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1. INTRODUCTION

The main purpose of this note is to prove two asser-
tions concerning the canonical realizations of the Lie
algebra C, =sp(2n,C ),n>1.through rational functions or
polynomials in a certain number of quantum canonical
pairs p;, and q; . More precisely we are interested in
realizations of C, in the Weyl algebra V,., |,i.e.,
through polynomials in 2n—-1 canonical pairs or in the
quotient division ring D,y,_», of W, _,, .i.e., through
rational functions in 2n—2 canonical pairs.

It is well-known !-2 that canonical realizations of
the Lie algebra C, donotexistin Dy, if m - 'n. I{m n ,
all realizations of C, are related through an endomor-
phism of By, (’’equivalent’) to one standard realization
7o and Casimir operators are realized by multiples of
identity element (we call such realizations Schur -reali-
zaliong).

In this note we generalize the concept ofrelated reali-
zz2lfonse and derive, first, a sufficient condition for reali-
crlicos of O, in By, with any m - n {0 be related to
{ne standard realization 7¢ imD, <D, .In combination
with Joseph’s result 2 it gives our first result: any
realization of C, in Dyy,_pisrelatedto r, inD,"D,, -
As a consequence, the value of every Casimir operator
in any realization in Dy, 5, is the sameas in realization
7o Wwhichparticularly means thatall realizationsof C,
in Dy9,_5) are Schur-realizations. Our second result is
that this last property is conserved in W, _;, though
thex;e appear new realizations nonrelated to realization

In Conclusion we compare (, . in this respect, with
the remaining complex classical Lie algebras.



2. PRELIMINARIES

.A. In C, ofCartan’sclassificationof complex simple
Lie algebras we choose a basis of n(2n:1) elements

a _ -B . .
X BT ﬁx_u satisfying
a 7 B ~
lxﬁ.x5 ]- 5BX< 5 /3’ be fﬁ U },b_aX(s 1)
(a::signa aB.y,0 1, £2,...,%tn

B. A canonical realization of a Lie algebra (assoc.
algebra, quotient division ring) G is a homomorphism
of G in the Weyl algebra W,y (i.e., in the complex
algebra of polynomials in 2N varmbles /?a , P’ satis-

fying [q,.93 1=[p¢ ,pB1-0,1q u,p or in the
associated quotient division ring DzN (1 e in therational
functions mq , pg ). For an exact definition and

foundation ofD oN See . .

A canonical realization of a Lie algebra is called
Schur-realization if any Casimir operator (i.e., any
element from the centre of the enveloping algebra) is
realized by multiple of the identity.

Definition 1: Let realization - G - D2n . Dzn’
of the Lie algebra Gin the quotient division
subring D, of D, - and realization
r’ . G d D2n ’
be given. r° is called related to - iff
a realization ¢ D, - D, -

exists such that 0@¢<r -7

This definition generalizes the concept of related reali-
zations introduced in our previous papers. If 02 =D

n n
we obtain the old definition of related realizations in the
sense that . and ;" are called to be related iff either
r is related to :° or ;° is related to r.

3. PROPERTIES OF REALIZATIONS OF C,
IN D2(2n—2) AND V3 (2n-1)

Lemma 1: (i) The following formulas give a canonical
realization "¢ of the Lie algebra C, inDs,

1 ; —
i -9, pl - 2— 1 1,§»0
X = .

70( ]) qop'p_l iﬁ>0,i*50
_l [ .
94 9; <0, -0,

i - i i»0

r(X') = 0

0 n _q—i ic0 . (2)
-1 n _1__ Qs

Cxmy - JTedineXa g0

0 i n 1
_(ro(X ")——2—)p_i 10,

-n
rO(Xn ) = -q 0

n Y —q-I(r ny L 3y (xm ., L
ro(x_n)—q"'( o (X1 + 5 )(O(Xn)+ 2),

n - - o _ N
TolX1) =-9,P° -qp,

n—-1
,whﬁiila q¢p = q0p°+...4qn_lp and i,j=-(n-1),..,-1,1,
(i) 7y is a Schur-realization.

It is straight-forward to verify that the generators
ro(X %) from (2) obey the commutation relations (1) of C,,
The realization (2) is a minimal one since only n cano-
nical pairs occur and therefore it must be a Schur-
realization (see 2 ).

If n" . n, the realization v ¢an be defined in D2,



We then without mention assume 7 (C ) Dy(qq,P% . -..q,y-

pD,, where Dzn(qo p ,..qn-1,P 1) denotes the quotient
division subring of Dy,  generated by the first n cano-
nical pairs q,,p° .., q ,,_l,p =1 The realization -, will
be called the standard minimal one.

Lemma 2: Let r be any nontrivial realization of C,
with n > 2in D, -.n" > n. fulfilling the con-
dition

ri(XN-—Sl,)X \(‘( b -0 3)
p—y

at least for one positivepair k,"=1,2,....,n-1,
Then r is relatedto 7, , i.e., gory=7 . The
realization 0 : Dy, > Dy,’, is defined by the
relations

0(q,)=Q,. 0 (p"=Pk,

0 (qq) ==r(XTM), 0(p*) - (r XN (1(XD)+Q PY), (@)
Qu=-7(XH, Pr-(z (XM (xk).

Proof: Let us for abbreviation write x‘; . r(X/g) Note
that, due to the simplicity of the Lie algebra "C,, =0
1mp11es X% -0 for allq, s which is in contradictjon 'with
the assumption of nontriviality of : . Therefore X "

is a nonzero element of Ds,” and we can define

PRo RE L QR ke,
© @XM TIH(XT+QPY), QX" ®

(summation over k ).

It is easy to prove, using commutation relations (1), that
they commute as n canonical pairs, i.e.,

(Pe.Qgl =05 . [Q,.Q) ~[P*.PFI -0,
a,8=012,...,0-1.

Further one can show that the rational functions

YE-Xf+ QP _;S[z'ﬂ k.0-1,...,0=1. (6)
o -k vk . -1 : (M
Yp=Xp+Q,Q, Q-
2 ¢
Y".-x - Q p P, (8)

-7

commute as the generators of C,_j .
.Condition (3) is equivalent to Yk-0and since C _,is
a simple Lie algebra it follows that

~ ~ ~

Yh -7t - v =0 for all k,/-1,...,n-1. (9)

Thus from (6)-(8) we get

vi _ i1 i

Xj_ Q!,P 25;' 1,10,
Q,P' P i>0,j7 0, (10)
-Q;'Q_in i<0, j>0.

Further, (5) yields ’

~QoP ' i>0

X i - (11)
L <o,
~ N
X, =~-Q,P° -Q-P , (12)
-1
where QP -~ QgP" 4 "-‘Qn—lpn .Now we show that condi-
tion (9) unphes
xn -&n-ppt kK 1.2...0-1. (13)

_ |
Gonsider condition (9) Y-f - 0 especially for k-{. Then

YX - 0 gives, due to (8) and (5),
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i‘:f(‘ik: _i'n‘fc :: k.0 (no summation!); (14)

when the commutator [X ", ..] acts on this equation one gets

and rewriting the r.h.s. we obtam further
~ -~ a ~ k ~ k
340 ST S S0 GENNE SIS SN TP D G QAR Sy

which implies
X"k (X ———)(\ ,\)(X ")

(Note that X 0 for the same reasons as X Wi 0.).

Thus, if we substi tute X by (10) and X, by
(11) we fmd the desired expressnon (13). The generators
(10)-(13) are a generating set inthe Lie algebra C,, | i.e.,
the remaining generators can be computed as commu-
tators of these.

It follows from the commutation relation of P“ and
Qﬁ that the mapping

0(q,) - Q>
0(pa) - Pa, a-0,1,..., n—1
defines a realization of D2n- D2a(q.p°...., qn_|.p"_l) in
Do,
A comparison with (2) shows that 0or, - holds for
the generating set of generators of C, (10)-(13) and
therefore this must be true for the whole algebra C,

-1

Corollary 1: If for a nontrivial realization r of C, ,
n>2, in Dy, ,n " _ n, condition (3) is
fulfilled, then for any Casimir operator
z of C,

r(z) =1 (2) - - a, < C
i.e,, 7 isa Schur realization and the reali-
zation of any Casimir operator of C, has
the same eigenvalues as in the standard
minimal realization - .

Proof: The realization ry is a Schur-realization, i.e.,
g (2) - a,1. The relation - - go Ty gives

r(z)~0 [f()(Z)] 0 (a,l)-a,0 (1)-a,l
because 0(1)

Theorem 1: Let r beanyrealizationof Cn , 022 inD2ny;

n<n’<20-2 .Then: is relatedto ro , i.e.,

T =gor, where g is given by eq. (4). v is
a Schur-realization and any Casimir operator
has the same eigenvalues as in the standard
minimal realization 7 o .

Proof: Theorem 1 follows from Lemma 2 if we show
that for any realizarion r of C, inDy,’, n<n’<2n-2 the
condition (3) is fulfilled. To show this assume, on the
contrary, that (3) does not hold. As eq. (3) is equivalent
to eqs. (9), it means that all the generators (6)-(8) of
the simple Lie algebra C,.; are different from zero.
Thus according to (5) we can define n-1 new canonical
pairs

(§-;1(—nl_”)—thnr—l Gr = —Yn——r
15)

5—(n—1)

PGP §y--P

Since it can be vermed that the Y' and therefore the
canonical pairs Qp ; commute w1th all Q, , PP de-
fined by egs. (5), we would have in Dg,- |, n<n” <2n-2
2n - 1canonical pairs. But this 1s impossible as in Dz}n ,
there do not exist more than n’ canonical pairs (see/2 ).
Therefore condition (3) must be fulfilled and we use
Lemma 2 and Corollary 1.

Now we enlarge the number of canonical pairs to
2n - 1 and restrict ourselves to the Weyl algebra W2 (2n-1,.

Theorem 2: Any realization r of the Lie algebra C, in
the Weyl algebra W2 (2n-1)is a Schur-reali-
zation.

Proof: Forn=1 the realization r is minimal and there-

fore a Schur-realization /2/. For n >2 we first choose

2n-1 commuting elements from the realization - (UC,) C

9



_W2(2n-1)ofthe enveloping algebra UC,.In notation from
Lemma 2 and Theorem 1 they are

Qy-Qp+---- Q- (see eq. (5)
and
Q,Q,Q,Q,Q,Q,_,(see eqa. (15) and (7).

Adding realization 7(z) =Z of any Casimir operator
z, we obtain 2n commuting elements from V5 (n-1) - In
accordance with Joseph’s result (' 5/ Th. 3.3)only two
possibilities can arise
(a) Either some of the considered 2n elements
are realized by multiple of identity element.
(b) If (a) does not hold a (finite) set of nonzero
complex numbers ! a,, p}C C exists such that

i = kf
2000 (Q Q)72 =0 (16)
(the multiindex notation is used, i.e.
i ~ f ig
a4 pQ (G Q ) 'z TQig s ik geeoky N Qo -

i ~ k ~ kn2 _ ¢
QT QR (G, )

We exclude the second possibility. For this we con-
sider W2(2,-1) embedded in its quotient division rin
D 2 (2n-1) where canonically conjugate vdriables P°,....P"
Po...., Pr-2 exist (see egs. (5), (15), (6)-(8)). By means
of multiple commutation of the variables pa and PP
with eq. (16) we easily obtain

s 2 -0
125 15570 - .
for all considered i and k. A nontrivial polynomial
Pik(z)=§na-kng , aijkfkO
in one variable Z c¢ be written as the product

Pin(Z)=aikl (ZA-B;rk" )" =0, a;pB5e C
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from which, as W2@2n-1) does not contain a nontrivial
divisor of zero, we obtain

r4 =Birk7 for some r .

This contradicts, however, the assumption that (a) is
not valid. So, the possibility (b) is excluded and we
discuss the possibility (a). If some of the elements
Qo=-X7",....Qn-1--X700-D are multiples of identity
then commutation relations (1) give immediately that
such Q equal to zero. It implies, due to simplicity of the
Lie algebra C, . that all generators X are zero,
i.e., the realization is trivially a Schur-realization. If
some Q9 Qg.-...Q9 Q,_2 is a multiple of identity, i..e., if

L A T b LI ool SRl Y
for some k -1,..,n-1, commutation relations with P°
give Y;7X -0.The simplicity of the Lie algebra C n-1 gene-
rated by the Y ’s leads toY;' =0 for alli,j=%1,....%(n-1)
so that condition (3) is fulfilled and Lemma and Corol-
lary 1 can be applied.

So in all cases admissible by possibility (a) the
realization - is a Schur-realization and proof is com-
pleted.

4. CONCLUSION

Denote by n,;, the minimal number of canonical pairs
such that nontrivial realization of a given Lie algebra
exists in D2n;, - The values for the four series of comp-
lex simple Lie algebras are given in table 2/,

Dph,n>2

B,,n>1 ‘ Cn

|

Dmin ’ n l 2n—2 l n ’ 2n-3

Denote further by kmax such a maximal integer that all
realizations in W2 (n,;,+k n.x) ©Of a given Lie algebra are



Schur-realizations. For classical Lie algebras kmax
exists and is given in the following table:

n>l1 O J D,,n>2

A B

n n’

k 0 1 n-1 1

max

As to k., for A, see /1//2/ and /¢’ for Ba and
Dn: equality kmax-n-1 for the Lie algebras C, is
proved just in the present note. Maximality of Kmax fol-
lows from existence of one- parameter sets of realiza-
tions in W2 (ng;,+ kmax), with Casimir operators depending
on this parameter !'2:3:7:8/ . gypstituting this para-
meter by qu ; ik, +! from the new pair Qnintk maxt I
Pomim kmagt | W€ obtain non-Schur-realizations in
W2 (it kmast 1) - The second table shows the remarkable
distinction, asto k_,, between C, andtheother clas-
sical Lie algebras: realizations of C , inD2@2n-2however,
remain still related, in the sence of Definition 1, to the
standard minimal one.

REFERENCES

A.Simoni, F.Zaccaria. Nuovo Cim., 59A, 280 (1969).
2. A.Joseph. Comm.Math. Phys., 36, 325 (1974).

3. M.Havlicek, W.Lassner. Canonical Realizations of the
4

)

Lie Algebra sp(2n,R ). JINR, E2-9160, Dubna, 1975.
. H.M.I'easpand, A.A.Kupuasoe. O mesax, CEA3AHHBIX C

o6epmuiearoyumu aszebpamu Jlu. JAH CCCP 167, A3,

503-504 /1966/.

s.a. 1 M.Ge fand, A.A.Kirillov. Sur les aux algebres

enveloppantes des algebres de Lie; Inst. Hautes Etudes

Sci. Publ. Math., No. 31, 5-19 (1966).

5. A.Josep_‘h. J.Math.Phys., 13, 351 (1972).

6. M.HavliCek, P.Exner. On the Minimal Canonical
Realizations of the Lie Algebra 0 (n), JINR, E2-8089,
Dubna, 1974. ’

7. M.Havlicek, P.Exner. Matrix Canonical Realizations
of the Lie Algebra o (n,m ), JINR, E2-8533, Dubna,
1975.

12

8. M.Havl{c?ek, W.Lassner. Canonical Realizations of the
Lie Algebras g! (n,R) and s/ (n.R) 1. 11, JINR,
E2-8646, E2-8842, Dubna, 1975.

Received by Publishing Department
on September 12, 1975.

13



