


'.451. Introductxon., In this paper we. w111 show that the

~fsolut10ns of the cla551ca1 Yang—Baxter (YB) equat1ons may be
: used in’ constructlng the SOlUthnS of the Yang—Mllls (YM)

Foki

- equations in R_. Our goal is to f1nd some solutlons of ‘the
evequatlons for a pure c1ass1ca1 YH theory in the Euclldean'/

space R w1th the metric § a, b,..,:i,...,n. Let A be the

bl
™M potentlals w1th values in the semlslmple Lie algebra g -

of the L1e group G and F b= a Ab- abA + [ b] he the cur—“

Fon -~ . EE

"vature tensor for A
' The YM equatlons for the gauge potentlals A have the form '
. ) F + [A ab] o ‘ ()
AR SN P : - N . Foptoh ruewd s A
The E1nste1n summatlon conventlon is used throughout. if_noth

L

stated otherw1se.

:Some solutlons of . Egs. (1) 1n the spaces RT,LhB and R4k
were obtalned in papers [1—5] In partlcular, 1n [4 5] 1t has(
been shown that new solutions of the YM equatlons in n~7 and
n—8 may be obtalned from solutions of the c1a531ca1 YB equa-

tions. In what follows we shall show that it is. possible.to

obtain other classes of solutions of.the YM,equatiohsﬂin,theﬁfwl

spaces of dimension nz4 from the solutions of the classical
YB .equations.

N et us ‘consider ' gauge

2. Rouhani-Ward ' equations. In' R
fields A depending only on tsx (cosmological solutions). We
can always transform to a gauge in which A =0 (gauge f1x1ng)

As a result, we have e
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F_ =1

. ) F&B =‘[Aa'AB] . na - “a’
where_ﬁasdﬂa/dt, a,B,...;l,..;,n—i.‘lhen,vthe,YM equations
take the form - |

Ay = U4g. 12,2001 = 0, ” ‘(3;!)"
, (4, a]=o0. (3b)
These\ equations generalize -the equations of Corrioan

Wainwright and W1lson [6] who have cons1dered the case n=4,

Con51der the Lie algebra # of the s1mp1e compact Lie group

H' We put n=1+dimx.

obtain R =R®R and 3§

ab(% {6 B'ann}' a,b, : 1,...,n. Let the

structure constant '
» s faBr of the Lie algebra # be normalized

to f f =

~ 376;263'4
I _ . . . :
n R =HeR let us 1ntroduce the following antisymmetric
4-index tensor : ﬁ | | ‘ R
T abcd

T =
LBy S Tann =

With the hel 3 ' i ]
p of Tabcd’ one can introduce the H-invariant
self-duality equations (cf.[7,1]):

Tabed Feg =2 Fab + “(5)

Usinor(4), one can rewrite Egs.(5) .in the form-
qui.F}n = Fog - 2
Tsap Fap = 2 Fy, - o ‘ﬂl)
o Multiplying Egs. () by faaﬁ , one ohtains Egs. (7). Therefore,

(2)

Con51der1ng # as a vector space, we

Togy - (a4

et e
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For a more general. case,

- found

the self-duality equations (5) are equivaleént to'Egs.(6). .-

. Substitute (2) into (6) and obtain.

A+ [Aa ,A

gy % o« 7 x(8)

It is easy to see that each solutlon of the self duality

equations (8) satisfies Eqs (3) Indeed, multiply Eqs (8) by

"then obtain A +—f [A

a 2 a37 A ] 0.

faB& and rename the 1nd1ces,

If one differentiates these equations once more then obtains
o - an[
[AB,[A VA ]]
Aa satisfy Eqgs. (3a),

B' ]. At the same time from (8) 1t follows that 7
satisfy Eqs (8), then

Thus, 1f A

dB?fA A7]

too. from Eqgs. (8) and from

And finally,

the Jacobi identities for matrices A' one obtains that A

satisfy Eqgs.(3b).
Equations (8) were introduced by Rouhani t8] for the case

are structure constants of the Lie algebra sl(N R)

when»faB?

when fa87 are structure constants of

simple Lie algebra R, these equations« were

an arbitrary
also

[9l.

obtained =

introduced and investigated by Ward Ward has

9]

self—duality equations for gauge fields in higher dimensions,

can be .the

that Eqs.(8) from:

supposed

We shall call Egs.(8) the Rouhani-Ward (RW) equations.

3. Yang—Baxter equations. ~[8, 9] the connection of

Eqs (8) w1th the c1a551ca1 Yang—Baxter equations was. shown :

Therdetailed discussion of the classical ‘YB equations and{the'jf

description of the explicit form of their solutions maytbe -

in [10-13]. The classical YB equations on ﬁthe: Lie



algebra‘R can be written in the form [8, 9]

£ W (u)wawku+v)+f

acd €8 (u)wy (V)+f

BSG ac 756 ac(U+V) G(V)=0- (9)

Here functions WaB (ot,Bye..=1 ,...,dimﬂ) depend on complex

variables u and v, f are structure constants of the Lie

o aBy
algebra X.

Assume that the functlons "4 B(z) have a 51mp1e pole at o

with re51due of the form CG &= const#O Follow1ng [11], we

BI
sha11 ca11 these functlons the nondegenerate functlons As it

has been Pproved in [8 9], when v— O the functlonal

equatlons (9) for nondegenerate functlons W reduce to the

aB
follow1ng dlfferentlal equatlons
Topy Wy * [WyuWgl =0, } - (10)

thre,wisdwi/du, W&E(i/C)WaB(u)IB, IB are generators. of  the

Lie eigebra 3, i.e.”[I&,IB]=faB717. Thefefore, each,nondege~
nerate solution of the classical YB equations satisfies the
differentialyequations (ib).

?'Compafing,(a) with (10), we see that in the case §=X the
RW equations (8) coincide with Eqgs.(10). Hence, each nonde-
generate solution of the elassica1~YB equations on ¥ is a
solution -of the Rw\equatiOns?(S) if §=H. So, we have

PROPOSITION 1. The classical Yahg—Bafter equations on the
Lie algebrafﬁeare equivalent to the Self-duality'equations
(5) for gauge fields 4, of the Lie group H in the space
Rn=ﬂ@m, reduced to bne dimension. Each nondegenerate solution

Wa of the classical YB‘equations on X gives a cosmological

o

s gy

"have the form [11,14]:

solution Ad of the YM equations in Rn=R@R, if Aaﬁwa(xn).
Proof follows from (2)-(10).
A lot of nondegenerate solutions of the classical YB equa-

tions are known (see, e.g., [10-13]). For simple Lie algebfas

# each solution W of these equations is either an elliptic

ap
function, or a trigonometric function, or a rational function

[11,12]. In [11,12] the detailed description of a11'néndege—

nerate elliptic and trigonometric solutions is'given, and in

[11,13] a vast family of rational solutions is constructed.

The simplest rational solution of Egs.(9) has the form

f[10,111:

-1 S
v (o) = I, . (11)

A more complicated trigonometr;c solution canlbe obtaihed
from the solution given in [12]'(fbrmu1a (IV.2;12)) if one
puts A=iu (u is real) and w=2m in notation of Faddeev and
Takhtajan. This solution has the form »

' r-1

W (w =2 7y el(r, ) cen Liani)

= , (12)
Jj=1

where ©: Rf;—eﬂ is the Coxeter automorphism of the simple Lie

algebra ¥ and r is its order, i e. OF =Id. For all 51mp1e Lie

algebras X the Coxeter numbers r and the descrlptlon of the
automorphism @ may be found in [14] (see, also, [11]).

The Coxeter automorphisms of the classical Lie algebras #

1

(4) = Q40 or 8(4) = ~04'0™', where
4ei. The explicit form. of matrices Q and the vaiues of r may

be found in [11]. With the help of @, all constant matrices



®J(Ia) can be explicitly written out, and one can show that
solution (12) is real. Particular cases of this solution for
H=s0(7) and #H=so(8) are described in [5]. Notice that for
real u the sqlution (12) is singular only when u=0. The other
poles are on the imaginary axis at the points u=i2nl, 1=%1,
£2,... [11,12].

The explicit form of generalrnondegenerate trigonometric
and elliptic solutions of the classical YB equations for any
simple Lie algebra # is given in [11]. They are rather
vcomplicatéd, that is why we do hét write out them here. When

u=x_, all these solutions give the cosmological solutions of

the YM equations in R"=3#eR.

4. Tensors Ja and ansatz. that the

ab

Rouhani-Ward and Yang-Baxter equations  may appear in the

Now we show
Yang-Mills theory on the space R" not only in the case when
- the gauge fields Aa depend on one coordinate X . It turns out
that the connection between dimension q of the algebra ¥ and
dimension n of the‘space will be different (i.e. g#n-1).
Let us suppose that in the space R"™ with metric Bab there
b ab that are antisymmetric in
indices a and b and obey the relations

. 1
are q constant tensors Ja R

7B = 5% 5

ac bc (13)

oB
ab + 2ab !

where Zgg are some constant antisymmetric in a aﬁd b tensors,
d;B,..J:i,..r,q. Examples of tensors ng satisfying (13) will

be given later.

g e

[

In R" we consider gauge fieldsbﬂa of the Lie group G. We

shall look for solutions of the YM equations (1) in the form

A, =-J327T (p) o0,

a ac "a (14)

where the real antisymmetric tensors ng satisfy (13); ¢ is

an arbitrary function of coordinates xaeRn; T1""’T depend
q

only on ¢ and take values in the Lie algebra %, i.e. they are

matrix functions. If n=4 and q=3, as ng one may take the

~well-known 't Hooft tensors, and in this case ansatz (14)

coincides with the ansatz of papers [15]. If n=4, q=3 and 
¢=xaxé then (14) coincides with the ansatz of papers [16].

Substitute (14) into the definition of Fﬁb and obtain -
o _ 4 a . _ o ' . .
Fap = Jac{Taabac¢ + Tyop? ac'P} ch{Taaaéc¢'+ ToPa? ac'P} *

+ 3857

ac Tpe [Tg- Tyl 8.9 ?ew ,, f?S)

where TaE dTa/dw, aaza/axa. Substituting (14) and (15) into
Eqgs. (1) andrusing relations (13), we obtainr
; ' . . ) o -
aaFab * FAa‘Fab]’_ Ta Jab aa(up) + [Ta’Ta] ac¢ ac? ab¢ +
. . ‘ o : 7 . “.‘a ;
+[ T~ [ Tg ,[Ta,TB]]] Jab_aa¢ 8.p 8.9 - aa¢{2Ta,fbc 8.9 v+

op ' 7 o -8 o é i .
* [Ta’TB] zac—acabw + g[ra’TB]Jacheacae? 1Ta Jab :w}, '<16)'

a a2 2 _
where T =d Ta/dw , u=acac.

5. Equations forATa(w) and p. The indices «,B,...,& range
over 1,...,q. Let us assume that in the—space Rq there is a

qonstant totally antisymmetric 3-index tensor'fa satisfying

BY



£ =
ays fpys = 2 %ap aBy
take the octonionic structure constants (see [4,5]). If q co-

. For example, if q=7, then as f one may

incides with dimension of simple compact Lie algebra #, then

as fan one may take the structure constants of H.

Using the antisymmetric tensor f one can rewrite

afy’
Egs.(16) in the following way:

. N .
aaF + [Aa’Féb] = Ta Jab

ab aa(u¢) + [Ta’Ta] ac¢ ac¢ ab¢ +

+[ fa— [ ?B ,FTa,TB]]] Jag a¢ F:} c? a.p — (f, T +[T T J)x

o B By
x{zac 8.9,p + 2Jacheacae¢}a o+ T {f37 e acab¢ -
_ B
2ch BaP 2waJachea 8,0 + Jab uw}a P (17)

Letiq coincide with a dimension of simple compact Lie

algebra H with structure constants fan.

satisfy thé RW equations (8):
aBW 7 + [T B] =0 | (18)

and function ¢ obeys the following system of linear .equations

£.% 587 5 5 27,% 0.9 + 2£,298 37 8 8 ¢ + 7 % mp=0. (19)

By Tac “c b? = bc'c a Br ac be c ab

As was shown in Sect.2, from Eqgs.(18) it follows that
(T, T, = Ta-'[TB,[Ta,TB]] If we di{ferentiate (19) with

respect to x2 then obtain Jag aa(D¢)=O. Thus, if Ta(¢) and ¢

satisfy the system of Eqgs.(18), (19), then the right-hand
side of (17) will be equal to zero and gauge field (14) will
be the solution of the YM equations (1).

‘PROPOSITION 2. If tensors J_&

ab satisfy the relations (13)

. Assume that'Ta(¢)

and q=dim¥, then to each solution of system {(18),(19)} Qné
may correspond the solution (14) of the YM equations (1) for
gauge fields Aa of an arbitrary semisimple Lie group G in the
Euclidean space Rn

Proof follows from formulas (14)-(19).

In [(8,9] 1t has. been shown that if §=¥ then each nondege—‘
nerate solutlon of the c1a331ca1 YB equatlons on the L1e
algebra ¥H will be the solutlon of Egs.(18) .and from
Préposition‘z it follows: |

PROPOSITION 3. If "tensors J g satisfy equations (13),
q=d1mR and-§=R, then to each nondegenerate SOlUthﬂ T (¢) of'
thg Cla;sical YB equations on the Lie algebra ¥ with ¢ ‘satis-
fying Eqs.(19) one may cotrespond the éolution (14) of<ﬁhé
YM,equaiions (i)kfor gauge fielas Aa of a simp;e Lie gtoup H
in the Euclidean space R™. ’

Equations (19) have a particular solution
P = PXgs , (20)

where pa=cohst. Then, from Proposition 2 it follows that to
each solution of the RW equations (18) withvw from (20) the
plane-wave solution (14) of the YM equations in R" may be
corresponded, and from Prop051t10n 3 we obtain

| PROPOSITION 4. To each nondegenerate solution T (¢) of
‘the claésical YB equations on the Lie algebra X one may cor-
respond the plane-wave solution (14) with P = p X, of the YM
equations (1) for gauge fields Aa of the Lie group H in the

Eu¢tlidean space R™.



In particular, ‘to the’ trigonometric solution (12) of
b Egs.(9) one may correspond the plane-wave solution of Eqgs. (1)

in the Euclidean space with arbitrary dimension n.

- 6. Explicit form of tensors J g . To find more coﬁplicated

than (20) solutlons of Eqs (19), one should give the concrete

b
Cllfford algebras gives the examples of such tensors.

expres51ons to the tensors J and Zgg . The theory of

Let us denote by C1(0,q) the Clifford algebra for the-

space RY with the metric gaB= - sdB’ o, B, ..

been known for a long time that the algebra Cl(O,q) can be

.=1,...,q It has

reaiized in terms of'matrices. in particular, Ci(O,s)EM(S?R)
and C1(0,8)=M(16,R) (see, e.g;,'[17]), where through M(S;R)
the full sxs matrix algebra‘over'R is denoted. Let us give
sobe examples of tensors Jég . : ’ *

Example 1. Consider the algebra C1(0,2) with generators }1
and 72. It is wellenown t17] that ci(o,z) is isomorphic to
the algebra of quaternions H, and elements 11, ¥, ="yt
‘can be realized in terms of realvantisymmetric 4x4 matrices
"B: =.EB;T nuz i P
are structure constants .of SU(2), a,B,1,6£1,2,3;

nl. nz, na with components: , whe-

re ¢
aBy

‘4,v,...=1,...,4. Tensors nl n2 and na coincide with the‘

235 HY HY
well-known 't Hooft tensors that obey the relatlons (13) w1th

s¥B _ LBy ¥
T ey,

Now, let us introduce the tensors

o _ o .
Tuiyws = %15 Tw (2D

10

with the double indices (ui), (vj),..., where 1i,j,...=1,...,p
If we denote the double indices by a,b,...=1,...,4p, then it

is not difficult to verify that the tensors 7% will satisfy

aBVJaZ Thus in the spaces R*?

one may always introduce three terisors Jag satisfying (13).

the relations (13) with zgﬁ=e

Example 2. Let us consider the algebra C1(0,6) with
generators 11,...,76 and also introduce 7 =y 7273747576. It
is known [17] that 7 (a=1,...,7) can be realized in terms of

real antisymmetric 8x8 matrices. The components wuﬁ (g,v,...=

1,..., 8) of these matrices satisfy the relations (13) with
af _ fa B _ 1 B B«
zuv - 2 Toa Tpa (7“1 va ‘vuhvvh)'

We now iritroduce the tensors

*q o
Tuiyj) = %ij Yup : (22)

where u,v,...=1,...,8; 1i,j,...=1,...,p. Numbering the com=-

ponents of these tensors by the indices a,b,...=1,...,8p, in

- 8 .
the space R P we obtain seven tensors J_%

ab
afg _. 1 [a _B] .
with Zab f ) Jac ch It is clear thatvfor ansatz (14) one

can choose not' all seven tensors but only q of them with

satisfying (13)

4=<qsT.
" Example 3. Let us consider now the algebra C1(0,8) with
generators 7“, a,B,...=1,...,8. It ts Kknown [17] that va can

be realized in terms of real antisymmetric 16x16 matrices.

o

The components 7uv (yv,...=1,...,16) of these matrices
satisfy (13) with de = 7[a WB] Let us also introduce the
L B 2up T2 Tua Toa _
[0 . . A -
tensors J(u?)(vj) defined by (22) but w1th u,v,...=1,...,8;
11



i,j,...=1,...,p. Numbering the components of these tensors

by the indices a,b,...=1,...,16p,°‘weA obtain ’eignt tensors

o
ab’
ons (13) with de ='% J[a JB] and can be used in constrﬁcting

J In the space R'®? all these tensors satisfy the relati-

ac “bc
of the ansatz (14)
And finally, we point out that in the spaces R" one may

introduce q tensors Jag satisfying (13) in the following

cases: ‘
n = p 27" > 1+8m$dsa+8m, )‘ '(23a)
n = p 25+4m = 4Tém5qs§+8m, | L (23p)
n = p 24" . q=8+8m, ' (zaé)
wnere m= 0,1,2,...; p=1,2,... . froof may be qbtained with

the help of formula [17]:

Cc1(0,s+8m) = Cl(0,s)®Cl(0,8)®...8C1(0,8), © 0 (24)

m times '
where 1ss=<8. Using the recurrence relations given in [17],
‘one can easily obtain the explicit form of tensors JaL,:.;;

Jaz in the spaces of dimension n indicated in (23).

7. Constructing of solutions. Substituting the explicit

form of J.°% into 'Egs.(19), one may try to find solutiqns,

ab -

different from solutions (20). Such solutions exist. Rather.

than make an exhaustive study of all the possibilities we
shall restrict ourselves to the case n-4p and q=3 The cases
of other n from (23) will be considered in a separate paper

So,  let us substitute (21) into (19) where e&%z are taken

12

. o a
1nstead of ,f aBy and Z B—c BVJab We . use. the - following

1dent1t1es for n [18]

'a‘ﬁ‘_ af . . aBy Ty G- oo
Tl‘m nDA =& GU.U + € nU-V , (25a)

x B 7 a o« ‘
[ = - - o o
8y "ua Mo = SpMig 8o M Sav o * SacMuy » - (25D)

and obtain the equations:

o ,
2
2 My (@ p) +

-8 - -
Al ”Jw AJi Vlw) T2 M, (aAJ u1¢ xi%uj

auvnhv(axl oj®7% ;° U1W) + oy, (zall AP .0p) =0, (26)
where a _a/ax . It is clear that Eqgs.(26) are equivalent to
the equations A R R o

o . p. = = ’
ulaD]w aujauiw ’ ahiahjw =0, (27)

where u,u;...=1,..l;4;‘i,j,t..=If...rp.

Eqs.(Z?)vare simpler'than Eqs.(19) and appear in stﬁdy~ef
the hyperkihler manifelds’ of dimension 4p  (see [19]) In
pr1nc1p1e, for Eqs (27) one may write a general solutlon (see
[19]), but we shall not do this here As an. example, we wr1te

out one of the part1cu1ar solutions of Eqs (27) (and (26))

X Bf . . .
p=14+73 : . ;
‘1= T I, (28)
1=1 (Xu cu) (Xu'cu)v-’ , )

where xu=x iPi p const N is any 1nteger number, B ‘and Cﬁ

are arbitrary constants For a special case of the space r®

and group G= SU(2) the solution of this type was obtained by
Ward [1]. ‘

13



~«Eqs:(18)" with ‘q=3 ‘and #=su£2) coincide with the well;knbwn
Nahm equations (see [6.8,9,20]). These equations appeared“in
constructing the solutions of the YM equations in r* [6,15,
16lAand of the model of chiral fields in R® ([21]. Nahm’s
equations have -a’ Lax,K type representation with a ’spectral
parameter, and in terms of theta functions one can write a
general solution of Nahm s equations for any semisimple Lie
algebra 5 (see [20,9]). The explicit form of partlcular
solutions of;Nahm's equations-may be found.1n1[15,16]. We
shall not write it here. |

8. Conclusion. An example for n¥4p and q¥3 showsv that
Egs.(19) may have not only solution (20) 1linear on
coordinates x? ," but also more complicated solutions; It is
interesting to study Egs.(19) in the spaces R" with q tensors
Jag and n>4p'from (23) in the .case uhen g coincides with the

dimen51on of sone Simple Lie algebra H. In this case, as f oB7
in (18) one may take structure constants of H. We have con51—
.’dered the case of Example 1 when n-4p, q=3 and “=$U(2)1,If
one takes eight tensors J b in R'®® from Example 3( then‘as
fa87 one may choose -the structure constants of the Lie algeb-
ra su(3). In particular, from (23c) it‘follows that in spaces
of dimension'n=4096p one may introduce 24 tensors Jag satis-
fying the relations (13), and as aBy one may take the struc-
ture constants of the Lie algebra su(5) All these cases‘need

a spec1a1 1nvest1gation

Thus, we have shown that the Rouhani—Ward equations and

14

th
e classical Yang—Baxter equations appear in constructlng

t
he solutions of the Yang-Mills equatlons in the spaces of

dimension greater than four. Our results show Strong ‘evidence
for detailed study of the 1ntegrab111ty of the Rouhanl—Ward'
equations (18) and Eqs (19) for. scalar field" P |
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: VlaaHOBaTA ﬂonoaAp, :

o canau mexay ypaaHeHMﬁMM Anra — Mvmnca R
B paamepuocm Gonee 'leTblpex :

M KnaccuueCKuMM ypaBHeHMﬂMM FIHra - BaKcTepa '

- E292107

PaCCMOTpEHbI ypaBHeHMﬂ HHra - Munnca nnﬂ Kanuﬁpoao-mux noneu'f'
NPOM3BONBHOMN NONYNPOCTO rpynnu Nu G B eBKNMAOBBIX NPOCTpaHCTBax RR
" pasmepHocTh n = 4. Ana Kanu6pOBOYHLIX Noneit A, BBefeHs! aH3aust, peay-
unpylowwe ypasrenua Aura — Munnca 8'R™ K cucTeMe HenuHedHbiX andibe-
PEHUMANLHBIX MaTPUYHBIX YPABHEHWNA, CBA3AHHLIX C KNaCcCU4ec KNMu ypasHe-
HUAMK HHra - SaKCTepa CBFl3bc KnaccuuecxuMu ypaBHeHMHMM AHra — EaK-

. cTepa noaaonﬂer BbINUCaTL ﬂBHbm Bun Kocmonormecxux nnOCKOBOnHOBbIX :
] HeKOTopblx npyrux Knaccoa peuJeHMu TN

- Paﬁora BbmonHeHa B ﬂaﬁoparopuu Teopermecxou (tmsmcu OVlFWl

L
[ ‘

ﬂpenpnnt O&éﬁhﬂe_imofp uHcfur)}ra STEPHBIX. nccne;loaaﬁnﬁ. Hy6xa 1992

3 lvanova TA Popov AD. o ‘- -
 Ona Connectlon Between the Yang - Mllls Equatlons RN
in Dumenslon Greater than Four . - e :

‘| and the Classncal Yang = Baxter Equat:ons ‘ff

e semlslmple Lie group G in Euclidean spaces R" with dimension n=4.For| gauge ‘

“Rhtoa set of nonhnear dlfferentlal matrix equations closely linked to the clas- B
+ sical Yang — Baxter equatnons “The connection with the classicat Yang — Baxter -

-” 'equations’ permlts us to wr|te out the exphclt form of cosmologlcal plane-wave
‘“and other types of solutlons

Physxcs JINR

E2:92107
We conSIder ‘the Yang - Mllls equatlons for gauge flelds of an arbltrary
fields Ay we mtroduce the ansatze which reduce the Yang — Mills equatlons in

The mvestlgatlon has been performed at the Laboratory of Theoretlcal

- Preprint of the Joint Institute for Nuclear Research. Dubna 1992.




