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· 1. Introductio~. · In this, paper we. wi,ll show that the 
'\' 

solutions of the cla_ssical Yang-Baxter (YB) equations may be 

used in co~~trt'icting the solutions of the Y'.a~g..:Mii{k :(·Y~r· 
~ /' .. : 

equations in !Rn. Our goal is to find some solutions of the 

equations for a pur_e classical · YM theory in the Euclidean 

space !Rn with the metric oab' a,b, ... =1, ... ,n. Let Aa be the 

YM potentials with values in the semisimple Lie algebra §' 

of t.h~ Li·~ group G and F ab= c3 aAb- c3~Aa '/ 'c Aa, Ab] be' ~he cur-
,, " , , . ,"-. r •' ~ ..• ~: .. 

vature tensor for Aa. 

(1) 

The Einstein summation convention is use1 throughout, if not 
·: .. ~ ' ':.: 

stated otherwise. 

Some solutions of Eqs. ( 1) 
. -, ' .. 1 · a . < · . 4k 

in the spaces IR , IR and IR 
·:.: ·~ ·,.' ,; 

were obtained in papers [1-5). In particular, in [4,5) it has 
, . , '.' ' • ~-.. ,,' ~ •,. ' t ; 

been shown that new solutions of the YM equations in n=7 and 

n=B may be obtained from solutions of 'the ··classical. YB equa

ti_ons. In what follows we shal_l show _that it is_ .. pos~ible, • to 

obtain other classes of solutions. of. the YM equations , .. in~-the · ,, ..... ' ,· ':·, . . ., ··••. 

spaces of dimension n2:4 from the solutions of the classical 

YB .equations. 

2. Rouhani-Ward · equations. In· !Rn ·let tis ·consider' gauge 

fields Aa depending only on tsxn (cos_mological solutions). We_ 

can always transform to a gauge in which An=0 (gauge fixing). 

As 'ci result, we have 



F~f3 = [Aa,A{3] F = A . na a . ( 2) 

where Aa=dAa/dt, a,{3, ... =1, .... ,n-1. Then, the _YM equations 

take the form 

These equations 

Aa -JA{3,[Aa,A{3]] = O, 

[ Aa, Aa] = o. 

generalize the equations 

(3a) • 

(3b) 

Of Corrigan, 

Wainwright and Wilson [6] who have considered the .case n=4. 

H. 
Consider the Lie algebra Hof the simple compact Lie group 

We put n=1+dimH. 
Considering H as a vector space, we 

obtain ~n=H@~ and oab = {oaf3'onn}, a,b, ... =1, ... ,n. Let the 
. . . ,· . . 

structure constants fa{3; of the Lie algebra H be normalized 

to faro ff3,o = 2 oa{3 

In ~n=H@~ let us introduce the following antisymmetric 

4-index tensor Tabcd: 

T a{3;o = 0 T = f a{30 n a{30 (4) 

With the help of Tabcd · one can introduce the ff-invariant 

self-duality equations (cf.(7,1]): 

Tabcd Fed= 2 Fab. (5) 

Using,(4), one can rewrite Eqs.(5) in the form 

f F = F a{3; ;n a(3' (6) 

foa(3 Faf3 = 2 Fon ( 7) 

Multiplying Eqs.(6) by foa{3, one obtains Eqs.(7). Therefore, 

r ';;·r·:,.~, 

,... . :.~ -i-~--- -~ -.::~ 2 :~ r• 

I' 
i 

I 
. I 

the self-duality equations (5) are equivJ1ent to Eqso"(t'>). 

Substitute (2) int9 (6) andpbtain 

f~f3 7 A7 + [Aa ,Af3 J = o ·ca> 

It is easy to see that each solutfon of the self-duality 

equations (8) satisfies Eqs.(3). Indeed, multiply Eqs.(8) ·by 
. 1 ..• 

fa~ and rename the indices, then obtain Aa+-2 f a [A0 ,A }~O. 
<X,-,u • a,..; . ,-, o . 

. ' . ; . . . . ', '. 

If one differentiates these equations once more, then obtains 

Aa =-fa [A 0 ,A ]. At the same time from (8) it follows that a,-,7 . ,-, O / 

[A13 , [ Aa' Af3] ]= -f af3i A~, A
0
]. Thus, if _Aa satisfy Eqs. ( 8), then 

Aa satisfy Eqs.(3a), too. And finally, from Eqs.(8) and from 

the Jacobi identities for matric.es Aa one obtains that Aa 

satisfy Eqs.(3b). 

Equations (8) were introduced by Rouhani [8] for the case 

when_ fa{3; are structu~e constants of the_Lie algebra s1(N,~). 

For a more general case, when fa are structure constants of .. a,..; 

an arbitrary simple Lie algebra U, these equations were 

introduced and investigated by Ward [ 9).- Ward has also 

supposed [9] that Eqs.(8) can be obtained from the 

self-duality equations_ for gauge fields in higher dimensions 1 

We shall call Eqs. (8) the Rouhani-Ward (RW) eqm1tions .. 

3. Yang-Baxter equations. In [8,9] the connection of 

Eqs. ( 8) . with the classical Yang-Baxter equations was sholrlll. ·. 

The detailed discussion of the classical YB equa,ti_ons and the 

description of the explicit _form of their solutions 111ay.be 

found in [ 10-13]. The classical YB equations on , the. Lie 
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algebra H can be wri.tten in the form [8, 9) 

facowc~(u)W0;(u+v)+f~cowac(u)W0;(v)+f;cowac(u+v)W~0 (v)=O. (9) 

Here functions W a (a,~ 1• •• • =1, ... ,dimX) depend on complex ap . 

variables u and v, 

algebra H. 

f a£3,; are structure constants of the Lie 

Assume that the functions W a<z) have a simple pole at 0 ap , 
' . 

with residue of the form (o a• (=const~0. Following [11), ap . we 

shall ca11 these functions the nondegenerate functions. As it 

has been proved in [ 8, 9 ]', when v --t o the functional 

equations (9) for nondegenerate functions Wa~ reduce to the 

following differential equations: 
,, 

fa~; W; + [Wa,W(3} = 0, (10) 

where w·=dW /du, W =(1/(')W a<u>Ia, Ia are generators of the ; ; a · ap P P 

Lie algebra H, i.e. ' [I', Ia] =f a I . Therefore, each nondege-a P ap;; · 

nerate solution of the classical YB equations satisfies the 

differential equations (10). 

Comparing (8) with (10), we see that in the case !l=H the 

RW.equati'ons (8) coincide with Eqs.(10). Hence, each nonde

generate solution of the classical YB equations on H is a 

solution-of the RW equations (8) if !l=H. So, we have 

PROPOSITION 1. The classical Yang-Baxter equations on the 

Lie algebra, H are equivalent to the self-duality equations 

(5) for gauge fields Aa of the Lie group H in the space 

Rn=H®R, reduced to ~ne dimension. Each nondegenerate solution 

W a of the classical YB . ·equations on X gives a cosmological 

4 

~. 
~ 

! 

solution Aa of the YH equations in Rn=H®R, if Aa~Wa(xn). 

Proof follows from (2)-(10). 

A lot of nondegenerate solutions of the classical YB equa

tions are kno¥n (see, e.g., [10-13)). For simple Lie algebras 

H each solution Wa(3 of these equations is either an elliptic 

function, or a trigonometric function, or a rational function 

[11,12). In [11,12) the detailed description of all n6ndege

nerate elliptic and trigonometric solutions is given, and in 

[11,13) a vast family of rational solutions is constructed. 

The simplest rational solution of Eqs. ( 9) has the form 

[10,11): 

1 ' 
Wa(u) = u· Ia (11) 

A more complicated trigonometr,ic solution can be obtained 

from the solution given in [12) (formula (IV.2.12)) if one 

puts A=iu (u is real) and w=2rr in notation of Faddeev and 

Takhtajan. This solution has the form 

Wa(u) L r;i®J(I) cth (u-i2rrjj 
2r L a 2r (12) 

J = 1 

where®: H~H is the Coxeter automorphism of the simple Lie 

algebra Hand r is its order, i.e. ®r=Id. For all simple Lie 

algebras H the Coxeter numbers rand the description of the 

automorphism® may be found in I14] (see·, also, [11)). 

The Coxeter automorphisms of the classical Lie algebras H 

have the form [11,14): ®(A) = QAQ- 1 or ®(A) = -QAtQ- 1
, where 

AeH. The explicit form of matrices Q and the values of r may 

be found in [11). With the help of Q, all constant matrices 
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e1(I) can be explicitly written out, and one can show that 
a 

solution (12) is real. Particular cases of this solution for 

H=so(7) and H=s0(8) are described in [5]. Notice that for 

real u the solution (12) is singular only when u=O. The other 

poles are on the imaginary axis at the points u=i2rr1, 1=±1, 

±2, ... [11,12]. 

The explicit form of general nondegenerate trigonometric 

and elliptic solutions of the classical YB equations for any 

simple Lie algebra H is given in [ 11]. They are rather 

complicated, that is why we do not write out them here. When 

u=xn' all these solutions give_ the cosmological solutions of 

the YM equations in Rn~H~R. 

4. Tensors a 
Jab and ansatz. Now_ we show that the 

Rouhani-Ward and Yang-Baxter equations may appear in the 

Yang-Mills theory on the space Rn not.only in the case when 

· the gauge fields A depend on one coordinate X. It turns out a n 

that the connection between dimension q of the algebra Hand 

dimension n of the space will be different (i.e. q*n-1). 

Let us suppose that in the space Rn with metric ob there - a 

are q constant tensors Ja1•···,Ja1 that are antisymmetric in 

indices a and_b and obey the relations 

J a J ~ = oa~ o + La~ 
ac be ab ab (13) 

where L:~ are some constant antisymmetric in a and b tensors, 

a,~ •... ·=1, .... ,q. Examples of tensors J:b satisfying (13) will 
{,I 

be given later. 1 
e 

6 

In Rn we consider gauge fields Aa of the Lie group G. We 

shall look for solutions of the YM equations (1) in the form 

Aa 
a 

- Jae Ta(<p) ac<p' (14) 

where the real antisymmetric tensors J~b satisfy (13); <pis 

an arbitrary function of coordinates xaeRn; T , ... ,T depend 
. 1 q 

only on <p and take values in the Lie algebra Y, i.e. they are 

matrix functions. If n=4 and q=3, a 
as Jab one may take the 

well-known 't Hooft tensors, and in this case ansatz (14) 

coincides with the ansatz of papers [ 15] . If n=4, q=3 apd . 

<p=x xa then (14) coincides with the ansatz of papers [16]. a. 

Substitute (14) into the definition of Fab and-Obtain 

Fab = Ja~{Taabac<p + Taab<p ac<p} - Jb~{Taaaac<p + Taaa<p ac<p} + 

-~ '¥ 
+ Jae Jbe [T~,T'l] ac<p ae<p' (15) 

where Ta= dTa/d<p, aa=a/axa. Substituting (14) and (15) into 

Eqs.(1) and using relations (13), we obtain 

a . 
aaFab + _[Aa,Fab] = Ta Jab aa(□<p) + [Ta,Ta] ac<p ac<p ab<p + 

+( Ta- [ T~ ,[Ta,T~]]) Ja~ aa<p ac<p ac<p - aa1p{2ta ~b~ acaa<p+ 

a~ a ~ • a } . 
+ [Ta,T~] Lac acab<p + ![Ta,T~]JacJbeacae<p - Ta Jab □<p' <16 > 

•• 2 2 
where T =d Ta/d<p, □=acac. 

5. Equations for T (<p) and <p. The indices a,~ ••.. ,c range .a . . 

over 1, ... , q. Let us assume that in the space Rq there is a 

constant totally antisymmetric 3-index tensor f 
O 

satisfying 
. ap'{ . 
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f r f{3 r = 2 o (3. For example, if q=7, then as f (3 one may a70 7o a· . a 7 

take the octonionic structure constants (see [4,5]). If q co-

incides with dimension of simple compact Lie algebra H, then 

as fa{3
7 

one may take the structure constants of H. 

Using the antisymmetric tensor fa
137

, one can rewrite 

Eqs.(16) in the following way: 

a . 
aaFab + [Aa,Fab] = Ta 3ab aa(□~) + [Ta,Ta] ac~ ac~ ab~+ 

+( Ta- [ :f3 ,[Ta,T{3]]) Ja~ aa~ ac~ ac~ - (fa~T7+[Ta,T{3])x 

x{Laf3 a ab~+ 2Ja Jbf3 a a ~}a~+ T {f
13

a Lf37 a ab~ -ac c ac e c e a a 7- ac c 

- 23b~8 c 8 a~ + 2 f{3;3!c31e8 c 8 e~ + 3 a~ 0 ~}8 a~ (17) 

Let .q coincide with a dimension of simple compact Lie 

algebra H with structure constants fa137 • Assume that Ta(~) 

satisfy the RW equations (8): 

fa{3 7 T7 + [Ta,T{3] = o (18) 

and function~ obeys the following system of linear.equations 

ff3; L=~ acab~ - 2Jb~acaa~ + 2ff3;J!cJieacae~ + Ja~ □~=O. (19) 

As was shown in Sect.2, from Eqs.(18) it follows that 

[Ta,Ta] = Ta- [T
13

,[Ta,T{3]] = 0. If we dilferentiate (19) with 

respect to xa then obtain Ja~ aa(o~)=O. Thus, if Ta(~) and~ 

satisfy the system of Eqs.(18), (19), then the right-hand 

side of (17) will be equal to zero and gauge field (14) will 

be the solution of the YM equations (1). 

PROPOSITION 2. If tensors Ja~ satisfy the relations (13) 

8 

} j'j 

i 
V 

and q=dimH, then to each solution of system {(18),(19)} one 

may correspond the solution (14) of the YH equations (1) for 

gauge fields Aa of an arbitrary semisimple Lie group Gin the 

Eucliqean_space IRn. 

Proof follows from formulas (14)-(19). 

In [8,9] it has been shown that if ~=H then each nondege

nerate solution of the classical YB equations on the Lie 

algebra H will be the solution of Eqs.(18) and from 

Proposition 2 it follows: 

PROPOSITION 3. If tensors J a 
ab satisfy equations (13), 

q=dirnH and ~=H, then to each nondegenerate solution Ta(~) of 

the classical YB equations on the Lie algebra H vith ~ satis

fying Eqs.(19) one may correspond the solution (14) of the 

YH equations (1) for gauge fields Aa of a simple Lie group H 

in the Euclidean space IRn. 

Equations (19) have a particular solution 

~ = paxa, (20) 

where pa=cohst. Then, from Proposition 2 it follows that to 

each solution of the RW equations (18) with~ from (20) the 

plane-wave solution (14) of the YM equations in IRn may be 

corresponded, and from Proposition 3 we obtain 

PROPOSITION 4. To each nondegenerate solution Ta(~) of 

the classical YB equations on the Lie algebra H one may cor

respond the plane-wave solution (14) vith ~ = p x of the YH a a 

equations (1) for gauge fields Aa of the Lie group Hin the 

EUclidean space IRn. 

9 



In particular, to the trigonometric solution (12) of 

Eqs.(9) one may correspond the plane-wave solution of Eqs.(1) 

in the Euclidean space with arbitrary dimension n. 

6. Explicit form of tensors Ja~. To find more complicated 

than (20) solutions of Eqs.(19), one should give the concrete 

expressions to the tensors J a~ and L~~ The theory of 

Clifford algebras gives the examples of such tensors. 

Let us denote by Cl(O, q) the Clifford algebra for the 
q . . . . 

space~ with the metric ga~= - oa~• a.~ •... =1, ... ,q. It has 

been known for a long time that the algebra Cl(O,q) can be 

realized in terms of matrices. In particular, Cl(0,6)~M(8,~) 

and Cl(0,8)~M(16,~) (see, e.g., [17)). where through M(s.~) 

the full sxs matrix algebra over·~ is denoted. Let us give 

some examples of tensors Ja~ 
Example 1. Consider the algebra Cl(0,2) with generators a1 

and 0
2

• It is well-known [17) that Cl(0,2) is isomorphic to 

the algebra of quaternions IH, and elements 0
1 2 

0 • 03=0102 

can be realized in terms of real antisymmetric 4x4 matrices 

1 2 3. ex a a a a 
7l , 7) , 7l with components: 1)~0 = c ~a, 7lµ4 =. -7)4µ = .o µ , whe-

re ca~a are structure constants of SU(2), a,~. a, o=1, 2, 3; 

µ, v, ... =1, ... , 4. Tensors 7l~v• 1)~v and 7l~v coincide with the 

well-known •t Hooft tensors that obey the relations (13) with 

La~= ca~a1) a 
µv• µv 

Now, let us introduce the tensors 

a a 3 (µi)(vj) = 0ij 7lµv (21) 

10 

with the double indices (µi), (vj), ... , where i,j, ... =1, ... ,p 

If we denote the double indices by a,b, ... =1, ... ,4p, then it 

is not difficult to verify that the tensors Ja~ will satisfy 

the relations (13) with Lab~=ca~0 J 0 
a ab Thus in the spaces ~4

P 

one may always introduce three tensors Ja~ satisfying (13). 

Example 

generators 

2. Let us consider the algebra Cl(0,6) 

0
1

, ••• ,0
6 and also introduce a

7
=o 1 a 2 o

3
o

4
a 5 o

6 

with 

It 

is known [17) that aa (a=1, .. . ,7) can be realized in terms of 

real antisymmetric 8X8 matrices. The components oµ~ (µ,v, . .. = 

1, ... ,8) of these matrices satisfy the relations (13) with 

La~_ 1 [a ~] = 1 a ~ _ ~ a 
µv - 2 °µA 0 vA - 2< 0 µA 0 VA ~ 0 µA 0 VA). 

We now introduce the tensors 

.. a 
3 (µi)(vj) 

o.. a 
l.J oµv (22) 

where µ,v, •.. =1, ... ,8; i,j, ... =1, ... ,p. Numbering the com~ 

ponents of these tensors by the indices a,b, .. . =1, ... ,8p, in 

the space ~Sp we obtain seven tensors J a 
ab satisfying (13) 

with La~= 1 J[a J~] 
ab 2 ac be It is clear that for ansatz (14) one 

can choose not all seven tensors but only q of them with 

4:Sq:S7. 

Example 3. Let us consider now the algebra Cl(O, 8) with 

generators aa, a,~ •... =1, ... ,8. It ts known [17) that oa can 

be realized in terms of real antisymmetric 16x16 matrices. 

The components 

satisfy (13) with 

oa 
µv 

La~ 
µv 

(µ,v, ... =1, ... ,16) of these matrices 

= ½ 0£~ oe~. Let us also introduce the 

tensors J(µ1)(vj) defined by (22) but with µ,v, ... =1, ... ,8; 

11 



i,j, ... =1, ... ,p. Numbering the components of these tensors 

by the indices a,b, .•• =1, ... , 16p,
0 

we obtain · eight tensors 

Ja~· In the space R16
P all these tensors satisfy the relati

ons (13) with L~~ = ½ J~~ J~~ and can be used in constructing 

of the ansatz ( 14). -

And finally, we- point out that in the spaces Rn one may 

introduce q tensors J a~ satisfying ( 13) in the following 

cases: 

n = P 2 2+4m 
=> 1+8msqs3+8m, 

n = p 2 3+4m 
=> 4+8msqs7+8m, 

n = p 24+4m => q=8+8m, 

where m= 0, 1, 2, ... ; p=1, 2, ... Proof may be 

the help of formula [17]: 

Cl(O,s+8m) = Cl(O,s)®Cl(0~8)® ... ®Cl(0,8), 

m times 

(23a) 

( 23b) 

(23c) 

obtained with 

(24) 

where· 1sss8. Using the recurrence relations given in [ 17], 

one can easily obtain the explicit form of tensors Ja1,:,., 

Ja1 in the spaces of dimension n indicated in (23). 

7. Constructing of solutions . . Substituting the explicit 

form of Ja~ into ·Eqs. (19), one may try to find solutic;ms, 

different .from solutions (20). Such solutions exist. Rather• 

than make an exhaustive study of all the p9ssibilities we 

shall restrict ourselves to the case n=4p and q=3. The cases 

of other n from (23) will be considered in a separate paper. 

So, let us substitute (21) into (19) where ca(37 are taken 

12 

instead of fa and Lab(3=caf373 b7 . We usa the following · · a~7 a a · 
identities for. 71 a [18]: . 11V 

a . (3 
7111;>.. 71v;>., 

c a (3 7 _ a 
(37 7111;>.. 71vu - 011v71 ;>..u 

= oa(3 o. + caf37 71 7 
11v 11v 

o . a - o a + o a 
µu 71;>..v ;>..v7111u ;>..u7111v 

and obtain the equations: 

(25a) 

(25b) 

a a 
2 1111 ;>., (a;>.,iavj~ - a;>.,j~vi~) ~ 2 11v;>.. (a;>.,jaµi~ - a;>.,ia

11
j~) + 

+oµv11;>..:<a;>.,iauj~-a;>.,jaui~) + 1111~(2a;>.,ia;>..j~+oij□~~=O, (26) 

where a;>.,i=a/ax;>.,i It is clear that Eqs.(26) are equivalent to 

the equati~ns 

aµiavj~ = aµjavi~, a;>.,ia;>..j~ = o , . (27) 

where 11,V, .•. =1, ... ,4; i,j, ... =f, ... ,p. 

Eqs.(27) are simpler than Eqs.(19) and appear in study of 

the hyperkahler manifolds' of dimension 4p · (see [19]). In 

principle, fo~ Eqs.(27) one may write a general solutfon (see 

[19]), but we shall not do this here. As an example, we write 

out one of the particular solutions of Eqs.(27) (and (26)): 

2 
N BI 

~ = 1 + [ (X -cI J ( x -c~ J 
I=1 11 µ 11 

(28) 

where x11=x11ipi, pi=const, N is any integer number, BI and~ 

are arbitrary constants. For a special case of the space R8 

and group G=SU(2) the solution of this type was obtained by 

Ward [1]. 

13 



, -., :Eqs: (18)· with q=3 and 1f=su(2) coincide with the well·-known 

Nahm equations (see [6,8,9,20]). These eq~ations appeared in 

constructing the soluti_ons of_ the YM equations in IR
4 

[6, 15, 
;-, ~ . / 

16] and of the model of chiral fields in IR
2 

[21]. Nahm' s 

equations have -a · Lax . type representation with a spectral 

parameter, and in terms of theta functions one can write a 

general solution of Nahm's equations for any semisimple Lie 

algebra ~ (see [20,9]). · The explicit form of particular 

solutions of Nahm' s equations- may be_ found in [ 15,-16]. We 

shall not.write it here. 

8. Conclusion. An example for n=4p and q=3 shows that 

Eqs. (19) may have not only solution (20) linear on 

coordinates xa , · but also more complicated solutions. It is 

interesting to study Eqs. (19) in the spaces IRn with q tenso_rs 

Ja~ and n>4p-from (23) in the case when q coincides with the 

dimension of some simple Lie algebra 1f. In this case, as faf37 

in (18) one may take structure constants of 1f. We have consi

dered the case of Example 1 when n=4p, q=3 and 1f=su(2). If 

one takes ei~ht tensors J ba in IR
16

P from Example 3, then as 
- a 

faf3
7 

one may ~hoose the structure constants of the Lie algeb-

ra su(3). In particular, from (23c) it follows that in spaces 

of dimensi-0n n=4096p one may introduce 24 tensors Ja~ satis

fying the relations (13), and as f O one may take_the struc-- ap7 , 

ture constants of the Lie algebra su(5). All these cases need 

a special inv·estigation. _ 

Thus, we have shown that the_ Rouhani-Ward equations and 

14 

the classical Yang-Baxter equations' appear' in constructing 

the solutions of the Yang-Mills equations in the spaces of 

dimension greater than four. Our results show strong·evidence 

for detailed study of the integrabfli ty of the Rouhani-Ward 

equations (18) and Eqs.(19) for-scalar field-~. 
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"'1eaHoea T.A., nonoe A.JJ.'. · 
0 CBR3"1 Me>K.l\y ypaeHeHHRMH RHra - Mwnnca 
e paJMepHocrn 6onee 'leTblpex 
~ KnacCH'lecKHMH ypaeHeHHRMH RHra - 6aKcrepa . 

/ 

( 

E2-92-107 

PaccMorpeHbl ypaBHeHHR RHra · - M1-1nnca nnR Kanw6poeo'1H1>1x ·nonew 
npowJeonbH0H nonynpocroH rpynnb1 nw Ge eeKnH.QOBblX npocrpaHcreax Rn 
pa3MepHocrn n ;;;i, 4. /J.nR Kanw6poBO'IHblX ~oneH Aa BBe.QeHbl aH33Ubl, peny• 
UHPYIOIUHe ypaeHeHHR RHra - Mwnnca e' Rn K cwcreMe HenwHeHHblX nw¢¢e
peHuwanbHblX MarpH'IHblX ypaeHeHHH, CBRJaHHblX c Knaccw'lecKHMH ypaeHe-. 

'HHR.MH RHra :._ 6aKCTepa. CBR3b C KnaCCH'leCKHMH ypaBHeHHAMH RHra - 6aK-
' . . ' 

crepa n03BOflReT BblnHCaTb RBHblH 81,1,Q KOCMOnorH'1ecK1,1x, nnocKOBOflHOBblX 
· 1,1 HeKoropblX npyrnx Knaccoe peweHHH_- · · · 

· Pa6ora Bbinont;tetta B fla6oparop1,11,1 reopern'leCK0H q>H3"1KH O1,i!Rl,1. 
/ . ~ 

IlpenpHHT 06i.e;umeHHOrp 11HC;l11)'Ta lUlCpHblX HCC.IIC;tOB8Hl1H. Jly6Ha 1992 

lvanova T.A., Popov A.O. 

On a Connection Between the Yang-::-- Mills Equations 
in Dimension Greater than Four 
and the Classical Yang - Baxter Equations 

E2-92-107 

. We consider the Yang - Mills equations-_for gauge fields of an arbitrary 
· semisimple Lie group G in Euclidean spaces Rn with dimension n ;;;i. 4. For gauge 
fields Aa we .introduce the ansatze w~ich reduce the Yang - Mills equations in 
-Rn to a.set of nonlinear differential matrix equations closely.finked to the clas
sical Yang - Baxter equations; The connection with the classica~ Yang - Baxter 
equations• permits us to write out the explicit form of cosmological, plane-wave 

· and other types c:,f sol~tions. , ' 

The investigation has been performed at the Laboratory of Theoretical 
Physics,·JINR. 
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