

объединенный ииститут ядерных исследований
 дубна

E2-92-115
M.K.Volkov

FORM FACTORS OF THE DECAY $D^{+} \rightarrow \bar{K}^{* 0} e^{+} \nu_{e}$

Submitted to "Physics Letters B"

Recently, the study of the $D^{+} \rightarrow \bar{K}^{\star 0} e^{+} \nu_{e}$ decay was in the focus of attention of many theoretical [1]- [6] and experimental papers [7]- [9]. In most of the theoretical papers [1]- [4] only the vector form factor of this decay is satisfactorily described whereas the estimates of the axial form factors deviate strongly enough from the experimental values (see Table 1).

The present paper is an attempt to find additional intermediate processes which would allow to improve this situation. For estimation we will use a simple phenomenological model providing only a qualitative description of the given decay. This model is similar to the known Nambu-Jona-Lasinio model (the NJL model) which has successfully been applied in the low-energy meson physics [10]-[13]. It has also been used to describe charmed mesons [14]. Taking into account the fact that the chiral symmetry, which underlies the NJL model, is strongly violated in the region of charmed mesons, we will use only some specific phenomenological methods of that model for estimating form factors of the $D^{+} \rightarrow \bar{K}^{\star 0} e^{+} \nu_{e}$ decay.

The amplitude of the $D^{+} \rightarrow \bar{K}^{\star 0} e^{+} \nu_{e}$ decay has the form

$$
\begin{gather*}
A_{D+\rightarrow K^{\star 0} e^{+} \nu_{e}}=i \sqrt{2} H^{\mu} l_{\mu} \tag{1}\\
l_{\mu}=\frac{G_{F}}{\sqrt{2}} V_{c s} \bar{u}_{e} \gamma_{\mu}\left(1-\gamma_{5}\right) v_{\nu}, \tag{2}\\
H^{\mu}=<K^{\star 0}\left(q, \epsilon^{(K)}\right)\left|\left(J_{h a d}^{\mu}=V^{\mu}-A^{\mu}\right)\right| D^{+}(p)>= \\
=\left(M_{D}+M_{K^{\star}}\right) A_{1}(t) \epsilon_{(K)}^{\mu}-\frac{2 A_{2}(t)}{M_{D}+M_{K^{\star}}}\left(\epsilon_{(K)} p\right) \cdot p^{\mu}- \tag{3}\\
-i \frac{2 V(t)}{M_{D}+M_{K^{\star}}} \epsilon^{\mu \nu \rho \sigma} \epsilon_{\nu}^{(K)} p_{\rho} q_{\sigma}
\end{gather*}
$$

Here, the fourth form factor in the zero-lepton-mass limit is omitted, l_{μ} and $J_{h a d}^{\mu}$ are lepton and hadron currents, G_{F} is the Fermi constant, $V_{c s}$ is an element of the Kobayashi-Moskawa matrix which corresponds to the c-s quark transition, $t=(p-q)^{2}=Q^{2}$ is the momentum of a lepton pair, M_{D} and $M_{K^{\star}}$ are masses of D^{+}and $\bar{K}^{\star 0}$ mesons, $V(t)$ and $A_{1}(t), A_{2}(t)$ are the vector and axial form factors, respectively.

The largest difficulties arise in describing the $A_{1}(t)$ form factor. Many quark models lead to the values of A_{2} which do not differ much from the values of V (see refs.[2]-[4]) whereas the experiment gives $A_{2}(0)=0$ and
$V(0)=0.9$. This resembles the situation that took place $5-10$ years ago in describing in quark models vector and axial form factors h_{A} and h_{V} of the $\pi^{-} \rightarrow e \bar{\nu} \gamma$ decay [15]. Quark models led to equal values of these form factors, which was in contradiction with the experimental data $\left(\gamma^{\text {exp }}=h_{A} / h_{V}=0.52 \pm 0.06[16]\right) .{ }^{1}$ In our paper [18] we have shown the way of solving this problem. Since in the present paper we propose an analogous way to describe form factors of the $D^{+} \rightarrow \bar{K}^{\star 0} e^{+} \nu$ decay, let us briefly remind the method used in paper [18]

The structure part of the decay amplitude $\pi^{-} \rightarrow e \bar{\nu} \gamma$ has the form similar to (3)

$$
\begin{equation*}
A_{\pi-\rightarrow e \bar{\nu} \gamma}=i \sqrt{2} e\left[h_{A}\left(g^{\mu \nu} p q-p^{\mu} q^{\nu}\right)-i h_{V} \epsilon^{\mu \nu \rho \sigma} p_{\rho} q_{\sigma}\right] \epsilon_{\mu}^{(\gamma)} \bar{l}_{\nu} \tag{4}
\end{equation*}
$$

Here p and q are pion and photon momenta, $\bar{l}_{\nu}=\frac{G_{F}}{\sqrt{2}} \cos \theta_{c} \bar{v}_{\nu} \gamma_{\nu}\left(1-\gamma_{5}\right) u_{e}$, θ_{c} is the Cabibbo angle, e is the electric charge, $\epsilon_{\mu}^{(\gamma)}$ is the photon polarization, h_{V} and h_{A} are the vector and axial form factors.

Fig.1. Diagrams describing the $\pi^{-} \rightarrow e \bar{\nu} \gamma$ decay.
${ }^{1}$ We should like to note that 11 years before the publication of this experimental value we obtained the estimate $\gamma=0.57$ [17] in the model of nonlinear chiral Lagrangian with baryon loops.

```
ytmaty av2
C
```


The diagram 1a leads to equal values of the form factors h_{A} and h_{V} [18]

$$
\begin{equation*}
h_{A}=h_{V}=\frac{1}{8 \pi^{2} F_{\pi}} \tag{5}
\end{equation*}
$$

Here $F_{\pi}=93 \mathrm{MeV}$ is the decay constant $\pi^{-} \rightarrow e \bar{\nu}$. This is the wellknown result that has been obtained in various quark models [15]. However, the inclusion of diagram 1 b with the intermediate axial-vector meson a_{1} decreases the value of h_{A} in agreement with experimental data. Indeed, in the NJL model [10]-[12] for the amplitude of the decay $a_{1}^{-} \rightarrow e \bar{\nu}$ proceeding through the diverging quark loop the following expression is derived:

$$
\begin{equation*}
A_{a_{1}^{-} \rightarrow e \bar{\nu}}=\frac{g_{\rho}}{3 \sqrt{2}}\left(\frac{(-i 3)}{4 \pi^{4}} \int^{\Lambda} \frac{d k}{\left(\dot{m}_{u}^{2}-k^{2}\right)^{2}}=\frac{6}{g_{\rho}^{2}}\right)\left[Q^{\mu} Q^{\nu}-g^{\mu \nu} Q^{2}+6 m_{u}^{2} g^{\mu \nu}\right] \epsilon_{\mu}^{\left(a_{1}\right)} \bar{l}_{\nu} \tag{6}
\end{equation*}
$$

Here $Q^{2}=(p-q)^{2}, g_{\rho}=6$ is the decay constant $\rho \rightarrow 2 \pi, m_{u}=0.3 \mathrm{GeV}$ is the mass of the u or d constituent quark. The regularised diverging integral determines the constant $g_{\rho}^{-2}[10]-[12]$.

Using the amplitude (6) one can easily express the contribution of diagram 1 b through the corresponding contribution of diagram 1a with the factor ($-\frac{6 m_{u}^{2}}{M_{\alpha_{1}}^{2}}$, so that the total contribution to the axial form factor h_{A} becomes equal to

$$
\begin{equation*}
h_{A}^{(a+b)}=h_{A}^{(a)}\left(1-\frac{6 m_{u}^{2}}{M_{a_{1}}^{2}}\right)=h_{A}^{(a)} Z^{-1}=0.6 h_{V}, \tag{7}
\end{equation*}
$$

which approximates the experimental value. In the vector channel one could take into account the diagram with intermediate vector mesons but the amplitude, analogous to (6), would not contain a large constant term of the form $6 m_{u}^{2} g^{\mu \nu}$ and its contribution would be small. ${ }^{2}$
${ }^{2}$ The same result can easily be obtained in terms of the axial-vector dominance of weak interactions [19] (as it was made with a photon, see fig.1). The Lagrangian describing the transitions $W^{-} \rightarrow \rho^{-}$and $W^{-} \rightarrow a_{1}^{-}$has the form

$$
L^{W}=\frac{\kappa}{2 g_{\rho}}\left[M_{\rho}^{2} \rho_{\mu}^{-}+\frac{M_{a_{1}}^{2}}{Z} a_{1 \mu}^{-}\right] W^{\mu+}+h . c .
$$

Here κ is the weak interaction constant, $W^{\mu+}$ is the vector W meson field, M_{ρ} and $M_{a_{1}}$ are masses of ρ and a_{1} mesons.

If the (axial)-vector dominance of weak interactions is not used; the $D^{+} \rightarrow \bar{K}^{\star 0} \bar{e} \nu$ decay is described by the three diagrams depicted in fig.2.Let us write down the Lagrangian that is necessary to calculate the amplitudes corresponding to these diagrams

$$
\begin{gather*}
L=i \sqrt{2} g_{D} \bar{c} \gamma_{5} D^{+} d+\frac{g_{V}(d, s)}{2} \bar{d} \gamma_{\nu} K^{\star 0_{\nu}} s+ \\
\frac{g_{V}(s, c)}{\sqrt{2}} \bar{c} \gamma_{\nu}\left(D_{s}^{\star+\nu}+\gamma_{5} D_{s_{1}}^{+\nu}\right) s+\bar{s} \gamma_{\nu}\left(1-\gamma_{5}\right) c l^{\nu} \tag{8}
\end{gather*}
$$

Here c, s and d are the fields of the charmed, strange and d quarks; $D^{+}, K^{\star 0}, D_{s}^{\star+}$ and $D_{s_{1}}^{+}$are the ficlds of the pseudoscalar meson D^{+}, vector mesons $K^{\star 0}$ and $D_{s}^{\star+1}$ and the axial-vector meson $D_{s_{1}}^{+}$

Fig.2. Diagrams describing the $D^{+} \rightarrow \bar{K}^{\star 0} e^{+} \nu_{e}$ decay.
We will use relations arising in the NJL model between the coupling constants of pseudoscalar and vector (axial) mesons [10]-[14]

$$
\begin{equation*}
g_{V}(s, c)=\sqrt{6} g_{D_{s}} Z_{s c}^{-\frac{1}{2}}, \quad Z_{s c}^{-1}=1-\frac{3\left(m_{s}+m_{c}\right)^{2}}{2 M_{D_{S_{1}}}^{2}}, g_{V}(d, s)=g_{\rho} \tag{9}
\end{equation*}
$$

Here m_{s} and m_{c} are masses of the s and c constituent quarks

$$
\begin{equation*}
m_{s}=0.5 \mathrm{GeV}, \quad m_{c}=\frac{M_{J / \Psi}}{2}=1.55 \mathrm{GeV} \tag{10}
\end{equation*}
$$

$M_{D_{S_{1}}}$ is the mass of the axial-vector meson $D_{s_{1}}$. With the help of the Goldberger- Treiman idëntity the constants g_{D} and $g_{D_{S}}$. can be expressed through the decay constants F_{D} and $F_{D_{S}}$.

$$
\begin{equation*}
g_{D}=\frac{m_{d}+m_{c}}{2 F_{D}}, \quad g_{D_{s}}=\frac{m_{s}+m_{c}}{2 F_{D_{S}}} \tag{11}
\end{equation*}
$$

where $F_{D}=1.9 F_{\pi}$ and $F_{D_{S}}=2 F_{\pi}$ (see ref.[21]). And the last we are going to take from the NJL model is the relation of the constants $g_{V}(i, j)$ with the regularised diverging quark loops [10]-[14]

$$
\begin{equation*}
g_{V}^{-2}(i, j)=\frac{(-i)}{8 \pi^{4}} \int^{\Lambda} \frac{d k}{\left(m_{i}^{2}-k^{2}\right)\left(m_{j}^{2}-k^{2}\right)} \tag{12}
\end{equation*}
$$

where Λ means some regularisation of this integral the concrete form of which is out of our interest.

Let us start our calculations with the vector part of diagram 2 a . This anomalous- type diagram is similar to those describing the decays $\left(\pi^{0}, \eta, \eta^{\prime}\right) \rightarrow 2 \gamma, \eta^{\prime} \rightarrow \gamma(\rho, \omega), \rho \rightarrow \gamma(\pi, \eta), \omega \rightarrow \pi \gamma, \phi \rightarrow \gamma(\pi, \eta)$ and others (see ref.[11]). It is to be noted that in describing the above decays one should use only the first step of the momentum expansion of quark loops. Then, theoretical estimates will satisfactorily agree with the experimental data [11]. ${ }^{3}$

The contribution of diagram 2 a to the form factor $V(0)$ in the abovementioned approximation equals ${ }^{4}$

$$
\begin{equation*}
V^{(a)}(0)=g_{\rho} \frac{\left(m_{c}+m_{d}\right)\left(m_{c}+m_{s}+m_{d}\right)}{(4 \pi)^{2} F_{D}}\left(M_{D}+M_{K^{\star}}\right) I\left(m_{c}, m_{s}, m_{d}\right)=2 \tag{13}
\end{equation*}
$$

${ }^{3}$ The use of this method of calculation allows one to approximately conserve the group $U(3)$, which results in reasonable relations between the amplitudes of the above processes. The allowance for the influence of momenta of legs makes the results worse as it strongly violates this group.
${ }^{4}$ In the case $m_{c}=m_{s}=m_{d}$ and $F_{D}=F_{\pi}$ the form factor (13) easily results in expression (5) for the vector form factor of the $\pi^{-} \rightarrow e \bar{\nu} \gamma$ decay
where

$$
\begin{align*}
I\left(m_{c}, m_{s}, m_{d}\right) & =\frac{1}{i \pi^{2}} \int \frac{d k}{\left(m_{c}^{2}-k^{2}\right)\left(m_{s}^{2}-k^{2}\right)\left(m_{d}^{2}-k^{2}\right)}= \tag{14}\\
& =\frac{2}{\left(m_{c}^{2}-m_{s}^{2}\right)}\left[\frac{\ln \left(m_{c} / m_{d}\right)}{1-m_{d}^{2} / m_{c}^{2}}-\frac{\ln \left(m_{s} / m_{d}\right)}{1-m_{d}^{2} / m_{s}^{2}}\right]
\end{align*}
$$

Now let us estimate the contribution of diagram $2 b$ with the inter-. mediate vector meson D_{s}. The amplitude of the $D_{s}^{\star+} \rightarrow \bar{e} \nu$ decay proceeding through a quark loop has the form
$A_{D_{s}^{\star+} \rightarrow \bar{\epsilon} \nu}=\frac{g_{V}(s, c)}{3 \sqrt{2}}\left\{\frac{6}{g_{V}^{2}(s, c)}\right\}\left[Q^{\mu} Q^{\nu}-g^{\mu \nu} Q^{2}+\frac{3\left(m_{c}-m_{s}^{s}\right)^{2}}{2} g^{\mu \nu}\right] \epsilon_{\mu}^{\left(D_{s}^{\star}\right)} l_{\nu}$
(The expression in the braces brackets corresponds to the diverging quark loop, see(12)). Using expression (15) one can easily estimate the contribution of diagram 2 b to the vector part of the matrix element $H^{\prime \prime}$

$$
\begin{equation*}
\Delta^{(b)} H_{V}^{\mu}=-i \frac{2 V^{(\mathrm{a})}(0)}{M_{D}+M_{K^{\star}}}\left[Q^{2}-\frac{3}{2}\left(m_{c}-m_{s}\right)^{2}\right] \frac{1}{M_{D^{\star}}^{2}} \epsilon^{\mu \nu \rho \sigma} \epsilon_{\nu}^{\left(K^{\star}\right)} p_{\rho} q_{\sigma} \tag{16}
\end{equation*}
$$

Finally, this leads to the following expression for the vector form factor

$$
\begin{equation*}
V^{(a+b)}(0)=V^{(a)}(0)\left[1-\frac{3\left(m_{c}-m_{s}\right)^{2}}{2 M_{D^{*}}^{2}}\right]=1.3 \tag{17}
\end{equation*}
$$

This estimate satisfies the experimental data within the errors [8]

$$
\begin{equation*}
V^{e x p}(0)=0.9 \pm 0.3 \pm 0.1 \tag{18}
\end{equation*}
$$

Now let us calculate the axial form factor A_{2}. The contribution of diagram 2a to the corresponding part of the amplitude H^{μ} has the form

$$
\begin{gather*}
\Delta^{(a)} H_{A}^{\mu}=i g_{\rho} g_{D} \frac{3 \epsilon_{\nu}^{\left(K^{\star}\right)}}{4 \pi^{4}} \\
\int d k \frac{m_{d} p^{\mu} p^{\nu}-\left(m_{c}+m_{s}\right) p^{\mu} k^{\nu}+\left(m_{s}-m_{d}\right) p^{\nu} k^{\mu}+2\left(m_{c}-m_{d}\right) k^{\mu} k^{\nu}}{\left[m_{d}^{2}-k^{2}\right]\left[m_{s}^{2}-(k-q)^{2}\right]\left[m_{c}^{2}-(k-p)^{2}\right]} .(19 \tag{19}
\end{gather*}
$$

Hence, for the form factor $A_{2}^{(a)}$ we have

$$
\begin{equation*}
A_{2}^{(a)}(0)=3 \tag{20}
\end{equation*}
$$

Let us consider now diagram 2c with the intermediate axial-vector meson $D_{s_{1}}^{+}$. For the decay amplitude $D_{s_{1}}^{+} \rightarrow \bar{e} \nu$ we derive the expression analogous to (6) [18]
$A_{D_{S_{1} \rightarrow \bar{e} \nu}^{\mu}}^{\mu}=\frac{g_{V}(s, c)}{3 \sqrt{2}}\left(\frac{6}{g_{V}^{2}(s, c)}\right)\left[Q^{\mu} Q^{\nu}-g^{\mu \nu} Q^{2}+\frac{3}{2}\left(m_{c}+m_{s}\right)^{2} g^{\mu \nu}\right] \epsilon_{\mu}^{\left(D_{S_{1}}\right)} l_{\nu}$.
Using (21) we arrive at the following expression for the total contribution of diagrams $2 i$ and 2 c to the axial part of the amplitude H^{μ}

$$
\begin{equation*}
\Delta^{(a+c)} H_{A}^{\mu}=\Delta^{(a)} H_{A}^{\mu}\left[1-\frac{3\left(m_{c}+m_{s}\right)^{2}}{2 M_{D_{S_{1}}}^{2}}+\frac{Q^{2}}{M_{D_{S_{1}}}^{2}}\right] \tag{22}
\end{equation*}
$$

As a resull, for the form factor $A_{2}(0)$ we finally get

$$
\begin{equation*}
A_{2}^{(a+c)}(0)=3\left[1-\frac{3\left(m_{c}+m_{s}\right)^{2}}{2 M_{D_{s_{1}}}^{2}}\right]=0.06 \tag{23}
\end{equation*}
$$

which is in complete agreement with the experimental value [8]

$$
\begin{equation*}
A_{2}^{e x p}(0)=0.0 \pm 0.2 \pm 0.1 \tag{24}
\end{equation*}
$$

Finally, let us estimate the axial form factor $A_{1}(0)$. The decisive contribution to this form factor comes from the diverging parts of diagrams 2a and 2c. Let us demonstrate this.

The diverging part of diagram 2 a has the form

$$
\begin{equation*}
\Delta_{d i \nu}^{(a)} H_{A}^{\mu}=2 g_{\rho} g_{D}\left(m_{c}+2 m_{s}-m_{d}\right) \frac{(-i 3)}{(2 \pi)^{4}} \int^{\Lambda} \frac{d k}{\left(m_{c}^{2}-k^{2}\right)\left(m_{s}^{2}-k^{2}\right)} g^{\mu \nu} \epsilon_{\nu}^{\left(K^{\star}\right)}= \tag{25}
\end{equation*}
$$

$$
=\left(m_{c}+2 m_{s}-m_{d}\right)\left[\frac{3 g_{\rho} g_{D}}{g_{V}^{2}(s, c)}=g_{\rho} \frac{F_{D_{S}}^{2}}{F_{D}} \frac{\left(m_{c}+m_{d}\right)}{\left(m_{c}+m_{s}\right)^{2}} Z_{s c}\right] g^{\mu \nu} \epsilon_{\nu}^{\left(K^{*}\right)}
$$

After the inclusion of diagram 2c the factor $Z_{s c}$ disappears and the contribution of diagrams 2 a and 2 c to the form factor A_{1} becomes equal to

$$
\begin{equation*}
A_{1}(0)=g_{\rho} \frac{F_{D_{S}}^{2}}{F_{D}} \frac{\left(m_{c}+m_{d}\right)\left(m_{c}+2 m_{s}-m_{d}\right)}{\left(m_{c}+m_{s}\right)^{2}\left(M_{D}+M_{K^{*}}\right)}=0.42 \tag{26}
\end{equation*}
$$

The experimental value is

$$
\begin{equation*}
A_{1}^{e x p}(0)=0.46 \pm 0.05 \pm 0.05 \tag{27}
\end{equation*}
$$

The contributions of the finite parts of diagrams 2 a and 2 c cannot essentially change the result (26) as they are multiplied by the small factor analogously to the form factor $A_{2}^{(a)}$ (see (22)).

Summing up the study of the form factors of the $D^{+} \rightarrow \bar{K}^{* 0} e^{+} \nu$ decay we should like to emphasize again that the author does not pretend to a good quantitative description of the above-mentioned quantities as he uses very rough phenomenological approximations. However, we think that a qualitative physical picture of this process is explained. It is very similar to the situation existing in the $\pi^{-} \rightarrow e \bar{\nu} \gamma$ decay. Indeed, in the vector form factor the decisive role is played by diagram 2a. Therefore, all the models give more or less the same, satisfactory enough estimates. A more complicated situation occurs with the axial form factor A_{2}. Here arises an additional diagram 2 c with an intermediate heavy axial meson whose contribution almost completely cancels the contribution of the basic diagram 2a. Therefore, quark models disregarding this effect give very overestimated results. Finally, in the form factor A_{1} in a part of the amplitude corresponding to diagram 2a there arises a large factor $Z_{\text {sc }}$ compensating the effect of subtraction of two almost equal quantities. This again leads to a considerable deviation from zero of the form factor A_{1}.

In our subsequent papers we are going to study the momentum dependence of these form factors using one of the versions of potential quark models to estimate vertices described in the present paper by simple quark loops. Then, the ratio between the limiting and transverse polarisations in the decay $D^{+} \rightarrow \bar{K}^{\star 0} e^{+} \nu_{e}^{e}$ as well as form factors of the B meson decay could be estimated.

Table 1. Experimental values for form factors of the decay $D^{+} \rightarrow$ $\bar{K}^{* 0} e^{+} \nu_{\mathrm{e}}$ from [8] compared to prediction of various models ([1]-[6] and this paper).

	$\mathrm{E} 691[8]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	This paper
$A_{1}(0)$	$0.46 \pm 0.05 \pm 0.05$	0.8	0.8	0.9	1.0	0.52 ± 0.07	0.43	0.42
$A_{2}(0)$	$0.0 \pm 0.2 \pm 0.1$	0.6	0.8	1.2	1.0	0.05 ± 0.35	0.29	0.06
$V(0)$	$0.9 \pm 0.3 \pm 0.1$	1.5	1.1	1.3	1.0	0.85 ± 0.08	0.50	1.3

References

[1] F.J.Gilman, R.L.Singleton (jr.), Phys.Rev.D41 (1990) 142
[2] N.Isgur, D.Scora, Phys.Rev.D4O (1989) 1491
[3] M.Bauer, M.Wirbel, Z.Phys. C42 (1989) 671
[4] J.G.Korner, G.A.Shuler, Z.Phys. C38 (1988)511
[5] V.Lubicz, G.Martinelli, C.T.Sachrajda, Nucl.Phys. B356 (1991),301
[6] R.N.Faustov, V.O.Galkin, A.Yu.Mishurov, Preprint JINR. E2-91451, Dubna, 1991
[7] J.C.Anjos et al., Phys.Rev.Lett. 62 (1989) 722
[8] J.C.Anjos et al., Preprint Fermilab.Pub.-90/124-E (E-691); Phys.Rev.Lett. 67 (1991) 1507
[9] M.Adamovich et al., Preprint CERN/PPE 91-99, June 1991
[10] M.K.Volkov, D.Ebert, Yad.Fiz. 36 (1982) 1265. (in Russian); Z.Phys.C 16 (1983) 205
[11] M.K.Volkov, Ann.Phys. 157 (1989) 282; Particles and Nuclei 17 (1986) 433
[12] D.Ebert, R.Reinhardt, Nucl.Phys.B271 (1986) 188
[13] U.Vogl, W.Weise, Preprint TPR-91-6, Regensburg, 1991
[14] D.Ebert, Z.Phys.C 28 (1985) 433
[15] D.A.Bryman, P.Dopommier, C.Lecroy, Phys.Rep. 88 (1982) 151; B.R.Holstein, Phys.Rev.D33 (1986) 3316; J.Gasser, H.Leutwyler, Ann.Phys. 158 (1984) 142; E.Z.Avakian et al., Yad.Fiz. 46 (1987) 576; N.Power, M.D.Scadron, Nuovo Cim. A7S (1983) 159
[16] A.Bay et al., Phys.Lett. B174 (1986) 445
[17] V.N.Pervushin, M.K.Volkov, Phys.Lett.B58 (1975) 74
[18] A.N.Ivanov, M.Nagy, M.K.Volkov, Phys.Lett.B200 (1988) 171
[19] M.K.Volkov, M.Nagy, A.A.Osipov, Teor.Mat.Fiz 87 (1991) 57 (in : Russian)
[20] Particle Data Group, Phys.Lett B239 (1990) 1
[21] H.Albrecht et al., Preprint DESY 91-121, October, 1991

Received by Publishing Department on March 17, 1992.

