. 11) docs not 1nean a gauge fixing because o is gauge-invariant. The
problem of existence of the inverse operator (K,8)7! is considered in Appendix A. Below

the formal symbol (K,8)'is used. It docs not affect our subsequent analvsrs (see Appendlx
One can choose the quantity —0 as a new canomcal momentum 7rx =.—0 con]ugated to

»\ since it follows ['rom (2. 11) and (2.12) that

{x(), ()} = x~y). (2.17)

: Morcover, due to the gauge invariance of a, we obtain 0 = {a,0} = —{a r\} = 0 Here
. -and below all singular relations like (2.12) and (2.17) are defined as equalities of generallzed g
“functions.. For instance, (2:17) implics - AT

{Jociv. form)= o

*f01 two arbltrary trial functions f and g.

‘To -finish" derivation" of the canonical transl'ormatlon corresponding to the coordmate

. transformation (2.15), (2.16), one has to dctermlne new canonical momenta of particles and‘
the ficld or. rlhc quantitics

f’c =po+ Cﬂa\’(ra)
Po:sson brackets-with o and satisfy canonical relations (2.11) il py — Ps there. "
“Let us introduce operators €7, a = 1,2 which obcy the l'ollmnng 1dent1t1es [5)

(K, e7) 0, (e KT) 0;
’(eav bT) : 6ab

l\./ 34
l\.J lv

(
2

_where the sign *T? means the transposltlon Tlxc opcrator transposed to thc gnen one 1s>
dcﬁncd by the rule s

'ftl3rf(09) - / P20 g @2)

‘Due to the condrtlon (2.14), the field contams only two mdopcndcnt ﬁeld \anablcs.

a = eTa*, (2.23)
- a® = (“,a)-.(e A—(e BKB) (KA) (2.21)

‘Lct us decomposc the vector & over the operator systcm (2.20), (,.‘Ll)
= e“T7r° + KT¢ (2 -_)_.')‘r

Usmg thc rule (2. 1b) and dcﬁmtxon (2. "4) we arc convmccd that the quantmcs T = (e“ ﬂ') ‘

are momentum canonlcally con]ugated to a* L
o), )} = 6“b5’(x v), A, \)=0. . (2.20)

~4This case is considered in (G] in connection wlth the Aharonov-Bohm effect interpretation.

(2.18) |

(2.19)

* are the new gauge- -invariant canonical momenta of charged particles because they haxc zero

) :
1)

v

‘28, The operators: .



: bThe quantity @ can be found as a functional of 7° and Ty by applying the of)er ator &
to oth-parts of equality (2.25) with a subsequent representation of its left- hand side via = LTy :

and Jo The ﬁnal express1on of 7. via the new canonical momenta reads
*x = (eaT KT(K a)-lT

Substltutmg (2. 27) and (2 19) 1nto (2.7) and taking i
nto account th t =
- we obtain the physical Hamiltonian, ¢ - recons ralms - WA -

h o 3 al e ra a, .a 1 y K
HP = /d ( ks Aw b')r‘b_}_ 2(1 L bab_’)rrlp Jo+;-{oAJo> +H,";’;t N (228)

S Hrf.’;z = 22

pﬂ+eﬂa(rﬂ)) - R e (229)
where we introduce the linear operators h
L? =" (e Ae”)—(e 6)(e a)T' s '(2.30).
CM® = gy, e @3
P = AT, L (232)
L= (e a)A < L (233)
A= (K0)7(K, KT)(K, a)~‘T » , T 284) -

The Hamlltoman equations of motion generated by (2. 28) deﬁne dynamics in gauge-invariant

» variables [5]. So, the physrcal Hamiltonian as well as Hamiltonian equations of motion depend

on the choice of physical variables. However, to:get a complete physical picture, one should
connect these variables with observables [5].

3 Statlc ﬁelds in classrcal electrodynamlcs

Statlc electromagnetrc fields are the simplest observables in electrodynamrcs since they de—
termine a potential interaction of charges. Therefore, for. describing the static fields, we
consider an electromagnetic interaction of non-moving charges (static sources). Wlth’thls
purpose we take the limit m, — oo in Hamrltoman (2. 28) In this llmlt one can omit; Hma,

~-"in the whole Hamiltonjan.

The interaction energy of charges is descrrbed by the term squared in Jo in the Hamrlto-
nian (2.28).  For pomt -like sources, we obtain - .

/ Padhdo = Q’A(O) + Z eaeﬂA —rp) (3.1)

a>p

. .
}‘;h?re Q= Z e and A(x — y) is the operator A'kernel viewed as the mteractron potentral

Kor instance, K 8, then A = —A-1."In this case the first term in (3.1) is the Coulomb
self-energy of charges (it is infinite); the second term gives the energy of the Coulornb

interaction of charges However, taking K; = 6,3 we do not obta1n the Coulomb law For
this choice -

:(K,’é’)"f(fc)g 3"f(X) / debf(xizh) . (32),

F oo P b

e“T))7r +KT(K 8)“T(7r\ +J,,) . (2.27) )

e L ettt i e L

g ‘ that ~follows from the equality

hcre x, implies z2.. After simple calculatrons we derive the static energy (3.1) for two-
4 opposrte charges being on the third coordmate axis,

| o f d3zJ0AJ0‘=—6‘(D)e’r .(3-33'

where ris a’distance between the charges i.e., the energy lmearly rises with’ distance. The

“energy (3.1) can also be logarithmically rising with a distance between charges if we put

K = 8, being the gradient in the plane z,0z, [4 1.15] :
- Assuine for the moment that we do not know the Coulomb law: as an experrrnental
fact, and we have just Lagrangian-(2.1) (in fact, this occurs in non-Abelian gauge theories). '

‘What could we say about the static interaction law then? Since all choices of gauge-invariant
variables are a pr1or1 equivalent, this law looks qulte arbitrary because A in’ (3.1) depends

on the choice of K. It is clear however that the interaction energy of static charges cannot’
depend on our arbitrariness.” A solution of the paradox is to consrder a total: static energy

“.%. of the system, being a value of the Hamiltonian (2.28) ‘on static solutions of Hamiltonian
el equatlons of motion. It is always equal to the Coulornb energy and mdependent of choosmg ’

To prove thrs cons1der the Harnllton1an equatrons of motlon in the hmlt of stat1c sources,

m —»oo, '

da — {a

th} AI“%”.~<,9J ‘ (35)

‘and requrre #* =a*=0,1e, all ﬁelds are statrc It follows from (3 4) that the second term in-
- (2.28) gives no  contribution to the total system energy (solutions of the equation L%ab =0
* are discussed;in Appendix A). Equation (3.5) shows us that =* has-a static component -
o 1nduced by an _external source Jo. The value of HP" on static solutlons of Eqs (3 4) (3 5)

i reads

Thus, the relatron (3.1) grves just a part’of the mteractron energy of statlc sources.
' We rewrite the operator M~! in the form of the series - e

M7 1+r)-
o - n=0

, Then the second term in the left- hand side of (3 6)-is easrly calculated

),.+1 (o7 991\"1) A=

JM"‘«,D = Z(—l)"tPTF"soiZ(

. n=0 n_.l . i

= —Z(AA-H)"A AT A 38

.on=ls . FI . ‘ h
where we use the relation R - ) ’ S e
oo ez Ta o AAA-A (9 -

s effep = 6 —KI(K,KDTK; - (310)

7
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E. = E/dax-]l] (A SOET(M_I)abSOb) JO » S o - (36) . B



" R "
deﬁnmg a pro_]ector on K-transverse ﬁelds Substltutmg (3.8) into (3. 6) we obtain the total ‘ - where the opcrator D, has the standdrd form ) ) 7
static energy : b : 3.16 »
, v \ , C ke 1 28(t = |x —x' t>0. (3.16)
i ) . . L o P o ’ N . :
that coincides -with the Coulomb energy of a source Jo. Y : Subshtutmg (3 14) into (3. 15) we ﬁnd the followmg expressions for the electromagnetic fields - -
‘ However, if we putia® = 7% =.0 in (2.28) at an initial time moment (the zero initial- ‘ ‘

conditions, a®(t=.0).= #*(t = 0) = 0, in Egs.. (3. 4),(3.5)), then the total system energy

turns out equa.l to (3.1) during all the time evolution because of the energy conservation law. ",

It gains the impression that a choice of the initial conditions (in fact, a'way of preparing an
initial state of the system) may influence the static interaction of charges. It is not-the casc
- indeed. As we demonstrate below, Eqgs. (3.4), (3.5) have non-stationary solutions under such
initial conditions, therefore, the total energy consists of two parts — the-Coulomb energy
(3.11) and.electromagnetic.radiation energy being taken away to infinity. In the limit of .

large time t — oo the field energy localized in the nelghbourhood of a source Jp is equal to

the Coulomb one. .
‘The initial condltlons a (t = 0) =7t = 0) = 0 plck out all admissible electrxc ﬁeld
conﬁguratlons in absence of magnetic fields, which do not contradict to the Gauss law (2. 10),

" i,e., they might beviable in nature, at least in principle.: Indeed; in thxs initial state magnetxc
ﬁelds vanish, B(x,0) = 0, and the electric field has the form

E(x,0) = =m(x,0) = _—KT(K 8) ™ Jo(x) (3 12)

in accorda.nce with (2.27). It satlsﬁes the Gauss law. Note that the Gauss equatlon (2 10)
fixes just the longitudinal part of the electric field; its transverse components remain ar-

 bitrary: We may choose them taking into consideration an initial state of electromagnetic
fields. ‘Thus, a choice of gauge-invariant variables in classical electrodynamics can be related

with prepa.rmg of the initial state of an electrodyna,mlc system It turns out’ that’ the same -

occurs in QED (see Secs.5 ,6). : o
"+ The initial state (3.12) is not stable if K # 3 To understand this, note that electromag-

- netic radiation is described by transverse fields. The electric field (3. 12) contains a transverse ...

component when'K # 8. So, according to the Maxwell equations, it creates a magnetic field
’(B # 0) that makes then the electric field changed etc., i.e., the electromagnetic radiation’”
arises: The radiation fields exist by themselves,: hence, thelr energy has no relations with'
the interaction energy of static sources ( a consequence of the linearity of the Maxwell equa-
tlons) Thus, one has to investigate the tlme evolutlon of the state (3.12) to separate the

- _static interaction of the sources.

- For describing the decay of the state (3 12), one - should find a spatlal dlstrlbutlon of -

" electromagnetic fields as a function of time. ' Equations of motion (3.4), (3.5) have the
simplest form when K=a, ) . ’ ’

CBat=mt, o mt=Aat (3.13)

; where alis deﬁned by (2.23) with e® obeying relations (2 20), (2.21) for K = . The "

“ canonical momenta 7} = Pgnj,: Py = 4;; — 0;A7'8;, are the transyerse components of

“w, (6, 7rJ') = (8, aJ') ="0. The initial electroma,gnetlc field configuration (3. 12), B ="
curl at = 0 1nduces the followmg initial conditions for Egs. (3 :13) ’

ool =0, mtluco(a) = PEET(K,0) 7 Iy(x) (3.14) =
‘4 The solutlon of Eqs (3.13) read ‘ : ; 3 E
| L(x t) = atDt"L(x 0) + Dyt (x, 0) y o wh(x,t) = Bt (x, 1) (3.15)
8 V -

i

et (x, t)+8A"J0( X) =

e W) gm
= a,D.KT(K 8)“‘TJu(x)+8/d3 'O(t—]x xl)~1r|x ik (3.‘.11)3,
' B(x ) = curl al(x,t)ecurl»D,KT(K,a)-‘TJ;,(x) o i (3:18)'

g The ﬁrst term cutexmg into (3.17) and (3.18) descrlbcs the electromagnetic radiation outgo-

f‘ Il n the space.
ing from the eflective source K7 (K, 8)" 1T.]o The sccond tcrm dctermmes illing space’.

round. a source Jo by the:Coulomb field.’ :
’ Thus, the clcctromagnetlc field conﬁgurat)on (3:12) breaks down creatmg radiation of.

= elcctromaguetrc waves. Each spatial point, where the right-hand. side of (3. 12) does not

to
~vanish, scrves as a source of the radiation: 'In due course, the radiation fields go away

. spatial infinity and a region around chargcs is filled by their Coulomb ficld. The radiation:

does not arise just at K = 8 in (3:12) since in'this case 7 Lx, b= 0) = 0 (sce (3 14) (3 15))

" Thus, the only stable proper field of charges is the Coulomb one.

As an illustration of the gcncral fOI'l'lllllH.b (3.17), (3: 18), let us  clucidate what ]hap{)en(s1 i
y\erh a classical clectromagnetic string, whien the electric field in t,he mll»ral s(atc is localize
-on a contour connectmg two opposne charges, durmg its e\o]utxon v

| 4 The decay of the classu:al electromagnetlc strmg

’ Consider two opposite point-like chargcs e aud —e attadmd at points ) “and Y2, T eqpcdnc]y

Let a contour C pass through these points, and x = z(s) € C where s is a parametcr,
dcscrxbrng a poutlon pomt on thc contour: l’ut . i

K= ,'(4.1)‘

%l%

and take a p]ane S0 that the contour intersects 1t just once. Aqqumc for slmpllcrl) tlx?tuall
plancs parallcl to the chosen one; intersect the contour C° aléo once. At each point of this

plane, we attach the vector dzfds tal\en at a common point of the plane and the contour.

In so doing, we define.the field of vectors K(x) parallel to tangent vectors ‘of ‘the contour
~C just in the whole space. : At eacl’ spatial point x. this field determines a’contour passing

through x and parallel to C. Thus, the' vector ﬁeld K(x) scrves as the K-oporatm in the‘ B

supplcmentary condltlon (2. 14) and - E
.

®orKi= [arn U

7 yvhcxe the integral is taken over a contour passing Lluough the point X an(l parallcl toC in
thc sense pointed out above .

"’Ihcv satlsfy, 0[ course, the Maxwell oquatmns with !.he initial coudilions (3212) and B= 0.‘

Q.



Substitution of Jo(x) = e63(x — y,) —e6*(x — y,) and (4.2) into (3 17) and (3.18) leads‘

© to the following expressions for the electromagnetnc field

Boxt) = 8 1 /’dz 6(t——|x‘—z|)k+"0(t—»]x—y,))az;—‘x—f_—ﬁ——’
(t'— IX yzl)am +E° (X t) ) o . (43)
B = el 5 e e y2|) Y
R ) ¥ ' . ) .
B(x,t) = ﬁcurl,/dz‘ 6(t—|x—z|) C (4.5)

¥z

where 6 means the Heavrslde function. When t— 0 the magnetlc field tends to zero, and _‘

the electrrc field is localized on the contour C between the points yq and Ya,

Y1 L
/ dz'53_(x —z),

E(x,t)‘—t E"(x) ='e

since Dy—p = 0 and 3:D,(x XNMi=o = 63(x — x') The electric. ﬁeld is dlrected along the .
“contour C and has a constant absolute. value on it.” The electromagnetlc energy of this ~ S

,10

‘B()fc,t)—v (A ‘ : (46)

state is proportional to the contour length.. For this rea.son; this initial state is called.the

, electxomagnetlc string. It'is impossible to make a state like that-on practice. However, it

might exist in the dual electrodynamics with magnetic monopoles, like the Abrikosov vortex -
state in superconductors of the second kind {7]. :
The radiation field can be constructed with the help of the Huygens prmcrple (each pomt

* of the contour C serves as the radiation source). A disttibution of the electromagnetic fields -
" (4.3)—(4.6) at different time moments is represented in Fig.l. An external boundary of the '

wave front is picked out by a thick continuous line. Arrows attached to it show a direction of-
its propagation. Field lines of the creating Coulomb field are pictured with thin continuois

-lines. A region containing the Coulomb field of two charges is outlined by two dashed circles.

A spatial region occupied by the radiation field outgoing to infinity is filled by dots. -
When ¢ <-|y; — y3/2 = R/2 (Fig.1b) (the light velocity is assumed to be equal to 1),

.the Coulomb field differs from zero just inside spheres of the radius ¢ and with centers at y,
and y;. Inside each sphere, this field coincides with the Coulomb field of an isolated charge.

It is indicated by dashed lines with arrows. -(Note that the field lines of the total electric /
field (Coulomb plus radlatron) are meamngful for this reason we picture the Coulomb field
with the dashed lines in regions occupxed also by the radiation fields.) The spheres widen

<. with the light velocity as well as the wave front. They touch each other at ¢ = R/2 (Fig.2c).
~When t > R/2 (Fig.1d), an overlapping regron ‘appears inside which the Coulomb field is’
~“equal to the sum of two Coulomb fields. A region without dots in Figs.ld,e is free of the
* radiation field and contains just the Coulomb one. This region widens with the light velocity.

Therefore at ¢ >> R the radiation field is localized inside an almost spherical front with'a -
thickness ~ R and goes away to spatial infinity. A space surrounding the’ charges is filled

. by the static' Coulomb field of two charges. "A distribution of the electromagnetxc fields for‘ o

o t > R is represented in Fig.le.

! constramts must annihilate physical.states[3] ~

- ~where

" Let on a distance from the string, say, larger than the string size R there be an observer

“with tools registering electromagnetic fields. The charges are invisible for the tools at the

initial time moment because there are no electromagnetic fields outside the string. After a

-time interval, the tools will register a flash of radiation during 7 ~.R. Then charges become -

visible due to their Coulomb field.

. 45,.‘ " An explioit s’olution:(of 'c0r1;straints~« in QED )

" To construct a 'Quantlrm theory, one should change all canonical var‘ia.bles'er}terif\g irxto_

Hamiltonian (2.7) and constraints by the corresponding operators so that their commutation
relatrons are defined in accordance with the rule |, ] =1{, } (» = 1). Operators of

Sl =0 R )

. Here, as above, we lgnore the pure unphysical degree of freedom 7r0, Ao [3]

Let. the charge density operator read’

~Jo(x) ,Zeé@i(x)@a(x)q,,,j; 62

a

ot 0] =6 6B

. the commutator and anticommutator are taken for Bose and Fermi fields, respectively. Dy-
“nanics of fields ¥ can be determined in the standard way by gauging their free dynamics.-
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However, a concrete form of Hi.; is not essential for what follows because we intend to’
investigate just configurations of proper fields of static sources. Therefore at the very be-
ginning we assume these fields to be infinitely heavy (static) and neglect Hp,,, in the total
" Hamiltonian. In this way, we arrive at QED with static sources where the coupling of charges
" and the electromagnetic field is just due to the constraint (5.2). - S et
- Operators t/;j and 1/;,,' describe respectively creation-and annihilation of a point-like source:
*.-with a-charge e, since "* " R R SRR ;

i.e., the state $j|¢) is an eigenstate of the charge density operator if Jold) = 0. The operator
§ = exp(—i [ Pzwd) defines gauge transforxflatibns of all field operators in the theory

L :'exf’(_‘?’e"“’)’z’a' S (5:6)

JS'c;, the reyquiremént (5;1) means 4th»e gauge ihvifiance of all physi<cal states §|q5ph) = i¢ph).~
. There are several methods to take into account Eq.(5.1) in the quantum theory.; One.
- can define a physical ground state satisfying (5.1). Then any physical state may be built by

applying gauge-invariant combinations of electromagnetic and charged field operators to the.

method when Eq.(5.1) is solved explicitly.

"“*.*'Let us introduce new operators'§ and & that are connected with the opefators A by ’t,he,

relétiqns (2:15), (2.16) and new operators of charged fields

A

Operators (5.7) and & are explicitly gauge-invariant® arid commute with . Obviously, the
commutation relations (5.3) remain valid for the operators (5.7)0 e L

.- Consider. now the coordinate representation for electromagnetic fields operators, fro=to
—i6/6A, and the holomorphic representation for charged fields, o = 6/8v5, bt = g, with

¥, being a complex field (it is the Grassmann one for fermion degrees of freedom, then both

' fnultiplication on it and the variation derivative with respect to i, are assumed to be left): ..
Vectors of states are treated as functionals of independent functional variables A and ;. In--
this case relations (5.7), (2.15) and (2.16) define a change of variables, generally speaking,.

on a superspace [8]. It is easy to be convinced that
: 8
x°

¢ph1%0>. | M s " '(5.’8)‘

G =1

_Thus, physical states are independent of x thatis an unphysical variable like Ao. This allows
us to write the Hamiltonian only via physical degrees of freedom. It has the form (2.28)

with 7% = -—i&/&d“k being the momentum operator conjugated to &*..

-~ In the static limit described above, we arrive at the quantum_theory of two free fields
@° interacting with the quantum source Jo.(the third term in (2.28)). - Rewrite the free.

Hamiltonian of an electromagnetic field via the creation and annihilation operators’

th = ,%/diiz(ﬁ.uMuf;rb_*_‘&aLab&b) —_

= fd% A OFAS + Eo= D Madtan £ B o 0 (5.9) S
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vacuum state [1];- We will consider this method in the next section. Here we discuss another . o " St_ate defined as follows.

Uy = explicat)Pa, ~ UE'= exp(—ieaf)Pd . S G I

" being an:eigenvaluc of Jp on its eigcnvcctof i1, - ;'m).

where. £y 1s-an energy of vacuum field ﬂuctuations,

e 1wt i . ' o
Rt N A S U s I CRU)

- Y ouzang 4 P , e
o 0 = @R 511y
56 that R - L '
[Fe, )] =0y sy

- ’ 9 : y A b 3 3 i N A i ‘ .
B Opetators 4, are determined by decomposing operators a.b(x) over eigenstates of the operato'r? k

Q', 2, denote its cigenvalues and §_ implies a spectral sum over the spectrum of N

| S S wis)

w1th‘ z?;,,.: beirig\the‘dbelt'a-fimcti‘or'l in the space of spectral paraﬁleteré of .. For instaLn‘cé‘

plutbtmg’I‘{ = 8'we QI)tal‘n 2 = V-A, therefore, a decomposition over eigenfunctions of 0 i;

the Fourier transformation and the set. {n} means the momentum space. 2, = k|, k'is a
5 s L. : "n— (s L i

““photon momentum.

-Thus, a basis of the Hilbert space may be realized as the Fock space with the vacuum -

» ) b . - oo " . . .o o
T AT 4, 10) =0, - W,(x)]0) =0 T (5a4)
and v.vith creation and annihilation operators satisfying (5.3), (5.13).
. Exgggstatgs of the Hamiltonian (2.28) can be found by applying the.operator -

: &=0x1> ('—i'/ dJJAa"(,n[-')"b(,abjo) I o ,(.5.15)
- . to tlle' basiéista‘iés because : e a ' ) S
Iaditdi rph oL P . :
| Um0 = ity —§/d3;rJ0A Vs . R % (1))
The states . | | :
| L MY = O () B () = O, m) L saT)

?elscribe 'poin&}ikke' c;llimrges with-their Coulomb field. ‘Indeed, the average value of the electric
: ’1(.: d operator E =—% (see (2.27)) over the state (5.17) is equal to the Coulomb field

o | (1’-,_': mm*ﬁ(gm“ 1n)~ S . CE
E = 1) PR = - . L AR
ie ‘(X) L mll, e my “.‘Bé '{o(x) (;.15)-;,
" with et s ‘ '
Jo(x) = eablx-y;) . (5.19)

- *Equations (5.18) and, (5.19) show that switching on the interaction of the ﬁ‘rvlds 4" with - R

; il(lie qua»r}’tbumv sou'rce'(the quartity I{”’,‘ - H(’,”f p]ays the role of the interaction Hamiltonian):.
-~ :"dresses”: charges with the Coulomb field. The dressing process can be visually represented

by average values of the Heisenberg operators of the fields E(x,1) and B(x,t) aud the density

e ayph . , H H 7 4
‘ H vofi,the total Hamiltonian /% over the state {1, -- ,m) taken as the initial one. The
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-a\'eraée' value of HP"* characterizes changes of the energy distribution with time (the total -
energy is preserved and equal to (3.1) where Jo is given by (5.19)). The average values of

the field operators show the process of filling a space around charges with the Coulomb field.

Let us calculate them. The average of the operator E(x) over the state i1, co-,m) is given

by (3.12) since the vacuum expectation value (E(x))o vanishes. Obviously, the corresponding
average of the magnetic field operator ﬁ(x) is equal to zero. Introducing the transverse fields
. &t (x) and 7 (%) (B = curl &*, #} =Py E;, see Sec.3) we are convinced that Eqs.(3.14)
give their averages over the state {1,---,m) and their Heisenberg operators &t(x,t) and
#t(x,1) satisfy Eqs.(3.13). Therefore, the fields (3.17), (3.18) coincide with the average

values of the Heisenberg electromagnetic field operators if Jo has the form (5.19). Apparently, ’

(17'"7m‘ﬂp(‘(*vt)‘l1"’vm)
(1’...,m|1’...,m) .

" where & is the energy density of vacuum fluctuations of the electromagnetic field.

Thus, the process of dressing charges with their proper Coulomb field in the quanﬁum

theory is similar to the one in the classical theory investigated in Sec.3. In particular, put '

*. K as (4.1) and consider the following state With two opposite charges

e ) E 10 = 0L Deu e

where e; + e; = 0 and ¥1,.¥2. € ‘C. Then dressing charges with theikr Coulomb field is.

s ‘qualitatively pictured in Fig.1. The average values of the Heisenberg electromagnetic »ﬁcld:

operators are given by formulas (4.3)—(4.6).

The appearance of the photon radiation during the time evolution of the state (5.21) .
could be expected at the very beginning. It follows from the right?hand side of the equality -
(5.21) that the'initial state contains the stationary state of two charges with their Coulomb:

field |1,2)cour and a coherent photon state U|0), where Ut is the operator (5.15) with Jo
changed by its eigenvalue (5.19) at m = 2, ex +ez = 0, (operators a’* included in Uf; create

" photons, being applied to the vacuum state). It is known from the theory of e]éctromagnetip

field coherent states that average values of the Heisenberg field operators in these states obey
“ o'the classical Maxwell equations. Thus, the state {1,:--,m) is unstable because it contains
the unstable photon coherent state Ugloy. - ' ‘ o

" 'We conclude that all gauge-invariant variables are edﬁivalent from the ﬁlathématical point’

of view. However, their physical interpretations are quite different. Different configurations

of a proper. electric’ field of charges in initial states correspond:to different choices of K. -
“In this sense, the choice of the physical operators describing creation and annihilatkionfof sl
charges together with their Coulomb field turns out to be distiiguished. f K'=8,U =1, " -

lience, the initial state |1,,m) does not contain the unstable photdnjcoherent' state, i.e; - .

no electromagnetic radiation appears during its time evolution.

6 The method of gailge#invariént operators

Constraints in a quantum gauge theory can- be taken into-account without their explicit 2

solution, i.e., without ‘reduction of the total Hilbert space to the physical subspace as’has

_ been done in Sec.5.' One can work in the total Hilbert space using, however, gauge-invariant - o
operators for desCribing physical‘excita'ti()nkof fields. If [5,9] = 0 where & = &(A, 9, ¢+)3“ N
then an operator & being applied to the physical ‘vacuum state creates - a physical state ...

satisfying (5.1)."

14

= L0+ 5 B0+ (5.20)°

7 E(x) : E|E) = E|E). Then it follows from the equality

"+ ' The simplest gauge-invariant operators in QED are.well-known [1], [9] - -

fcajlz(x)' = exp (—zeuA“BA(z)) Jxlf(x) ;o f (6-‘1) -

, ) o . Y1 ‘ : T .
Lu(yr,y2) = g, (yr)exp | —ie / A@)dz | $L(v2) - (62
. where e,, = —e,, = e and the integration is carried out over a contour connecting the points- -

yi and y,. A more general form of a gauge-invariant operator reads '

: im(K;’y,,...’,yna)'=Hexp(;iéa,X(yj))‘zﬁ:,(yjj L (5.3)

jpiete

where the operator % is connected with the vector potential operator by the relation (2.15).
The operators (6.1) and (6.2) are particular cases of (6.3) at special choices of K : Iopu =

1i(8) and I, = fz(dz/ds) (see (4.1)).

A.physi.cal meaning of the operators (6.3):is_ that they ‘descfibe;fhé creatioﬁj of "chz;.;'ges
.toget‘helz with an electric field. ‘Note that the Gauss law (5.1) connects an électric charge
density in a system with an electric field, hence, charges cannot appear without their proper

“electric field satisfying the Gauss law. The operator ¥ in (6.3) describes:this field: Indeed, . - ‘

«let there exist a state |[E)'in which the electric field operator E(x) has a numerous value

 Berp ey = exp () [B00 KK 07T w] (6

) 'v‘{here all operators in the second term of the right-hand sidé act just ‘on the variable x* 2, ’
that =05 ‘ N : e .

f E(ﬁ)ia(K)lEi = [E(>;) + Ki(‘K;;a)_l’TJov(x‘)']‘ f,-"(K);E) = E(x)I,,.(K)IE) : (6§5j_

- the charge density-has the form (5;19)5 In particﬁlér, for :obcfétbrs L((i.vll‘)rt‘(vsee [1]) zjmd‘ (62) ,

--we obtain, respectively, ; v .

Co

E'(x) = E(\*) f,a 4#[x—.‘/i R (6;6) |
; E’(x):E(x)+e/dz63(x~z)'. o CeT)

- Equation (6.5) shows that the operator (6.3) increases an electric field z;t each space poipt
by the.value E' -~ E simultancously with creating m charges. For instance, the additional
electric field cEeated by Iou is equal to the Coulomb field of & point-like charge eq, and for .

" the bop‘eryaﬁv?r ¢ it, turns oiig to be the ele_ctr_orhagnetic string field considered in Sec.4 (see

(4.6)).

Thus, the requirement of the gauge invariance for all qhahfitiés déscribing dynamics of

physwal dgg‘;eés of freedom automatically leads to that charged particles must be created

. 3Note that the rule (2.22) leads'to- the tela.tioﬁ 5x63(x%y) = O§63(x¥y) where the lower.indices

. denote a variable on which the operator acts.




just with the proper electric field satisfying the Gauss law. A conﬁgurationf of this ﬁcld
depends on the choice of gauge-invariant variables.’

However, all the proper field configurations different from the Coulomb one (1 e. “when. -

K'# 8) are unstable. To prove this, one should again calculate average values of the

Heisenberg operators of fields E(x 1), B(x t) and the Hamiltonian density H(x,t) over the
state In (K)[0) = [I..). All charges are assumed to be static’and, hence, the time ewolutron :

is determined by the Hamiltonian

= '«Pzﬂ(x),=,1$ [e(Boorb) .69

Therefore the average values of the Heisenberg field operators sat1sfy the Maxwell equatlon !

" without sources and with the initial conditions" * -

UniBOON) = 0, ATndl) I BON) = KT (69

Obvrously, we come agam to 'the formulas (3. 17) (3. 18) and (5.18) with JD deﬁned by (5 19)
In conclusion, we consider the time evolution of a closed electrodynam1c strlng, tlre state
obtamed by applymg the gauge-mvarrant operator ) R

Ic = exp zef(A(z) dz)

to the physrcal vacuum. . The average value of the electrrc ﬁeld operator in this state is'a
transverse field and is given by (4 6) where the integral should be taken over a closed contour

C." Therefore; the whole energy: of the closed string state turns into the electromagnetlcw;

~radiation energy (only the first'term in (4.3) differs from zero)
" This feature might be expected at the very beginning since the operator (6 9) creates
only a coherent state of transverse photons Indeed, substituting A=

coherent state of photons descrrbed by &, which follows from the identity

— (K,0)"(K, A) = (K, O (K,&4) + A71(0, A) (6;11)

After 1ts substitution into (6.3), the operator I,,.(K) splmters rnto a product of m operators" -
]a,,,l and an operator dependmg on &t a.nd creating an unstable coherent excitation of

photons.” This coherent state is absent just.in the case when K .= 8. For this reason,
charged states with the Coulomb field are stable. ' ‘

7 L-COnclusi’o‘nw Lo R R Tt

) Thus, the requlrement of the gauge mvarlance for dynamlcal varlables in electrodynamlcs
leads to that charges can be created or ‘annihilated just together with their proper electric

field (a consequence of the Gauss law). A proper. field conﬁguratron of a charge depends on .

the choice of gauge—mvarlant variables that may be related with a way of preparing an initial

state of an electrodynamic system. All configurations of ‘the proper ﬁeld of charges ¢ dlﬁ'erent" ‘
from the Coulomb one are unstable and break down with radiation of electromagnetrc waves

and creation of the stable Coulomb field.

2106

L4 8A-1(8,A) -
into(6.9) we find that I depends just on &*. On the contrary, the states I,,.(K)|0) contain’ -
a coherent field excitation correspondmg to the longitudinal (Coulomb) part of A except thc >

.

: We conclude that the lmowledgc of all gauge-invariant operators describing dynamics of
matter in _gauge theories is not yet enough to determine.a correct potential of the static -
intcraction of charges. *One should investigate dynamical stability of states:generated by,
these operators. For instance, in' QED there is a gauge-invariant statc T, describing two
opposite charges connected by one force line of ‘the electric field strength (by the string).
Applying it to the physical vacuum we get the state whose energy linearly rises with the

.‘contour length (confinement). However, this state is unstable. After its decay, the charges

will interact in accordance with the Coulomb law. Therefore, there is no confinement in the
continuous elcctrodynamxcs Note that in the lattice QED {10] the string-like excitations
are stable in the strong coupling limit [11] because of the specific peculiarities of the lattice -

formulation of gauge theorics [11]. On the contrary, our result concerning the string dccay
_in the contmuous QFD docs not depen(l on the value of the couplmg constant e

8 Appendle B

" Let thc‘_opcrator (K,B ﬁhave zero modes, i, there are functions satisfying l.hc con(litions )

(K, 8wy =0, awdm':o‘ o (A
The boundary coudntron follows from the requirement of vanishing A at spatlal mﬁnrty
Then the inverse operator (K, 8)™! in (2.15) and (2. 16) doces not exist. Instead of it, one can.
use the opcrator (K, 8);.}, whose action is defined on the reduced functional space contammg

“Aunctions w' = (1'— Po)w where Po is.a pro]ector on zero modes of the operator (K, 3) in.;

a l'unctlonal space ‘of w's, wy = Pyw; P¥ '="P,. In this case the variables a (and; asa’
consequence, a®) constructed with the help of (K G)N,g are 1ot gauge-invariant. ’ :
a — a+8u, R T (A2)

X - AW g L (A3
The constraint ¢ = 0 is cquivalent: to two cqualitles k ‘

a"_(r;Po)a_o,"ao_Poa_o' : (A

becausc of the lmca1 mdependeucc of functrons ' and wp (i.e. fd W iy = 0) Ol)\rousl\.

o = —wy in the formallsm of Scc.2. "After eliminating the unphysxcal degree of freedom

IXy Ty, we have a thcory with residual gauge symmetry (A.2) and the constraint o = 0. Note
‘that the operator L“" lras zero modes when there remains a residual gauge symmetry S

L“bo"’=0 =(8€)w0.' A T (AB)!

To mal\e the analysis of Sec.3 correct, generally speaking, one should carry out one »

" more canonical transformation of o , T lll\e (2 13)~ (” 16) so that oo could become a new

canomcal momcntum However, if

PDJD_.O . LA

i

“all formulas of Scc 3 are kept wrthout any changcs (except the tnvral one (K;9)"1:

(K,0)7%)- lndced as the fanctional PO(G ) is lincar and homogeneous in x*, the mrtml
condition . #? = 0 for equations (3.4) and (3.5) does not contradict to lhe r('sldual (onstramt

oo = Pyo = Py(8,7) = 0 due to (A.6).

- The clectrodynamic string considered in Sec.4 ohoys Fq (A. 6) If K las the form (l l) )
then the functlon Puf(x) is an’ average o[ a fun(twn f(x) on a contour passmg through the™ -

R



point x and parallel to the contour C. So, the condition (A.6) means that the average charge
on any, contour parallel to C:vanishes.: This is fulfilled for the electrodynamic string. -

~"In the quantum theory, .Eq.(5.1) turns into &o{¢,s) = 0 after:the elimination: of: the -
. variable x with the help of changing variables (2.15), (2.16) and (5. 8) Under the 1esxdual

gauge transformatxons, the opcrators (5. 7) acquire the phase

7 ’\Il:(x) — exp(zeawg(x))\ll+(x) = exp (zeaPow x))\Il+(x)

. :—.’ exp ie /ds /P063(x-—x)w(x) \p+(x) R (1\1?)

vi/hefe the operator Py acts on the variable x (see (2.22) and Footnote 3). Therel'ore, the state
.. |1;+--,m) is physical if the charge density (5.19) satisfies the condition {A.6). For instance, .
K is given by (4.1) , then a total charge on any contour parallel to C must vamsh for

physical states, which is valid for the state (5. 21).

Note that the equatlon (A.1) has solutions even.in the case K = 8, wo = const. The‘k
quantnty Pof is an average ‘value of a function f i in the whole space. Because of the' equallty‘ :

7= 0 at spatial infinity, we conclude that the equation.op = 0 means vanishing the total
electrlc charge of a system Q= [zl =0 [12]
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maGaHoe C. B

Co6cTseHHoe | none 3apnnoa " Kanu6poaouHo-unaapuanrnue ; P
nepeMeHHWe 8 3neKTDOAHHaMHKe o : L e |

R i
v

E2-92-136

-CornacHo ﬂupaxy/1( n3 TpebosaHHuA Kanuspoaounou HHBapuaHTHOCTH on-
SMUECKMX AMHAMUUECKMX NEDEMEHHWX B 3NEKTPOAMHAMUKE cheayer, uTo 3apA-
AN AOMKHH - POXAATLCA W yHuuTomaTbcn BMECTE CO CBOWM COGCTBEHHLM (Kyno- i
HOBCKWM) nonem, KOTopoe uHAyLMpyerT - ‘cTaThueckoe . (kynoHosckoe) “BaanumMo- S
‘ReicTane 3apARoOB. ﬂoxaaano, uTO B 3neKTpoaMHaMuKe cywecTayeT 6ecxoneu-
Hoe uucno cnocobos subopa Kanu6poaouHo-unaapuanruux nepeMeHHux Kou- .
ourypaumn co6cTBEHHOr O nonA 3aBMCHT . OT 3Toro sGopa M MOkeT’ oTNKUaTLCR
OT : KYJIOHOBCKOH , OAHaxo . BCE TaKWe KOHOMrypauum' HecTabunbHu . Ux pacnanu
conpoBowgaeTca uanyueHMeM 3NeKTPOMarHUTHLX ' BONH M- 06pasoBaHueM KyfnoHO-
©Ba NONA,, KOTOPOE ABNAETCA EQUHCTBEHHLIM CTabunbHUM COBCTBEHHEM
nones 3apAAa. B kadecTse’ npunepa nonpoGHo paccnorpen pacnag “anexrpo4rf

“AHHaMHHeCKOH CprHH"

Pa607a aunonuena i) ﬂaGoparopuu Teoperuqecxou ousuxu OMHM

) I’Ipenpmn' O6veaunennoro uucru'ryra erﬂux Hc.c."lenosauuii. Ny6ua 1992, .

Fd T . < ¥

"~ Shabanov S V. o ' : ‘
> The Proper Fleld oF Charges and’ Gauge Invarlant
rVarlabIes |n Electrodynamlcs :

¥

- E2-92-136

Accordlng to Dlrac/‘/ it follows from the gauge Invarlance requi-.

;f‘rement for physJcal:dynamical variables in electrodynamics that’char-
'ges are. created and annihilated together with thelr proper.:(Coulomb) '
‘field.that ‘induces the static (Coulomb) interaction of charges. .ft..’

s, shown that ‘in electrodynamlcs there is an”Infinite number of ways

_to'determine gauge-invariant variables. The proper field’ confagura-

‘- tlon of. charges depends: on: the choice of these. variables and may

o Eettcal Physics, JINR. . Lo

f‘dlffcr from the’ Coulomb one. However, all configurations of that kind

rare unstable, Their ‘decay: is accompanied’by radlating electromagne-
itic waves: and creating ' the Coulomb fleld ‘configuration:that is the

“‘only stable one, The decay of the, "electromagnetlc strlng" is analy-'
zed in detall as an. exampie,. :

‘The |nvestlgatnon has been performed at the Laboratory of Theo-'~ b
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