OБЬEAИHEHHbĬ ИHCTИTVT

RAEPHbX
ИССАЕАОВАНИЙ
AVEHA

$$
U-27
$$

A.Uhlmann

THE "TRANSITION PROBABILITY"
IN THE STATE SPACE OF A *ALGEBRA

E2-9182

A.Uhlmann

THE 'TRANSITION PROBABILITY" IN THE STATE SPACE OF A *aLGEBRA

Submitted to "Reports on Mathematical Physics"

1. INTRODUCTION

In this paper we consider an expression $P(0) 1,(1) 2)$, which we shall call "transition probability" between the two states ω_{1}, ω_{2} of a given * -algebra. This name is reasonable especially for pure states: For normal pure states of a type I von Neumann algebra P is what is usually called "transition probability" in quantum theory. However, a correct physical interpretation in the general case of mixed states is not known, though this quantity appears quite naturally in the so-calledalgebraic approach.

The expression P, which we are going to define, was already considered by Kakutani /1/ for abelian and by Bures $/ 2 /$ for general W^{*}-algebras and used by these authors in the construction of infinite tensor products.

The aim of the present paper is to show the concavity of P, to establish the connection of P with support properties of states (i.e., their orthogonality), and, using an idea of Araki $/ 3 /$, to calculate P in some important examples.

If, for instance, the two states are given by the density matrices d_{1} and d_{2} (with respect to a type I factor), then

$$
\begin{equation*}
P=(S p . s)^{2}, \quad s=\left(d_{1}^{1 / 2} d_{2} d_{1}^{1 / 2}\right)^{1 / 2} . \tag{1}
\end{equation*}
$$

This rather complicated expression reduces simply to

$$
\begin{equation*}
|(x, y)|^{2} \tag{2}
\end{equation*}
$$

if the density matrices represent pure states that are given by the normed vectors x, y of the underlying hilbert space.

2. DEFINITION AND SOME PROPERTIES OF P

Let us denote by $R \quad *$-algebra with unite element e. The simple idea in defining $P\left(\omega_{1}, \omega_{2}\right)$ is the following: Consider a *-representation π of R and suppose that there are vectors x_{1}, x_{2} in its domain of definition D_{π}, which induce the states ω_{1}, ω_{2}, i.e., for all $b+R$

$$
\begin{equation*}
\omega_{j}(b)=\left(x_{j}, \pi(b) x_{j}\right) \tag{3}
\end{equation*}
$$

The number $\left|\left(x_{1}, x_{2}\right)\right|^{2}$ then depends on the representation π and the choice of the vectors x_{1}, x_{2} in D_{π}. We then define $/ 2 /$ accordingly $P\left(\omega_{1}, \omega_{2}\right)$ to be the supremum of all numbers $\left.!\left(x_{1}, x_{2}\right)\right|^{2}$, for which (3) is valid. Hence

$$
\begin{equation*}
\mathbf{P}\left(\omega_{1}, \omega_{2}\right)=\sup \left|\left(x_{1}, x_{2}\right)\right|^{2} \tag{4}
\end{equation*}
$$

and the supremum runs over all * -representations π for which there are pairs of vectors x_{1}, x_{2} satisfying (3) and over all such pairs x_{1}, x_{2}. To express its dependence on R, we sometimes write

$$
\mathbf{P}\left(\mathbf{R} \mid \omega_{1}, \omega_{2}\right)
$$

for the quantity (4). From the definition one immediately gets the relations

$$
\begin{align*}
& \mathbf{0} \leq \mathbf{P}\left(\omega_{1}, \omega_{2}\right) \leq 1 \tag{5}\\
& \mathbf{P}\left(\omega_{1}, \omega_{2}\right)=\mathbf{P}\left(\omega_{2}, \omega_{1}\right), \tag{6}\\
& \mathbf{P}(\omega, \omega)=1 \tag{7}
\end{align*}
$$

for all states of a given * -algebra R. Next we prove the concavity of P with respect to Gibbsian mixtures, i.e., we prove formula (8) below. Let us consider three states $\omega, \omega_{1}, \omega_{2}$ and two *-representations π_{1}, π_{2} such, that ω, ω_{1} may be represented with the help of ω by the vectors x_{1}, y_{1} and, similarly ω, ω_{2} by the vectors x_{2}, y_{2} in the representation π_{2}. We are allowed to assume
$\mathbf{P}\left(\omega, \omega_{\mathrm{j}}\right)<\left|\left(\mathrm{x}_{\mathrm{j}}, \mathrm{y}_{\mathrm{j}}\right)\right|^{2}+\epsilon$.

In the direct sum $\pi_{1}+\pi_{2}$ the state ω is representable by every vector $x=\lambda_{1} x_{1}+\lambda_{2} x_{2},\left|\lambda_{1}\right|^{2}+\left|\lambda_{2}\right|^{2}=1$. On the other hand, the state $\hat{\omega}=P_{1} \omega_{1}+P_{2} \omega_{2}$, where $p_{1}+P_{2}=1$ and $P_{j} \geq 0$ is given in $\pi_{1}+\pi_{2}$ by everyvector $y=\mu_{1} y_{1}+\mu_{2} y_{2}$, $\left|\mu_{\mathrm{j}}\right|^{2}=\mathrm{p}_{\mathrm{j}}$. Hence it is
$\mathrm{P}(\omega, \omega)>|(\mathrm{x}, \mathrm{y})|^{2}=\left|\lambda_{1} \mu_{1}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)+\lambda_{2} \mu_{2}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right|^{2}$.
Taking the maximum with respect to all possible values
λ_{1}, λ_{2} on the right-hand side, we get

$$
\mathbf{P}^{\prime}(\omega, \hat{\omega}) \geq\left|\mu_{1}\left(\mathbf{x}_{1}, \mathrm{y}_{1}\right)\right|^{2}+\left|\mu_{2}\left(\mathbf{x}_{2}, \mathrm{y}_{2}\right)\right|^{2} .
$$

Now $\epsilon \geq 0$ is arbitrarily chosen. Thus we obtain, with $\mathrm{P}_{\mathrm{j}} \geq 0$ and $\mathrm{P}_{1}+\mathrm{P}_{2}=1$,

$$
\begin{equation*}
\mathbf{P}\left(\omega, \mathbf{P}_{1} \omega_{1}+\mathbf{P}_{2} \omega_{2}\right) \geqslant \mathbf{P}_{1} \mathbf{P}\left(\omega, \omega_{1}\right)+\mathbf{P}_{2} \mathbf{P}\left(\omega, \omega_{2}\right) . \tag{8}
\end{equation*}
$$

3. ORTHOGONALITY OF STATES

We remind ourselves (Sakai $/ 4 \prime^{\prime}$), that two states of a C*-algebra are called orthogonal to each other, if for every decomposition of $\rho=\omega_{1}-\omega_{2}$ into two positive linear functionals $\omega_{1}^{\prime}, \omega_{2}^{\prime}$

$$
\rho_{h}=\omega_{1}^{\prime}-\omega_{2}^{\prime},
$$

one has

$$
\omega_{1}^{\prime}(\mathrm{e})+\omega_{2}^{\prime}(\mathrm{e}) \geq \omega_{1}(\mathrm{e})+\omega_{2}(\mathrm{e})=2
$$

Assuming now R to be an arbitrary * -algebra with identity e, we define

$$
\begin{equation*}
\|\rho\|=\sup \left\{\omega_{i}^{\prime}(e)+\omega_{2}^{\prime}(e)\right\}, \tag{9}
\end{equation*}
$$

where the supremum runs over all decomposition

$$
\begin{equation*}
\rho=\omega_{1}^{\prime}-\omega_{2}^{\prime}, \quad \omega_{\mathbf{j}}^{\prime} \quad \text { positive. } \tag{10}
\end{equation*}
$$

If there is no such decomposition (10), one writes

$$
\|\rho\|=\infty .
$$

In the above mentioned case of a C^{*}-algebra, two states ω_{1}, ω_{2} are orthogonal one to another, iff $\left\|\omega_{1}-\omega_{2}\right\|=2$. We show that for all * -algebras with identity the relation $\left\|\omega_{1}-\omega_{2}\right\|=2$ implies $P\left(\omega_{1}, \omega_{2}\right)=0$. This follows from
an inequality, which we are now going to prove and which reads for any two states

$$
\begin{equation*}
\left\|\omega_{1}-\omega_{2}\right\| \leq 2 \sqrt{1-\mathbf{P}\left(\omega_{1}, \omega_{2}\right)} \tag{11}
\end{equation*}
$$

Let us assume that ω_{1}, ω_{2} are represented as vector states by the vectors x_{1}, x_{2} of a given *-representation π of R. With the help of the one-dimensional projectors q_{j} determined by x_{1}, x_{2} the functional $\rho=\omega_{1}-\omega_{2}$ is given by

$$
\begin{equation*}
\rho(\mathrm{a})=\mathrm{Sp} .\left\{\left(\mathrm{q}_{1}-\mathrm{q}_{2}\right) \pi(\mathrm{a})\right\} \tag{12}
\end{equation*}
$$

There are projection operators \bar{q}_{j} satisfying $\bar{q}_{I} \bar{q}_{2}=0$ and

$$
\begin{equation*}
\mathrm{q}_{1}-\mathrm{q}_{2}=\lambda_{1} \overline{\mathrm{q}}_{1}-\lambda_{2} \overline{\mathrm{q}}_{2} \tag{13}
\end{equation*}
$$

It follows $\omega_{1}-\omega_{2}=\omega_{i}^{\prime}-{ }^{\prime}{ }_{2}^{\prime}$, where
Hence $\left.^{\omega}{ }^{\dot{j}}(\mathrm{a})=\lambda_{\mathrm{j}} \mathrm{Sp} . \mid \mathrm{q}_{\mathrm{j}} \pi(\mathrm{a})\right\}$.

$$
\begin{equation*}
\left\|\omega_{1}-\omega_{2}\right\| \leq \lambda_{1}+\lambda_{2} \tag{14}
\end{equation*}
$$

Now we take the trace in (13) and obtain $\lambda_{1}=\lambda_{2}=\lambda$ Squaring (13) we get

$$
q_{1}+q_{2}-q_{1} q_{2}-q_{2} q_{1}=\lambda^{2}\left(\bar{q}_{1}+\bar{q}_{2}\right)
$$

Taking the trace one obtains

$$
2-2\left|\left(x_{1}, x_{2}\right)\right|^{2}=2 \lambda^{2}
$$

Because of (14) we therefore conclude

$$
\left\|\omega_{1}-\omega_{2}\right\| \leq 2 \sqrt{1-\left|\left(x_{1}, x_{2}\right)\right|^{2}}
$$

If π runs over all *-representations, we obtain the inequality (11) and the assertion is proved.

4. AN ESTIMATION FROM ABOVE

The transition probability is defined as a supremum. Therefore it is interesting to have an estimation of P from above. To derive such an inequality, we use the notation of the "geometrical mean" of two positive hermitian forms introduced by Woronowisz. Let $\beta_{\mathrm{I}}(\mathrm{x}, \mathrm{y})$, $\beta_{2}(x, y)$ denote two positive semidefinite hermitean forms on some linear space L. Then, according to Pusz and Woronowicz $/ 5 /$, there exists, on L, one and only one form β (\mathbf{x}, y) with the properties
i) $|\beta(\mathbf{x}, \mathrm{y})|^{2} \leq \beta_{1}(\mathrm{x}, \mathrm{x}) \beta_{2}(\mathrm{y}, \mathrm{y})$,
ii) If $\left|\beta^{\prime}(x, y)\right| 2 \leq \beta_{1}(x, x) \beta_{2}(y, y)$
with a positive semidefinite form $\beta^{\text {, }}$, it follows $\beta^{\prime}(\mathrm{x}, \mathrm{x}) \leq \beta(\mathrm{x}, \mathrm{x})$.
This by β_{1}, β_{2} uniquely determined hermitean form β will be denoted by the symbol
and is called the "geometrical mean'" of β_{1} and β_{2}. Let us now consider a state ω of a *-algebra R.
ω defines two hermitean forms

$$
\begin{align*}
& \omega^{R}(b, a)=\omega\left(a b^{*}\right) \\
& \omega^{L}(b a)=\omega\left(b^{*} a\right) \tag{15}
\end{align*}
$$

Now the inequality in question is

$$
\begin{equation*}
\mathbf{P}\left(\omega_{1}, \omega_{2}\right) \leq \beta(\mathbf{e}, \mathrm{e}), \quad \beta=\sqrt{\omega_{2}^{\mathbf{R}} \omega_{1}^{\mathrm{L}}} \tag{16}
\end{equation*}
$$

To prove this, we assume π to be a *-representation of R for which (3) holds. Defining now

$$
\beta \cdot(a, b)=\left(x_{1}, \pi(a) x_{2}\right)\left(x_{2}, \pi(b) x_{1}\right)
$$

we get
$\beta^{\prime}(e, e)=\left|\left(x_{1}, x_{2}\right)\right|^{2}, \quad \beta^{\prime}(a, a) \leq 0$
see that $\left|\beta^{\prime}(a, b)\right|^{2}$ is smaller than
and see that $\left|\beta^{\prime}(a, b)\right|^{2}$ is smaller than $\omega_{2}\left(a a^{*}\right) \omega_{1}\left(b^{*} b\right)$ which already shows the validity of (16).

5. CALCULATION OF P

Let us first mention that in all relevant cases P coincides with the usual quantum mechanical transition probability: Let x_{1}, x_{2} be two normed vectors of a Hilbert space H. If R is an operator * -algebra of $H, i . e ., a \quad *-s u b a l g e b r a ~ o f ~ s o m e ~ a l g e b r a ~ L^{+}(D), ~ D$ dense in H, then the following is true (Uhlmann 6.): If

$$
\omega_{j}(A)=\left(x_{j}, A x_{j}\right), \quad A \in R
$$

we have
$\mathbf{P}\left(\mathbf{R} \mid \omega_{1}, \omega_{2}\right)=\left|\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)\right|^{2}$
if R contains the projection operators onto x_{1}, x_{2}.
However, this gives us P for pure states only. Let us now try to give an explicit expression for P allowing ω_{1}, ω_{2} to be mixed and generalising the above mentioned result.

Theorem: Let ω_{1}, ω_{2} be two states of the C^{*}-algebra R. If there exists a positive linear form ω of R and two elements $b_{1}, b_{2} \in R$ with

$$
\begin{align*}
& \omega_{\mathrm{j}}(\mathrm{a})=\omega\left(\mathrm{b}_{\mathrm{j}}^{*} \mathrm{a} \mathrm{~b}_{\mathrm{j}}\right), \tag{17}\\
& \mathrm{b}_{1}^{*} \mathrm{~b}_{2}=\mathrm{b}_{2}^{*} \mathrm{~b}_{1} \geq 0 \tag{18}
\end{align*}
$$

Then it follows

$$
\begin{equation*}
\mathbf{P}\left(\omega_{1}, \omega_{2}\right)=\omega\left(b_{1}^{*} b_{2}\right)^{2} . \tag{19}
\end{equation*}
$$

Before proving the theorem we shall convince ourselves that it implies equation (1), first assuming that R is the algebra $B(H)$ of all bounded operators of the Hilbert space H. To this purpose we choose ω (a) Sp ad such, that $d_{j} d^{-1}$ is bounded for $j=1,2$. Condition (17) now reads

$$
\begin{equation*}
d_{j}=b_{j} d_{b}^{*} \tag{20}
\end{equation*}
$$

and we have to satisfy (18). This is done by writing

$$
\begin{align*}
& \mathrm{b}_{1}=\mathrm{d}_{2}^{-1 / 2}\left(\mathrm{~d}_{2}^{1 / 2} \mathrm{~d}_{1} \mathrm{~d}_{2}^{1 / 2}\right)^{1 / 2} \mathrm{~d}^{-1 / 2} \tag{21}\\
& \mathrm{~b}_{2}=\mathrm{d}_{2}^{1 / 2} \mathrm{~d}^{-1 / 2}
\end{align*}
$$

Here we have to define b_{l} by a limiting procedure, if d_{2} is singular. It follows

$$
\begin{equation*}
b_{1}^{*} b_{2}=d^{-1 / 2} s d^{-1 / 2} \text { with } s=\left(d_{2}^{-1 / 2} d_{1} d_{2}^{1 / 2}\right)^{1 / 2} \tag{22}
\end{equation*}
$$

and according to (19)

$$
\begin{equation*}
\mathbf{P}\left(\mathbf{B}(\mathbf{H}) \mid \omega_{1}: \omega_{2}\right)=(\mathrm{Sps})^{2}, \tag{23}
\end{equation*}
$$

i.e., formula (1).

We may extend this result considerably with the help of a simple observation. Assuming for two algebras the relation $R_{1} \subseteq K_{2}$, we find

$$
\begin{equation*}
\mathbf{P}\left(\mathbf{R}_{1} \mid \hat{\omega}_{1}, \hat{\omega}_{2}\right) \geq \mathbf{P}\left(\mathbf{R}_{2} \mid \omega_{1}, \omega_{2}\right) \tag{24}
\end{equation*}
$$

if only $\hat{\omega}_{j}$ are the restrictions of the states ω_{j} of R_{2} on R_{1}. To see this, we have only to take into account that every * -representation of R_{2} determines a representation of R_{1}, namely its restriction on R_{1}.

Applying this remark and the uniqueness of the extensions under consideration below, one can prove the following: Let D be a dense linear manifold of the Hilbert space H and let d_{1}, d_{2} denote two normed density operators. These density operators define two states $\bar{\omega}_{j}$ of the algebra $L(D) \cap K$, where K is the *-algebra generated by the identity map and the compact operators. If now R is an operator * -algebra satisfying

$$
\begin{equation*}
\mathbf{L}^{+}(\mathbf{D}) \cap \mathbf{K} \subseteq \mathbf{R} \subseteq \underline{L}^{+}(\mathbf{D}) \tag{25}
\end{equation*}
$$

and if we can extend the $\bar{\omega}_{j}$ to states ω_{j} of R, we get $P\left(R \mid \omega_{1}, \omega_{2}\right)=(S p s)^{2}$,
where s is given by (22).

Let us now discuss a special case of the situation described above, in which ω_{2} is a pure state. Then there is a vector $x-H$ with

$$
\mathrm{d}_{2} \mathrm{y}-(\mathrm{x}, \mathrm{y}) \mathrm{y} \quad \mathrm{y}:-\mathrm{H}
$$

and a short calculation shows

$$
P \quad(x, d, x) .
$$

Therefore, from

$$
d_{1} y-\Sigma \lambda_{j}\left(y_{j}, y\right) y_{j}, \quad y \in H
$$

we obtain

$$
\mathbf{P}=\lambda_{-r}\left|\left(x, y_{i}\right)\right|^{2} .
$$

which is completely reasonable and natural.
We further mention the consequence of the theorem for commutative C^{*}-algebras. Let $R=C(X)$ denote the algebra of continuous functions on the compact X and consider two states of R, which may be represented on X by a measure $d v$ on X and by their Radon-Nikodym derivatives h_{j} as

$$
\begin{equation*}
\omega_{j}(a)=\int_{X} a(t) h_{j}(t) d v \tag{27}
\end{equation*}
$$

We then get

$$
\begin{equation*}
P\left(R \mid \omega_{1}, \omega_{2}\right)=\left[\int_{X} v \overline{h_{1}(t) h_{2}(t)} d v\right]^{2} . \tag{28}
\end{equation*}
$$

This indicates the difficulty, to interpret P as a "transition probability'' if both states are mbxed ones.

Last not least we want to remark, that from

$$
\begin{equation*}
\mathrm{b}_{1}^{*} \mathrm{~b}_{2}=\mathrm{b}_{2} \mathrm{~b}_{1}^{k} \tag{29}
\end{equation*}
$$

which is true for commuting density operators and in every commutative C^{*}-algebra, the result of the theorem can be written with the aid of geometrical means as

$$
\begin{equation*}
\mathbf{P}=\left[\sqrt{\omega_{1}^{\mathbf{R}} \omega_{2}^{\mathbf{R}}}(\mathbf{e}, \mathrm{e})\right]^{2} . \tag{30}
\end{equation*}
$$

6. PROOF OF THE THEOREM

At first we convince ourselves that (19) gives a lower bound for P. Indeed, one only has to take the GNSconstruction associated with the state ω mentioned in the theorem to see this.

In the next step we consider an arbitrary * -representation and two of its vectors x_{1}, x_{2} which allow the identification of ω_{1}, ω_{2} as vector states (3). Then the complex linear form

$$
\begin{equation*}
f(a)=\left(x_{1}, \pi(a) x_{2}\right) \tag{31}
\end{equation*}
$$

satisfies the Schwartz-Bunjakowski inequality

$$
\begin{equation*}
\left|f\left(a^{*} b\right)\right|^{2} \leq \omega_{1}\left(a^{*} a\right) \omega_{2}\left(b^{*} b\right) \tag{32}
\end{equation*}
$$

In the last step we consider an arbitrary complexlinear functional f on R for which (32) is true. Then, if c is a positive invertible in R element, we have

$$
\begin{equation*}
|f(e)|^{2} \leq \omega_{1}(c) \omega_{2}\left(c^{-1}\right) \tag{33}
\end{equation*}
$$

We choose

$$
\underset{e}{c}=b_{2}(s+\epsilon e)^{-1} b_{2}^{*}+\epsilon e, \quad \epsilon: 0
$$

Then

$$
\omega_{1}(\mathbf{c})=\omega\left(b_{1}^{*} \mathbf{c} \mathbf{b}_{1}\right)-\epsilon \omega\left(b_{1}^{*} b_{1}\right)+\omega\left(\mathbf{s}(\mathbf{s}+\epsilon \mathbf{e})^{-1} \mathbf{s}\right),
$$

and we have

$$
\begin{equation*}
\omega_{1}(c) \leq \omega(s)+\epsilon \omega\left(b_{1}^{*} b_{1}\right) \tag{34}
\end{equation*}
$$

Further
with $\omega_{2}\left(\mathrm{c}^{-1}\right)=\omega(\mathrm{k})$
$k=b_{2}^{*}\left\{b_{2}(s+c e)^{-1} b_{2}^{*}+c e\right\}^{-1} b_{2}$.
If we insert, in this expression, $t=b_{2}(s+\epsilon e)^{-1 / 2}$, we obtain after some straightforward calculation

$$
k \leq\left((s+\epsilon e)^{-1}\right)^{-1}-s+e
$$

Now $\epsilon-0$ could be chosen arbitrarily and so we get together with (34) from (33) the desired estimate

$$
|f(e)|^{2} \leq \omega(s)^{2}
$$

ACKNOWLEDGEMENT

For interesting remarks I like to thank R.S.Ingarden, G.Lassner, S.L.Woronowicz and W.Timmermann.

REFERENCES

1. S.Kakutani. Ann. of Math., 49, 214 (1948).
2. D.J.C.Bures. Trans. Amer. Math. Soc., 135 , 199 (1969).
3. H.A raki. RIMS-151, Kyoto, 1973.
4. S.sakai. C^{*}-algebras and W^{*}-algebras, SpringerVerl., Berlin-Heidelberg-New York, 1970.
5. W.Pucz and S.L.Woronowicz. Functional Calculus for Sesquilinear Forms and the Purification Map. Preprint, Warsaw, 1974.
6. A.Uhlmann. JINR Preprint, E2-9149, Dubna, 1074.

Received by Publishing Department on September 22, 1975.

