> ОБ ЬЕАИНЕННЫЙ ИНСТИТУТ
> ЯАЕРНЫХ
> ИССЛЕАОВАНИЙ
> АУБНА
$H-3 q$

E2-9161
M.Havliěek, W.Lassner

ON THE "NEAR TO MINIMAL" CANONICAL REALIZATIONS OF THE LIE ALGEBRA C_{n}

E2.9161

M.Havlí̌ek, W.Lassner

ON THE "NEAR TO MINIMAL" CANONICAL REALIZATIONS OF THE LIE ALGEBRA Cin

Submitted to "International Journal of Theoretical Physics".

1. INTRODUCTION

The main purpose of this note is to prove two assertions concerning the canonical realizations of the Lie algebra $C_{n} \simeq \operatorname{sp}(2 n, C), n>1$, through rational functions or polynomials in a certain number of quantum canonical pairs p_{i} and q_{i}. More precisely we are interested in realizations of C_{n} in the Weyl algebra $\mathbb{F}_{2(2 n}$ If.i.e., through polynomials in $2 n-1$ canonical pairs or in the quotient division ring $D_{2(2 n-2)}$ of $\mathbb{F}_{2(2 n-2)}$, i.e., through rational functions in $2 \mathrm{n}-2$. canonical pairs.

It is well-known 1.2 . that canonical realizations of the Lie algebra C_{n} do not exist in $\mathrm{D}_{2 \mathrm{~m}}$ if $\mathrm{m} \cdot \mathrm{n}$. If $\mathrm{m} n$, all realizations of C_{n} are related through an endomorphism of $D_{2 n}$ ('equivalent') to one standard realization ${ }^{\tau} 0$ and Casimin operators are realized by multiples of identity element (we call such realizations Schur-realigaitions).

In this tate we generalize the concept of related realizations atid derive, first, a sufficient condition for realiastions of Q_{n} in $D_{2 m}$ with any $m<n$ to be related to The Sandaro realization ${ }^{r} 0$ in $\mathrm{D}_{2 \mathrm{n}} \subset \mathrm{D}_{2 \mathrm{~m}}$ in combination W't Joseph's result 2.' it gives our first result: any realiaation of C_{n} in $D_{22 n-2}$ is relatedto t_{0} in $D_{2 n}-D_{2(2 n-2)}$. As a consequence, the value of every Casimir operator in any realization in $D_{2(2 n-2)}$ is the sameas in realization ${ }^{\tau_{0}}$ which particularly means that all realizations of C_{n} in $D_{2(2 n-2)}$ are Schur-realizations. Our second result is that this last property is conserved in $\mathbb{W}_{2(2 n-1)}$ though there appear new realizations nonrelated to realization ${ }^{T} 0{ }^{3}$

In Conclusion we compare C_{n}. in this respect, with the remaining complex classical Lie algebras.

2. PRELIMINARIES

A. In C_{n} of Cartan's classification of complex simple Lie algebras we choose a basis of $n(2 n \cdot 1)$ elements $\mathrm{X}_{\beta}^{\alpha}{ }^{-1} \alpha^{\prime} \beta^{\mathrm{X}_{-\alpha}^{-\beta}}$ satisfying

$$
\begin{align*}
& \left\lfloor\mathbf{X}_{\beta}^{a} \cdot \mathbf{x}_{\delta}^{\gamma} \mathrm{I}=\delta_{\beta}^{\gamma} \mathbf{x}_{\delta}^{\alpha}-\delta_{\delta}^{u} \mathbf{x}_{\beta}^{\gamma}{ }^{\gamma}{ }_{\alpha}{ }_{\alpha}{ }^{\epsilon} \beta^{-\beta} \delta_{\delta}^{-\beta} \mathbf{x}_{-\alpha}^{\gamma}+{ }_{\alpha} \beta^{t} \gamma_{\gamma} \delta_{-a}^{\gamma} \mathbf{x}_{\delta}^{-\beta}\right. \tag{1}\\
& { }^{\prime} \alpha=\operatorname{sign} a \quad \alpha, \beta, \gamma, \delta \cdots \pm 1, \pm 2, \ldots, \pm \mathrm{n}
\end{align*}
$$

B. A canonical realization of a Lie algebra (assoc. algebra, quotient division ring) G is a homomorphism of G in the Weyl algebra $W_{2 N}$ (i.e., in the complex algebra of polynomials in 2 N variables $q_{a}, \mathrm{p}^{\beta}$ satisfying $\left.\left[\mathbf{q}_{\alpha}, \mathbf{q}_{\beta}\right]=\left[\mathbf{p}^{\alpha}, \mathbf{p}^{\beta}\right]=0,\left[\mathbf{q}_{\alpha}, \mathbf{p}^{\beta}\right] \cdots-\delta \beta^{a}\right)$, or in the associated quotient division ring $D_{2 N}$ (i.e., in the rational functions in $\mathrm{q}_{a}, \mathrm{p}^{\beta}{ }_{4}$). For an exact definition and foundation of $D_{2 N}$ see ${ }^{4}$.

A canonical realization of a Lie algebra is called Schur-realization if any Casimir operator (i.e., any element from the centre of the enveloping algebra) is realized by multiple of the identity.

Definition 1: Let realization $\tau \mathrm{G}, ~ \mathrm{D}_{2 \mathrm{n}}, \mathrm{D}_{2 \mathrm{n}}$
of the Lie algebra G in the quotient division subring $D_{2 n}$ of $D_{2 n}$, and realization $\tau^{\prime}: G \rightarrow D_{2 n}{ }^{\prime}$,
be given. τ° is called related to r iff a realization $\theta \quad \mathrm{D}_{2 \mathrm{n}} \cdot \mathrm{D}_{2 \mathrm{n}}$,
exists such that $\theta \subset \tau \cdots T^{\prime}$.
This definition generalizes the concept of related realizations introduced in our previous papers. If $D_{2 n} \because D_{2 n}$,
we obtain the old definition of related realizations in the sense that τ and ${ }_{\tau}$ are called to be related iff either τ is related to τ^{\prime} or F^{\prime} is related to τ.
3. PROPERTIES OF REALIZATIONS OF C_{n} IN $\mathrm{D}_{2(2 n-2)}$ AND $W_{2(2 n-1)}$

Lemma 1: (i) The following formulas give a canonical realization ${ }^{\tau} 0$ of the Lie algebra C_{n} in $D_{2 n}$

$$
\begin{aligned}
& \tau_{0}\left(X_{j}^{i}\right)= \begin{cases}-q_{j} p^{i}-\frac{1}{2} \delta_{j}^{i} 1 & i, j>0 \\
q_{0} p^{i} p^{-j} & i>0, j<0 \\
-q_{0}^{-1} q_{-i} q_{j} & i<0, j>0,\end{cases} \\
& \tau_{0}\left(X_{n}^{i}\right)= \begin{cases}-q_{0} p^{i} & i>0 \\
-q_{-i} & i<0\end{cases} \\
& \tau_{0}\left(X_{i}^{n}\right)= \begin{cases}q_{0}^{-1} q_{i}\left(\tau_{0}\left(X_{n}^{n}\right)+\frac{1}{2}\right) & i>0 \\
-\left(\tau_{0}\left(X_{n}^{n}\right)-\frac{1}{2}\right) p_{-i} & i \because 0,\end{cases} \\
& \tau_{0}\left(X_{n}^{-n}\right)=-q_{0}, \\
& \tau_{0}\left(X_{-n}^{n_{n}}\right)=q_{0}^{-1}\left(\tau_{0}\left(X_{n}^{n}\right)+\frac{3}{2}\right)\left(\tau_{0}\left(X_{n}^{n}\right)+\frac{1}{2}\right), \\
& { }^{\tau}{ }_{0}\left(X_{n}^{n}\right)=-q_{0} p^{\rho}-q \cdot p, \\
& \begin{array}{l}
\text { where } q \cdot p=q_{0} p^{n}+\ldots+q_{n-1} p^{n-1} \text { and } i, i=-(n-1), \ldots,-1,1 \text {, } \\
\ldots, 1 .
\end{array}
\end{aligned}
$$

(ii) τ_{0} is a Schur-realization.

It is straight-forward to verify that the generators ${ }^{\circ} 0\left(X_{\beta}^{\alpha}\right)$ from (2) obey the commutation relations (1) of C_{n}. The realization (2) is a minimal one since only n canonical pairs occur and therefore it must be a Schurrealization (see 2).

If $n{ }^{\prime} n$, the realization $"$ can be defined in $D_{2 n}$.

We then without mention assume ${ }_{r} r_{0}\left(C_{n}\right), D_{2 n}\left(q_{0}, p^{n}, \ldots, q_{n-1}\right.$. $\left.p^{n-1}\right) D_{2_{n}}$, where $D_{2 n}\left(q_{0}, p^{\circ}, \ldots, q_{n-1}, p^{n-1}\right)$ denotes thequotient division subring of $D_{2 n}$ generated by the first n canonical pairs $q_{0}, p^{\circ}, \ldots, q_{n-1}, p^{n-1}$. The realization τ_{0} will be called the standard minimal one.

Lemma 2: Let τ be any nontrivial realization of C_{n} with $n \geq 2$ in $D_{2 n^{\prime}}, n^{\prime}-n$, fulfilling the condition

$$
\begin{equation*}
\tau\left\{\left(X_{l}^{k}+\frac{1}{2} \delta_{f}^{k}\right) X_{n}^{-\mathbf{n}}-X_{n}^{-f} X_{n}^{k}\right\}-0 \tag{3}
\end{equation*}
$$

at least for one positive pair $k,{ }^{\prime} \sim 1,2, \ldots, n-1$. Then τ is related to τ_{0}, i.e., $\theta \circ \tau_{0}=\tau$. The realization $\theta: \mathrm{D}_{2 \mathrm{n}} \rightarrow \mathrm{D}_{2 \mathrm{n}}{ }^{\prime}$, is defined by the relations

$$
\begin{align*}
& \theta\left(\mathbf{q}_{\mathrm{k}}\right)=\mathrm{Q}_{\mathrm{k}}, \quad \theta\left(\mathrm{p}^{\mathrm{k}}\right)=\mathbf{p}^{\mathrm{k}}, \\
& \theta\left(\mathbf{q}_{\mathbf{0}}\right)=-\tau\left(\mathrm{X}_{\mathbf{n}}^{-\mathbf{n}}\right), \quad\left(\quad\left(\mathrm{p}^{\omega}\right)=\left(\tau\left(2 \mathrm{X}_{\mathbf{n}}^{-\mathbf{n}}\right)\right)^{-1}\left(\tau\left(\mathrm{X}_{\mathbf{n}}^{\mathbf{n}}\right)+\mathrm{Q}_{\mathrm{k}} \mathrm{P}^{\mathrm{k}}\right),\right. \tag{4}\\
& \mathbf{Q}_{\mathbf{k}}=-\tau\left(\mathbf{X}_{\mathbf{n}}^{-\mathbf{k}}\right), \quad \mathbf{P}^{\mathbf{k}}=\left(\tau\left(\mathbf{X}_{\mathbf{n}}^{-\mathbf{n}}\right)\right)^{-1} \tau\left(\mathbf{X}_{\mathbf{n}}^{\mathbf{k}}\right) .
\end{align*}
$$

 implies $\hat{\mathbf{X}}_{\beta}^{\alpha}=0$ for all α, β which is in contradiction with the assumption of nontriviality of : . Therefore X_{n}^{-n} is a nonzero element of $D_{2 n}$ ' and we can define

$$
\begin{align*}
& P^{k}=\left(\hat{X}_{n}^{-n}\right)^{-1} \hat{X}_{n}^{k}, \quad Q_{k}=-\hat{X}_{n}^{-k}, k-1, \ldots, n-1 \\
& P^{0}=\left(\hat{X}_{n}^{-n}\right)^{-1}\left(\hat{X}_{n}^{n}+Q_{k} P^{k}\right), \quad Q_{0}=-\hat{X}_{n}^{-n} \tag{5}
\end{align*}
$$

(summation over k).
It is easy to prove, using commutation relations (1), that they commute as n canonical pairs, i.e.,

$$
\begin{array}{r}
{\left[\mathrm{P}^{a}, \mathrm{Q}_{\beta}\right]=\delta_{\beta}^{a}, \quad\left[\mathrm{Q}_{a}, \mathrm{Q}_{\beta}\right]=\left[\mathrm{P}^{a}, \mathrm{P}^{\beta}\right]=0} \\
. \quad \alpha, \beta=0,1,2, \ldots, \mathrm{n}-1
\end{array}
$$

Further one can show that the rational functions

$$
\begin{align*}
& \hat{\mathbf{Y}}_{\ell}^{\mathbf{k}}=\hat{\mathbf{X}}_{\ell}^{\mathbf{k}}+Q_{\ell} \mathbf{P}^{\mathbf{k}}+\frac{1}{2} \delta \rho_{\ell}^{\mathbf{k}} \quad \mathbf{k}, \ell=1, \ldots, \mathrm{n}-1 . \tag{6}\\
& \hat{\mathbf{Y}}_{\ell}^{-\mathbf{k}}=\hat{X}_{\ell}^{-\mathbf{k}}+Q_{0}^{-l} Q_{\mathbf{k}} Q_{\ell} . \tag{7}\\
& \hat{\mathbf{Y}}_{-P}^{\mathbf{k}}=\hat{X}_{-\ell}^{\mathbf{k}}-Q_{0} \mathbf{P}^{\mathbf{k}} \mathbf{P}^{\ell}, \tag{8}
\end{align*}
$$

commute as the generators of C_{n-1}.
Condition (3) is equivalent to $Y^{k}=0$ and since C_{n-1} is a simple Lie algebra it follows that

$$
\begin{equation*}
\hat{\mathbf{Y}}_{-\ell}^{\mathbf{k}}=\hat{\mathbf{Y}}_{\ell}^{-\mathbf{k}}=\hat{\mathbf{Y}}_{p}^{\mathbf{k}}=0 \quad \text { for all } \mathrm{k}, \ell=1, \ldots, \mathrm{n}-1 \tag{9}
\end{equation*}
$$

Thus from (6)-(8) we get

$$
\hat{X}_{j}^{i}=\left\{\begin{array}{cl}
-Q_{j} P^{i}-\frac{1}{2} \delta_{j}^{i} & i, j>0, \tag{10}\\
Q_{0} P^{i} P^{-j} & i>0, j<0 \\
-Q_{0}^{-1} Q_{-i} Q_{j} & i<0, j>0
\end{array}\right.
$$

Further, (5) yields

$$
\begin{align*}
& \hat{X}_{n}^{i}= \begin{cases}-Q_{0} P^{i} & i>0 \\
-Q_{-i} & i<0\end{cases} \tag{11}\\
& \hat{X}_{n}^{n}=-Q_{0} P^{\circ}-Q \cdot P \tag{12}
\end{align*}
$$

where $Q \cdot P=Q_{0} P+\ldots+Q_{n-P} P^{n-1}$.Now we show that condition (9) implies

$$
\begin{equation*}
\hat{X}_{-k}^{n}-\left(\hat{X}_{n}^{n}-\frac{1}{2}\right) \mathrm{P}^{k} \quad \text { k } \quad 1,2, \ldots, n-1 \tag{13}
\end{equation*}
$$

Consider condition (9) $\dot{Y}_{-f}^{h} 0$ especially for $k-f$. Then ${\underset{Y}{k}}_{k}^{k}=0$ gives, due to (8) and (5),

$$
\begin{equation*}
\hat{X}_{n}^{-n} \hat{X}_{-k}^{k}-\hat{X}_{n}^{k} \hat{X}_{n}^{k} \quad k \quad 0 \quad \text { (no summation!); } \tag{14}
\end{equation*}
$$

when the commutator [$X_{-n}^{n} \ldots$] acts on this equation one gets

$$
2 \hat{X}_{n}^{n} \hat{X}_{-k}^{k}=\hat{X}_{-k}^{n} \hat{X}_{n+}^{k}+\hat{X}_{n}^{k} \hat{X}_{-k}^{n}
$$

and rewriting the r.h.s. we obtain further

$$
2 \hat{X}_{n}^{n} \hat{X}_{-k}^{k}=2 \hat{X}_{-k}^{n} \hat{X}_{n}^{k}+\left[\hat{X}_{n}^{k}, \hat{X}_{-k}^{n}\right]-2 \hat{X}_{-k}^{n} \hat{X}_{n}^{k}+\hat{X}_{--k}^{k}
$$

which implies

$$
\hat{X}_{-k}^{n}\left(\hat{X}_{n-k}^{n}-\frac{1}{2}\right)\left(X_{-k}^{k}\right)\left(\hat{X}_{n}^{k}\right)^{-1}
$$

(Note that $\hat{X}_{n}^{k}: 0$ for the same reasons as $\dot{X}_{n}^{-n} 0$.).
Thus, if we substitute \hat{X}_{-k}^{k}
by (10) and X_{n}^{h} by
(11) we find the desired expression (13). The generators (10)-(13) are a generating set in the Lie algebra C_{n}, i.e., the remaining generators can be computed as commutators of these.

It follows from the commutation relation of p^{4} and Q_{β} that the mapping

$$
\begin{array}{ll}
\theta\left(\mathrm{q}_{a}\right) \cdot \mathrm{Q}_{a}, \\
\theta\left(\mathrm{p}^{a}\right) \cdot \mathrm{p}_{a}, & a-0,1, \ldots, \mathrm{n}-1
\end{array}
$$

defines a realization of $D_{2 n} \cdot D_{2 n}\left(q_{0}, P^{0} \ldots, q_{n-1}, P^{n-1}\right)$ in $\mathrm{D}_{2 \mathrm{n}}$ ".

A comparison with (2) shows that $00 \tau_{0}=\tau$ holds for the generating set of generators of $C_{n}(10)-(13)$ and therefore this must be true for the whole algebra C_{n}.

Corollary 1: If for a nontrivial realization τ of C_{n}, $n=2$, in $D_{2 n^{\prime}}, n^{\prime}-n$, condition (3) is fulfilled, then for any Casimir operator z of C_{n}

$$
r(z)=\tau_{0}(z) \because a_{z} 1, \quad a_{z}=C,
$$

i.e., r is a Schur-realization and the realization of any Casimir operator of C_{n} has the same eigenvalues as in the standard minimal realization ; H

Proof: The realization r_{0} is a Schur-realization, i.e., $i_{0}(z) a_{z}$. The relation $\tau=\theta 0 \tau_{0}$ gives

$$
\text { because } \quad \begin{gathered}
\tau(z)-\theta\left[r_{0}\right. \\
\\
\\
\hline
\end{gathered}
$$

Theorem 1: Let τ be any realization of $C_{n}, n \geq 2$, in $D_{2 n}$; $n \leq n^{\prime} \leq 2 n-2$. Then τ is related to $\tau 0$, i.e., $r=\theta 0{ }^{\tau} 0$ where θ is given by eq. (4). r is a Schur-realization and any Casimir operator has the same eigenvalues as in the standard minimal realization ${ }^{r} 0$.

Proof: Theorem 1 follows from Lemma 2 if we show that for any realizarion r of C_{n} in $D_{2 n^{\prime}}, n \leq n^{\prime} \leq 2 n-2$ the condition (3) is fulfilled. To show this assume, on the contrary, that (3) does not hold. As eq. (3) is equivalent to eqs. (9), it means that all the generators (6)-(8) of the simple Lie algebra C_{n-1} are different from zero. Thus according to (5) we can define $n-1$ new canonical pairs

$$
\begin{align*}
& \tilde{\mathbf{P}}^{\mathbf{r}}=\left(\hat{\mathbf{Y}}_{n-1}^{-(n-1)}\right)^{-1} \hat{\mathbf{Y}}_{n-1}^{\mathbf{r}} \quad \tilde{Q}_{r}=-\hat{\mathbf{Y}}_{n-1}^{-r} \\
& \tilde{\mathbf{P}}^{0}=\left(2 \hat{\mathbf{Y}}_{n-1}^{-(n-1)}\right)^{-1}\left(\hat{\mathbf{Y}}_{n-1}^{n-1}+\tilde{Q}_{r} \tilde{\mathbf{p}}^{r}\right) \quad \tilde{Q}_{0}=-\hat{\mathbf{Y}}_{n-1}^{-(n-1)} \tag{15}
\end{align*}
$$

Since it can be verified that the $\hat{\mathbf{Y}}_{j}^{i}$ and therefore the canonical pairs $\tilde{\mathrm{Q}}_{\rho}, \tilde{\mathrm{p}} \sigma$ commute with all $\mathrm{Q}_{\alpha}, \mathrm{p} \beta$ defined by eqs. (5), we would have in $D_{2 n^{\prime}}, n \leq n^{\prime} \leq 2 n-2$, $2 n-1$ canonical pairs. But this is impossible as in $D_{2 n^{\prime}}$, there do not exist more than n^{\prime} canonical pairs (see ${ }^{2 / 2 /}$). Therefore condition (3) must be fulfilled and we use Lemma 2 and Corollary 1.

Now we enlarge the number of canonical pairs to $2 n-1$ and restrict ourselves to the Weyl algebra $\mathbf{W}_{2(2 n-1)}$.

Theorem 2: Any realization r of the Lie algebra C_{n} in the Weyl algebra $W_{2(2 n-1)}$ is a Schur-reali zation.
Proof: For $n=1$ the realization r is minimal and therefore a Schur-realization $/ 2 \prime^{\prime}$. For $n \geq 2$ we first choose $2 n-1$ commuting elements from the realization $r\left(U C_{n}\right) C$
$W_{2(2 n-1)}$ of the enveloping algebra $U^{\prime} C_{n}$.In notation from Lemma 2 and Theorem 1 they are

$$
Q_{0}, Q_{1}, \ldots, Q_{n-1}
$$

and

$$
Q_{0} \tilde{Q}_{0}, Q_{0} \tilde{Q}_{1}, \ldots, Q_{0} \widetilde{Q}_{n-2}(\text { see eq. (15) and (7)). }
$$

Adding realization $\tau(z)=Z$ of any Casimir operator z, we obtain $2 n$ commuting elements from $\mathbb{W}_{2(2 n-1)}$. In accordance with Joseph's result ($/ 5 /{ }^{\prime}$, Th. 3.3) only two possibilities can arise
(a) Either some of the considered $2 n$ elements are realized by multiple of identity element.
(b) If (a) does not hold a (finite) set of nonzero complex numbers $\left\{a_{i k} p\right\} \subset C$ exists such that
$\sum_{i k \ell} a_{i k \ell} Q^{i}\left(Q_{0} \bar{Q}\right)^{k} Z^{\ell}=0$
(the multiindex notation is used, i.e.

$$
\begin{aligned}
a_{i k \ell} Q^{i}\left(Q_{0} \tilde{Q}\right)^{k_{Z}} Z^{\ell} & =a_{i_{0}, \ldots, i_{n-1}, k_{0} \ldots, k_{n-1}, \ell} Q_{0}^{i_{0}} \ldots \\
& \left.\cdots Q_{n-1}^{i}\left(Q_{0} \tilde{Q}_{0}\right)^{k_{0}} \ldots\left(Q_{0} \tilde{Q}_{n-2}\right)^{k_{n-2}} Z^{\ell} .\right)
\end{aligned}
$$

We exclude the second possibility. For this we consider $W_{2}(2 n-1)$ embedded in its quotient division ring D $2(2 n-1)$ where canonically conjugate variables $p^{\circ}, \ldots, p^{n-1}$, $\widetilde{p}^{\circ}, \ldots, \widetilde{\mathrm{p}}^{n-2}$ exist (see eqs. (5), (15), (6)-(8)). By means of multiple commutation of the variables $p a$ and $\tilde{p} \rho$ with eq. (16) we easily obtain

$$
\Sigma a_{j \underline{ } l} Z^{l}=0
$$

for all considered i and k. A nontrivial polynomial

$$
\operatorname{Pik}_{i k}(Z)=\Sigma a_{i k \ell} Z^{\ell}, \quad a_{i k \ell} \neq 0
$$

in one variable Z can be written as the product

$$
P_{i k}(Z)=a_{i k} \Gamma_{r}\left(Z-\beta_{i k}^{r} j\right)^{n_{r}}=0, \quad a_{i k}, \beta_{i k}^{r} \in C
$$

from which, as $W_{2(2 n-1)}$ does not contain a nontrivial divisor of zero, we obtain

$$
Z=\beta_{i k}^{r} 1 \quad \text { for some } r
$$

This contradicts, however, the assumption that (a) is not valid. So, the possibility (b) is excluded and we discusss the possibility (a). If some of the elements $Q_{0}=-X_{n}^{-n}, \ldots, Q_{n-1}=-\hat{X}_{n}^{-(n-1)} \quad$ are multiples of identity then commutation relations (1) give immediately that such Q equal to zero. It implies, due to simplicity of the Lie algebra C_{11}, that all generators \hat{X}_{β} are zero, i.e., the realization is trivially a Schur-realization. If some $Q_{0} Q_{0}, \ldots, Q_{0} \widetilde{Q}_{n-2}$ is a multiple of identity, i..e., if

$$
\hat{X}_{n}^{-n} \hat{Y}_{n-1}^{-k}=\hat{X}_{n}^{-n} \hat{X}_{n-1}^{-k}-\hat{X}_{n}^{-k} \hat{X}_{n}^{-(n-1)}=a 1
$$

for some $k=1, \ldots, n-1$, commutation relations with p o give $\hat{\mathbf{Y}}_{n-1}^{-k}=0$. The simplicity of the Lie algebra C_{n-1} generated by the \hat{Y} 's leads to $\hat{Y}_{j}^{i}=0$ for all $i, j= \pm 1, \ldots, \pm(n-1)$ so that condition (3) is fulfilled and Lemma and Corollary 1 can be applied.

So in all cases admissible by possibility (a) the realization r is a Schur-realization and proof is completed.

4. CONCLUSION

Denote by $n_{m i n}$ the minimal number of canonical pairs such that nontrivial realization of a given Lie algebra exists in $D_{2 n_{\text {min }}}$. The values for the four series of complex simple Lie algebras are given in table /2/:

	A_{n}	$B_{n}, n>1$	C_{n}	$D_{n, n}>2$
$n_{\min }$	n	$2 n-2$	n	$2 n-3$

Denote further by $\mathrm{k}_{\text {max }}$ such a maximal integer that all realizations in $W_{2}\left(n_{\text {min }}+k_{\text {max }}\right)$ of a given Lie algebra are

Schur-realizations. For classical Lie algebras $\mathrm{k}_{\text {max }}$ exists and is given in the following table:

	A_{n}	$B_{n}, n>1$	C_{n}	$D_{n}, n>2$
$k_{\text {max }}$	0	1	$n-1$	1

As to $\mathrm{k}_{\text {max }}$ for A_{n} see $/ 1 / / 2 /$ and $/ 6 /$ for B_{n} and D_{n}, equality $k_{\text {max }} n-1$ for the Lie algebras C_{n} is proved just in the present note. Maximality of $\mathrm{k}_{\text {max }}$ follows from existence of one- parameter sets of realizations in $W_{2\left(n_{\text {min }}+k_{\text {max }}\right)}$, with Casimir operators depending on this parameter ${ }^{\text {max }} / 1,2,3,7,8:$ substituting this parameter by $q_{n_{\text {min }}} k_{\text {max }}+1$ from the new pair $q_{n_{\text {min }}+k_{\text {max }}+l}$, $\mathrm{P}_{\mathrm{n}_{\text {mim }}} \mathrm{k}_{\text {max }}+1$ we obtain non-Schur-realizations ${ }^{\text {max }}$ in $W_{2}\left(n_{\text {min }}+k_{\text {max }}+1\right)$. The second table shows the remarkable distinction, as to $k_{\text {max }}$ between C_{n} and theother classical Lie algebras: realizations of C_{n} in $_{2(2 n-2)}$ however, remain still related, in the sence of Definition 1 , to the standard minimal one.

REFERENCES

1. A.Simoni, F.Zaccaria. Nuovo Cim., 59A, 280 (1969).
2. A.Joseph. Comm.Math.Phys., 36, 3235 (1974).
3. M. Havliceke, W.Lassner. Canonical Realizations of the
4. Lie Algebra sp(2n, R). JINR, E2-9160, Dubna, 1975. оберпываюшими алгебралиов. О пелах, свлзанных с 503-504 /1966/.
s.a. I.M.Ge fand, A.A.Kirillov. Sur les aux algebres enveloppantes des algebres de Lie; Inst. Hautes Etudes Sci. Publ. Math., No. 31, 5-19 (1966).
5. A.Joseph. J.Math.Phys., 13, 351 (1972).
6. M.Havliček, P.Exner. On the Minimal Canonical Realizations of the Lie Algebra $0_{\mathrm{C}}(\mathrm{n})$, JINR, E2-8089,
Dubna, 1974.
7. M.Havlićcek, P.Exner. Matrix Canonical Realizations of the Lie Algebra $\circ(\mathrm{n}, \mathrm{m})$, JINR, E2-8533, Dubna, 1975.
8. M.Havlícek, W. Lassner. Canonical Realizations of the Lie Algebras $g f\left(\mathrm{n}_{1}, \mathrm{R}\right)$ and $\mathrm{sf}(\mathrm{n}, \mathrm{R}) \mathrm{I}$, II, JINR, E2-8646, E2-8842, Dubna, 1975.

Received by Publishing Department on September 12, 1975.

