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1. INTRODUCTION 

In this paper we consider an expression P ( (d 1 , (<> 2) , 

which we shall call "transition probability" between 
the two states w 1 .w 2 of a given • -algebra. This name 
is reasonable especially for pure states: For normal 
pure states of a type I von Neumann algebra P is what 
is usually called "transition probability" in quantum 
theory. However, a correct physical interpretation in 
the general case of mixed states is not known, though this 
quantity appears quite naturally in the so-calledalgebraic 
approach. 

The expression P. which we are going to define, was 
already considered by Kakutani /t I for abelian and by 
Bures /2/ for general W * -algebras and used by these 
authors in the construction of infinite tensor products. 

The aim of the present paper is to show the concavity 
of P , to establish the connection of P with support 
properties of states (i.e., their orthogonality), and, using 
an idea of Araki /:J/, to calculate P in some important 
examples. 

If, for instance, the two states are given by the 
density matrices d 1 and d 2 (with respect to a type I 
factor), then 

P = (Sp.s) 2 , (1) 

This rather complicated expression reduces simply to 

(2) 

if the density matrices represent pure states that are 
given by the normed vectors x, y of the underlying 
hilbert space. 
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2. DEFINITION AND SOME PROPERTIES OF p 

Let us denote by R • -algebra with unite element 
e · The simple idea in defining P (w 1 , w 2) is the following: 

Consider a * -representation rr of R and suppose 
that there are vectors xI , x 2 in its domain of definition 
Drr , which induce the states w I , uJ 2 , i.e., for all b ~ R 

wj(b) =(xj,rr(b)xj ). (3) 

The number I ( x 1 , x 2) 12 then depends on the representation 
rr and th~ choice of the vectors x 1 , x 2 in D " . We 

then define /2/ accordingly P ( w 1 , w 2) to be the supremum 
of all numbers 1,< x 1 , x 2 ) I 

2 . for which (3) is valid. Hence 

p ( c-J I ' uJ 2 ) "' sup I ( x I ' x 2 ) I 2 ' (4) 

and the supremum runs over all * -representations 
rr for which there are pairs of vectors x 1 , x 2 satisfying 

(3) and over all such pairs x 1 , x 2 . To express its depen
dence on R . we sometimes write 

p ( R ! w l ' (O 2 ) 
for the quantity (4). From the definition one immediately 
gets the relations 

0 ~ p ( w, ' w 2 ) 5: 1 ' (5) 

p ( w I ' w2 ) = P ( w 2 ' w l ) ' (6) 

P(w,w)=l (7) 

for all states of a given • -algebra R . Next we prove 
the concavity of P with respect to Gibbsian mixtures, 
i.e., we prove formula (8) below. Let us consider three 
states w , cuI , w 2 and two • -representations rr I , 

rr 2 such, that w , w I may be represented with the 
help of u) by the vectors xI , y I and, similarly w , 

w 2 by the vectors x 2 , Y2 in the representation rr 2 • 

We are allowed to assume 
P(w,w.i)<l(xj•Y.i)l2 +f. 
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In the direct sum "I + " 2 the state w is representable 
by every vector x =A 1 x,-t A 2 x2 , IAII 2+1A 212=1. On the 
other hand, the state w "'" p 1 u.J 1 ~ P2 w2, where P 1 + P2 = 1 
and p. '2:. 0 is given in rr 1 + rr 2 by every vector y =ll 1Y1 +ll2y2 , 

ill . I 2 2 p .. Hence it is 
J l. 

P (w ,w) > l(x,y)l2= IAIIll(xi,YI) + A2ll2 (x2•Y2 )1 2 · 
Taking the maximum with respect to all possible values 

AJ , A2 on the right·hand side, we get 
P (w .~)~lilt (xi•Yl )1 2 +I ll2(x2•Y2 )1 2 · 

Now c 2. 0 is arbitrarily chosen. Thus we obtain, with 
p i ~::.. 0 and p I + p 2 c~ 1 

p ( w • PI w I + p 2 w 2) ?. pI p ( w 'w I ) + P2 p ( w 'w2 ) . (8) 

3. ORTHOGONALITY OF STATES 

We remind ourselves (Sakai /4/ ), that two states 
of a c * -algebra are called orthogonal to each other, if 
for every decomposition of p = cu I -w 2 into two positive 
linear functionals w 1 , w 2 

p ~' w l -w 2 ' 
one has 

w I (e) + w2 ( e ) 2. (1)1 ( e ) + w2 ( e ) "" 2 . 
Assuming now R to be an arbitrary • -algebra with 
identity e , we define 

I ; p II = sup I w i < e ) + w 2 < e) I , (9) 

where the supremum runs over all decomposition 

jJ ~ w; -(J); ' w i, positive. (10) 

If there is no such decomposition (10), one writes 

liP II = 00 
• 

In the above mentioned case of a C *-algebra, two states 
w 

1 
, w 2 are orthogonal one to another, iff II w 1 -w2 II ==2 • 

We show that for all • -algebras with identity the 
relation ll w 1 -w2 II =2 implies P(wi,w2),Q.This follows from 
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an inequality, which we.are now going to prove and which 
reads for any two states 

II w 1 -w2 II <;_ 2 y 1 - P ( w 1 , w 2 ) • (11) 

Let us assume that w 1.w 2 are represented as vector 
states by the vectors x 1 , x 2 of a given * -representa
tion rr of R . With the help of the one-dimensional 
projectors q i determined by x 1 , x 2 the functional 
p = (1) 

1 
- w 

2 
is given by 

p (a) =jp.l (q 1 -q 2 )rr(a) I. (12) 

There are projection operators <f i satisfying q 1 q2 = 0 
and 

ql- q2 =A I q I -A2ci2 · (13) 

It follows w 1 -w2 ~ cu 1 -u) 2,where 

w : ( a ) == A . Sp . I q . rr ( a ) I 
HencJ J J 

llw 1 -w 2 JJ-;_A
1

+A 2 . (14) 

Now we take the trace in (13) and obtain A 1 ==A 2 ==A 
Squaring (13) we get 

ql + q2 - qi q2 - q2qi =A
2

(qJ +Ct2) 

Taking the trace one obtains 

2-2J(xl,x2)J2 ==2A2. 

Because of (14) we therefore conclude 

J:l w I - w 2 II ~ 2 v 1 - I (XI , X 2 ) J2 

If rr runs over all • -representations, we obtain the 
inequality (11) and the assertion is proved. 
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4. AN ESTIMATION FROM ABOVE 

The transition probability is defined as a supremum. 
Therefore it is-· interesting to have an estimation of P 
from above. To derive such an inequality, we use the 
notation of the "geometrical mean" of two positive 
hermitian forms introduced by Woronowisz. Let f3 1 (x,y) , 
{3 2 ( x, y) denote two positive semidefinite hermitean forms 
on some linear space L . Then, according to Pusz and 
Woronowicz /s/, there exists, on L ,·one and only one 
form f3 (x,y) with the properties 

i) lf3(x,y)l2::;. f3I{x,x)f32(y,y), 
ii) If I f3 , (X. y) 12 ~{3d X, X) ~12 ( y, y) 

with a positive semidefinite form f3 ' • it follows 
f3 '(x,x):;;. f3 (x,x). 

This by f3 I , f3 2 uniquely determined hermitean form 
f3 will be denoted by the symbol 

v-rr;-rr; 
and is called the "geometrical mean" of f3 1 and f3 2 • 

Let us now consider a state w of a • -algebra R. 
w defines two hermitean forms 

wR(b,a) =w(ab*), 

wL(ba) == w (b* a) 
(15) 

Now the inequality in question is 

P(w ,w )< f3(e,e), 
I 2 -

f3 =-vwHwL. 
2 I 

(16) 

To prove this, we assume rr to be a • -representation 
of R for which (3) holds. Defining now 

f3 '(a,b) =-(XI,rr(a) x 2 ) (x 2 ,rr(b) x 1) 
we get 

{3'(e,e) =-J(xl,x2)1 2 , f3'(a,a)D0. 
and see that lf3'(a,b)J2 is smaller than w2 (aa*) wi(b*b) 
which already shows the validity of (16). 
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5. CALCULATION OF P 

Let us first mention that in all relevant cases P 
coincides with the usual quantum mechanical transition 
probability: Let x 1 , x 2 be two normed vectors of 
a Hilbert space H. If R is an operator • -algebra of 
H, i.e., a • -subalgebra of some algebra Lt-(D),, q 

dense in H , then the following is true (Uhlmann · 6 , ): 

If 
w.(A) = (x.,Ax.), 

J J J 
A~ R , 

we have 
2 

p ( R I w .. w 2 ) = l (X l 'X 2) I 
if R contains the projection operators onto x 1 , x 2 • 

However, this gives us P for pure states only. 
Let us now try to give an explicit expression for P 
allowing w I , w 2 to be mixed and generalising the above 
mentioned result. 

Theorem: Let w 1 • w 2 be two states of the C *-algebra 
R. If there exists a positive linear form la of R and 
two elements b1 , b 2 ~ R with 

w. (a) = w ( b*. a b . ) , 
J J J 

b~ b 2 = b~ b I 2. 0 , 

Then it follows 

2 
P(wl, w2)-= w (b*1 b 2 ) 

(17) 

(18) 

(19) 

Before proving the theorem we shall convince ourselves 
that it implies equation (1), first assuming that R is the 
algebra B(H) of all boundedoperatorsoftheHilbert space 
H. To this purpose we choose (J) (a) Sp ad such, that 
d i d-1 is bounded for j "1,2. Condition (17) now reads 

d. "' b .d b*. 
J J I 

(20) 

and we have to satisfy (18). This is done by writing 
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b l = d ~Y. ( d; d l d ; ) Y. d -Y. 
(21) 

b - d Y. d -~2 
2 - 2 

Here we have to define b 1 

d 2 is singular. It follows 
by a limiting procedure, if 

b* b - d -Y. s d -Y. with s = ( J-Y. d d ~--2 ) ~~ (22) 
l 2- 2 l 2 

and according to (19) 

p ( H ( H ) I w l ' w 2 ) "' ( Sp s) 
2 

' (23) 

i.e., formula (1). 
We may extend this result considerably with the help 

of a simple observation. Assuming for two algebras the 
relation R1 :;,R2 ,we find 

p ( R l I w l ' w 2 ) ::: p ( R 2 I (() l ' (() 2 ) (24) 

if only w . are the restrictions of the states wi of 
R 2 on 1 R 1 • To see this, we have only to take into 

account that every • -representation of R 2 determines 
a representation of R1 , namely its restriction on R1 . 

Applying this remark and the uniqueness of the 
extensions under consideration below, one can prove the 
following: Let D be a dense linear manifold of the 
Hilbert space H and let d J , d 2 denote two normed 
density operators. These density operators define two 
states w i of the algebra L~·(D) nK, where K is the 
• -algebra generated by the identity map and the com

pact operators. If now R is an operator * -algebra 
satisfying 

'L +(I~) nK c R c ,L+ ( D ) (25) 
- -

and if we can extend the w i to states (l). of R 
J ' 

we get 2 
p ( R I w l ' (l} 2 ) ~ ( Sp s ) ' (26) 

where s is given by (22). 
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Let us now discuss a special case of the situation 
described above, in which w 2 is a pure state. Then there 
is a vector x ;.. H with 

d 2 y - ( X • y ) v v ·- H 

and a short calcula'tion shows 
P (x,d 1x). 

Therefore, from 
dry -~,\.i(Y.i·Y)Yj• y,::H 

we obtain 
p ~ ~l(x.yj) 12. 

which is completely reasonable and natural. 
We further mention the consequence of the theorem 

for commutative C * -algebras. Let R ~- C (X) denote the 
algebra of continuous functions on the compact X and 
consider two states of R • which may be represented on 
X by a measure d v on X and by their Radon-Nikodym 

derivatives hi as 

(() (a ) ·~ r a ( t ) h . ( t) d v . J . J 
X 

We then get 

------ 2 p ( R I (t) I '(U 2 ) ~ [ I v h I ( t) h 2( t) d v 1 . 
X 

(27) 

(28) 

This indicates the difficulty, to interpret P as a "tran
sition probability" if both states are mixed ones. 

Last not least we want to remark, that from 

b'ib2 '= b2bf (29) 

which is true for commuting density operators and in 
every commutative C *-algebra, the result of the theorem 
can be written with the aid of geometrical means as 

P I v wR-:-H (e,e) } 2 . 
I 2 (30) 
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6. PROOF OF THE THEOREM 

At first we convince ourselves that (19) gives a lower 
bound for P . Indeed, one only has to take the GNS
construction associated with the state w mentioned 
in the theorem to see this. 

In the next step we consider an arbitrary * -repre
sentation and two of its vectors x 1 , x 2 which allow the 
identification of w 1 • w 2 as vector states (3). Then 
the complex linear form 

f(a) = (x 1 ,11(a) x
2

) (31) 

satisfies the Schwartz-Bunjakowski inequality 

I f (a* b )1 2 ~ ~u I ( a*a ) ul 
2 

( b*b ) . ,(32) 

In the last step we consider an arbitrary complex
linear functional f on R for which (32) is true. 
Then, if c is a positive invertible in R element, we 
have 

I f ( e ) 1 2 ::;: wi ( c ) (u 
2 

( c -I ) . 

We choose 
c ~ b 2 ( s + f e) - 1 b*2 + ( e , f > 0 . 

Then 
w I ( C ) = w ( bj c b I) - ( ul ( bj b I ) + w ( s ( s + f e ) -Is ) , 

and we have 

(33) 

w I (c) .::;. w ( s ) + f w ( b*
1 

b I ) (34) 

Further 
w 2 ( c -I ) = w ( k ) 

with -I -1 
k = b2 l b 2 ( s 1 f e ) b*2 1 c e I b 2 . -Y, 

If we insert, in this expression, t =, b2 ( s 1 ( e ) • , we 
obtain after some straightforward calculation 

k < ( ( s + ( e ) -I ) -I .-. s + f e . 
Now ( _,- 0 could be chosen arbitrarily and so we get 
together with (34) from (33) the desired estimate 

I f(e)l 2 s_w (s) 2 . 

II 
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