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1. INTRODUCTION 

The main purpose of this note is to prove two asser­
tions concerning the canonical realizations of the Lie 
algebra C" = sp (2n. C ), n> I. through rational functions or 
polynomials in a certain number of quantum canonical 
pairs pi and qi . More precisely we are interested in 
realizations of C n in the Weyl algebra W 2(2n· 1 d. e., 
through polynomials in 2n- 1 canonical pairs or in the 
quotient division ring D 2 <2 n_ 2 J of W 2 (2 n_. 2 J • i.e., through 
rational functions in 2n- 2 canonical pairs. 

It is well-known 1.2. that canonical realizations of 
the Lie algebra C n do not exist in D 2m. if m · · n. If m n , 
all realization,s of C " are related ·through an endomor­
phism of D2 " ("equivalent') to one standard realization 
r 0 and Ca.si.mf.r operators are rea:.li.zed by multiples of 
identity ele.ment (we caB such :realizati.ons Schur-reali.­
;z.ail\ons). 

In tilts note we genera.Iize the concept of related reaU­
~tion::- a~H1 derh•e, ffl..·s1, C!l. svJficient condition for reali-
1:;' (j et~E of C~, in. Dzm wHh a.n y m ~. n to be related to 
w'?,E s~ndar o realization r 0 in D2 n c Dzm· ln combination 
war.· Joseph's result · 2 ·' it gives our first result: any 
reaHzation of Cn in Da2n-2!is related to r 0 in U~/~D2 (Zn...:.ll· 
As a consequence, the value of every Casimir operator 
in any realization in D2<2 n-ZJ is the sameas in realization 
r0 which particularly means that all realizations of C n 

in D2(2n_2 ) are Schur-realizations. Our second result is 
that this last property is conserved in W 2 <2n-l l though 
there appear new realizations nonrelated to realization 
- 3. 
'0 

In Conclusion we compare C n . in this respect, with 
the remaining complex classical L1e algebras. 
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2. PRELIMINARIES 

A. In Cn ofCartan'sclassificationofcomplexsimple 
Lie algebras we choose a basis of n (2n ' 1) elements 
X 1c~ -· , 

1
x-P satisfying , u {" -o 

rl )' )' a a )' -/1 )' , )' -/l 
lXWX 0 ],,of!XiS -o0 X{1 +•u•tl'oX-a + '(lt/'i-r?r> (1) 

, a" Sign a a,f1,y,o ±1, ±2, ... , ± n 

B. A canonical realization of a Lie algebra (assoc. 
algebra, quotient division ring) G is a homomorphism 

,-1 

of G in the Weyl algebra W2N (i.e., in the complex 
algebra of polynomials in 2N variables {-a , pfl satis-
fy ing [ q ,q{3 ] 0

' [ pa ,pfll-- 0, [ q ,p P l - -r'i I ) or in the a a a 
associated quotient division ring D2N (i.e., in the rational 
functions in q , pf1 ). For an exact definition and 
foundation of D~N see 1 

• 

A canonical realization of a Lie algebra is called 
Schur- realization if any Casimir operator (i.e., any 
element from the centre of the enveloping algebra) is 
realized by multiple of the identity. 

Definition 1: Let realization r G • D2"- D :ln • 

of the Lie algebra Gin the quotient division 
subring D211 of D2" · and realization 
T ' : G -+ 0 211 ' 
be given. r · is called related to r iff 
a realization 0 D2" · D :ln • 

exists such that 0• r - r ·. 

This definition generalizes the concept of related reali­
zations introduced in our previous papers. If D · D , 

2n 2n 

we obtain the old definition of related realizations in the 
sense that r and r are called to be related iff either 
r is related to r • or r • is related to r. 
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3. PROPERTIES OF REALIZATIONS OF Cn 
IN D 2 (2n-2, AND W 2 <2n-1 > 

Lemma 1: (i) The following formulas give a canonical 
realization r o of the Lie algebra C 11 in D2n 

i 
r 0 (X i) 

i 
ro(Xn) 

i 1 . 
-q.p ---o ~ 1 

J 2 J 

qopi P -j 

-I -qoq .q. 
-· J 

{ 
--qJ> i 

-q -i 

i> 0 

i < 0 

i 'j > 0 

i >O,j<O 

i<O,j-0, . 

r (X n) 
0 i { q~lqi(ro(X:) t 1) 

( 
n 1 

- T (X )--)p. 
0 n 2 -1 

i > 0 

i < 0 

-n) 
T (X ~ -q () ) 0 n 

r (X n) =q-l(r (X") t- ]_) (r (X")+_l-) 
0 -n 0 0 n 2 0 n 2 ' 

r o(X :> = -qop() - q.p' 

n-1 

(2) 

where q•p = q pnt ... HJ11 p and i,j=-(n-1), .. ,-1,1, 
... ,n-1 . o -1 

(ii) r 0 is a Schur- realization. 
It is straight-forward to verily that the generators 

•o(X~)from (2) obey the commutation relations (1) ofC 11 . 
'l'he realization (2) is a minimal one since only n cano­
nical pairs occur and then•for~ it must be a Schur­
realization (see .'2 ). 

If n · · n , the realization II ean be defined in D 2n'· 
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We then without mention assume r o ( C ") - D 2 J q o, p", · · ·, qn-t · 
pn-'KD

211
, where D2nCq o,p", ... ,q n-1 , p n-l) denotes the quotient 

division subring of D2n' generated by the first n cano­
nical pairs q0 ,p 0

, •• , q n-I·P n-l. The realization r 0 will 
be called the standard minimal one. 

Lemma 2: Let r be any nontrivial realization of C n 

with n ::. 2 in 0
211 

·, n ' _ n . fulfilling the con­
dition 

k 1 k -n -I' k 
l ( X I' + ? o I' ) X 11-- X n X n I - 0 (3) 

__1 -

at least for one positivepair k,i' ~1,2, ... , n-1. 
Then r is related to r 0 , i.e., ()o r 0 ~ r . The 
realization(): D2n .... D2 11 ', is defined by the 
relations 

()(qk)"'Qk, e (pk)~Pk. 

() ( q 0 ) =-r( X-;;"), tJ( p") =(r (2X~"))-I (r( X~) tQ k P k ), (4) 

Q k = - r ( X -;;k) , P k "' ( r ( X -;;") ) -I r( X : ) . 

Proof: Let us for abbreviation write X fJ- r( X{~),., Note 
that, due _!o the simplicity of the Lie algebra C "' X ~" = 0 
implies X~ ,. 0 for all a, f3 which is in contradicij_on with 
the assumption of nontriviality of ; . Therefore X-;." 
is a nonzero element of D2n • and we can define 

P k = < x ~" >-I x ~ . ~ -k Q k ~- -X 
11 

, k ,- l, ... , n-1 , 

po "'{2X-
0
°)-l (:X~+QkPk), (5) Q ()---X -n 

n 

(summation over k ). 

It is easy to prove, using commutation relations (1), that 
they commute as n canonical pairs, i.e.,. 

[pa,Q,B) =o~' [ Q a , Q ,B ) "' [ p a ' p ,B) =- 0 ' 

a,,B = 0,1,2, ... ,n-1. 
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Further one can show that the rational functions 

Ak Ak k 1 k 
y e = x e + Qe P + 2 o e 

Y~ -k_ Ax-k Q -IQ Q. 
r- e+ o k e· 

A k A k k e 
t _p= X -f - Q l P 1 

commute as the generators of C n-l· 

k ' e ~. 1 , ... ' n-1 . (6) 

(7) 

(8) 

Condition (3) is equivalent to Y ~ =0 and since C n-l is 
a simple Lie algebra it follows that 1 

... k ... k ... k 
Y_y = Y i "' Y e = o for all k,P ~1, ... ,n-1. 

Thus from (6)-(8) we get 

x i. = \ - Q . p i - l. o .j 
J ~ J 2 J 

Qo piP -i 

-Q~'Q-i Q j 

Further, (5) yields 

X I = 
... . {-QoP i 

n -Q-i 

An 

i' j:.. 0 ' 

i > 0, j / 0 ' 

i <0' j > 0. 

i > 0 

~< 0 ' 

Xn = -Qopo - Q•P , 

(9) 

(10) 

(11) 

(12) 

. n-1 
where 9 ·P ,- Q o P' -1 ••• + Qn-IP .Now we show that condi-
tion (9) implies 

x" -k 
... II I ~ 

-(Xn-TJP I , 2, .. , n -1 . (13) k 
. ~ 

c;(onsider condition (9) y_r o especially for k- r. Then 
Y ~k- 0 gives, due to (8) and (5), 
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X:-n x k , - x k x k 
n -k n n k_ 0 (no summation!); (14) 

when the commutator [X~n .. ] acts on this equation one gets 
-n ~ k AnA k ~ k" n 

2 X0 X -k ' X..:kX n -1 X 0 X -k 

and rewriting the r .h.s. we obtain further 
ADAk An ~k ~ k ~n ~n ~k - k 

2 X n x_k' 2 x_k X n I l xn , X -kl - 2 x_~,. X n 1 X --1.. 

which implies 
xn <X~~- _1_> cxk )(xk >-1 

-k An 2 -k n , 
k . -n 

(Note that X __I} : 0 for the Asame reasons as X 11 ).- k 0 . ). 
Thus, if we substitute X _:k by (10) and X n by 

(11) we find the desired expression (13). The generators 
(10)-(13) are a generating set in the Lie algebra C n , i.e., 
the remaining generators can be computed as commu­
tators of these. 

It follows from the commutation relation of pa and 
Q (3 that the mapping 

0 ( qa) - Q u ) 

O(pa) Pa, a ~0,1 .... ,n-1 

defines a realization of Dtnc Dtn ( q 11 ,p", ... ,q
0

_ 1 , p n-l) in 
D 2n' . 

A comparison with (2) shows that 0 o r 0 , r holds for 
the generating set of generators of C 11 (10)-(13) and 
therefore this must be true for the whole algebra C

0 

Corollary 1: If for a nontrivial realization r of C n , 

n.::: 2, in 0 20 ' , n ' ...: n , condition (3) is 
fulfilled, then for any Casimir operator 
z of Cn . 

r ( z) = r0 ( z ) - a z 1 , u., .,. C , 
i.e., r is a Schur- realization and the reali­
zation of any Casimir operator of Cn has 
the same eigenvalues as in the standard 
minimal realization • u . 

Proof: The realization ro is a Schur-realization, i.e., 
•o (z) az 1. The relation r = Oo r 0 gives 
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r(z)-O{r (z)] 0( because 0 ( 1) o. l~ o- azl) ~aze (l) -azl 

Theorem 1: Let r be any realization of Cn , n~ 2, in D2n ~ 
n ,:_ n '::..2n-2 . Then r is related to ro , i.e., 
r ~ ()or 0 where e is given by eq. (4). f is 
a Schur-realization and any Casimir operator 
has the same eigenvalues as in the standard 
minimal realization r o . 

Proof: Theorem 1 follows from Lemma 2 if we show 
that for any realizarion r of C n in D 211 ', n <,;_n '::; 2n-2 the 
condition (3) is fulfilled. To show this assume, on the 
contrary, that (3) does not hold. As eq. (3) is equivalent 
to eqs. (9), it means that all the generators (6)-(8) of 
the simple Lie algebra C n-1 are different from zero. 
Thus according to (5) we can define n-1 new canonical 
pairs 

jF ~ ( -y-< n-1 ))-I y r 
n-1 n-1 

- ,.. -r 
Q "- -Y I r n-

P-~( 2 -y-(n-ll-Lyn-l 
0
- p- r) 

·- n-1 } -~ n-1 + r Qo ~-v-<n-1 > 
n-1 

(15) 

Since it can be !_erif!ed that the Y/ and therefore the 
canonical pairs QP , pa commute with all Oa , pf3 de­
fined by eqs. (5), we would have in D 2n' , n~n' ~2n-2, 
2n - 1 canonical pairs. But this is impossible as in D 21!' , 
there do not exist more than n' canonical pairs (seei2/). 
Therefore condition (3) must- be fulfilled and we use 
Lemma 2 and Corollary 1. 

Now we enlarge the number of canonical pairs to 
2n- 1 and restrict ourselves to the Weyl algebra W2 (2n-U. 

Theorem 2: Any realization r of the Lie algebra Cn in 
the Weyl algebra W 2 (2n-I 1 is a Schur-reali­
zation. 

Proof: For n == 1 the realization r is minimal and there­
fore a Schur-realization /2/. For n ::: 2 we first choose 
2n-1 commuting elements from the realization r (UC0 ) c 
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'- W 2 (2n -I >of the enveloping algebra U Cn-ln notation from 
Lemma 2 and Theorem 1 they are 

Q 0 'Q I '· · · ' Qn-1 (see eq. (5)) 

and 

Q
0

Q
0

,Q
0

Q
1
, ... ,Q

0
Qn_

2
(see eq. (15) and (7)). 

Adding realization r ( z) = Z of any Casimir operator 
z, we obtain 2 n commuting elements from W 2 (2n-I) . In 
accordance ~th Joseph's result (Is/, Th. 3.3)only two 
possibilities can arise 

(a) Either some of the considered 2 n elements 
are realized by multiple of identity element. 

(b) If (a) does not hold a (finite) set of nonzero 
complex numbers I a i k p I c C exists such that 

. - k p 
i~paikfQ

1

(QOQ) Z = 0 (16) 

(the multiindex notation is used, i.e._ 

i - k- e io 
a. k nQ ( 0 Q ) --L =a. . k k n Q 0 • · • 

1 r ""0 10 , ... , 1n-1' 0'''' n-1 ,r 

. k k 
I n-1 - 0 - n-2 f 

.. Qn-1 (QOQO) ... (QOQn-2) z .) 

We exclUde the second possibility. For this we con­
sider W 2 (2n- 1 ) embedded in its quotient division rin~ 
D 2 (2n-1) where canonically corijugate variables P 0 , ... ,pn-, 
po , ... , P n-2 eld st (see eqs. (5), (15), (6)-(8)). By means 
of multiple commutation of the variables p a and P P 
with eq. (16) we easily obtain 

e Ia.kez =0 
for all considered i and k . A nontrivial polynomial 

Pik(Z)=~a-kpzf, aikf,kO 
in one variable Z chn be written as the product 

r · 0 r r 
Pik(Z)= aikf! (Z-{3ik7) =0, aik'/3ik~ C 

r 
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from which, as W2(2n-l 1 does not contain a nontrivial 
divisor of zero, we obtain 

r 
z =f3ik7 for some r. 

This contradicts, however, the assumption that (a) is 
not valid. So, the possibility (b) is excluded and we 
discus,.s_n the possibjJ~tG; _ ~~). If some o~ the el_eme~ts 
Q o 0" -X n , ... ,Q n-1 ~-X n are multiples of Identity 
then commutation relations (1) give immediately that 
such Q equal to zero. It implies, due to ~implicity of the 
Lie algebra C 11 , that all generators X~ are zero, 
i.e., the realization is trivially a Schur-realization. If 
some Qo Q o· · .. , Q0 Q n-2 is a multiple of identity, i..e., if 

~-n ~ -k ~-n ""-k ""-k "-(n-1 ) 
X n Yn-1 = X n X n-1- X n X n =a 7 

for some k ~ 1, .. , n - 1 , commutation relations with Po 
give )·,;-1'1 co 0. The simplicity oj the Lie algebra C n-1 gene­
rated by the Y 's leads toY ii = 0 for all i, j = ±1, ... ,±(n-1) 
so that condition (3) is fulfilled and Lemma and Corol­
lary 1 can be applied. 

So in all cases admissible by possibility (a) the 
realization r is a Schur-realization and proof is com­
pleted. 

4. CONCLUSION 

Denote by n min the minimal number of canonical pairs 
such that nontrivial realization of a given Lie algebra 
exists in D2n min . The values for the four series of comp­
lex simple Lie algebras are given in table /2/; 

_ _G+B 0 ,n>1 Cn ~n,n>2 
~ 2n-2 . n I 2n-3 

Denote further by k max such a maximal integer that all 
realizations in W 2 (nmin + k max) of a given Lie algebra are 

II 
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Schur-realizations. For classical Lie algebras k mu 
exists and is given in the following table: 

A./ B0 ,n>l u 
km•, I 0 I I I n-1 -1--1--

0
0 

,n >2 

As to k max for A n see /I I 12 I and I 6 I for Bu and 
D n ; equality kma x- n- 1 for the Lie algebras C n is 
proved just jn the present note. Maximality of kmax fol­
lows from existence of one- parameter sets of realiza­
tions in W2 ("min+ k max>; wi_th Ca~imir operators depending 
on this parameter · 1 

• 2· .1. 7 • 111 : substituting this para-
meter by q"min' kmax+l from the new pair qltnin+kmax+l. 
p n . k + 1 we obtain non-Schur- realizations in mtm max 
W 2 (n + k + 1 l . The second table shows the remarkable mtn max 
distinction, asto kma:t between en andtheother clas-
sical Lie algebras: realizations of C n inD2(2n-2)however, 
remain still related, in the sence of Definition 1, to the 
standard minimal one. 
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