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Introduction 

The object of this paper is to present a large class of 
realizations of the Lie algebra of the real symplectic 
group in the Weyl algebra, i.e., through polynomials in 
quantum canonical variables q i , pi with various good 
properties. 

For physical relevance of canonical realizations of 
Lie algebras in general we refer to the review articles I I I 
and 121 and the references therein. As to thesymplectic 
group, we remember only that it occurs in physics as a 
subgroup of general canonical transformations, namely, of 
the group ISp ( 2n, R) of inhomogeneous linear trans­
formations which leave the commutation relations of n 

canonical pairs [ p i , q . J = o .. z , [ q i , q . I = [pi, p . J = O, 
i, j = l, 2, ••• , n invariant /2,3/1 .. The Lie ~lgebra s~(2n,R) 
is the dynamical algebra of the n -dimensional harmo­
nica! oscillator /I/. 

The proposed canonical realizations have common 
features with those of real forms of the other classical 
Lie algebras An, B n, D n presented in I 41 and /S/ . The 
realizations are recurrently defined by means of 2n -1 ca­
nonical pairs and a canonical realization of the algebra 
sp ( 2n - 2, R) with one free real parameter. Using, for 
realization of the auxiliary Lie algebra sp ( 2n -2 ,R) ,either 
the trivial one or the realization defined by the same for­
mulas e.t.c. we obtain a set of realizations sp (2n ,R) • 

Realizations of this set are in one- to-one correspondence 
with the sequences (d;O, ••• ,O,an-d+l, ••• , an), d = 

= 1, 2, ... , n , a i ~ R ; these sequences we call signatu-
res. The generators of sp ( 2n, R) in a realization with 
signature (d;O, ••• ,O, an-d+I•···•an) lieintheWeylal-
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gebra W2N <d), where N (d) = d(2n- d) , i.e., they are 
polynomials in N (d) canonical pairs. All realizations are 
Schur realizations which means that every Casimir opera­
tor is realized by complex multiple oftheidentity element 
and all realizations are skew-hermitean with respect to 
an involution defined on the Weyl algebra. Two realiza­
tions characterized by different signatures cannot be 
transformed from one to another by means of endomor- · 
phisms of the Weyl algebra. 

The number N( d) =d (2n-d) of pairs used in the con-
struction of the realizations with signature 
( d;O, ••• ,0, aa-L- d + 1 , ••• , an)· is the smallest for d = l 
when N ( 1) = 2n - l . Of course, this is not the minimal 
number of canonical pairs which allows a faithful 
realization of sp ( 2n, R) • The well-known minimal rea­
lization r 1 of sp ( 2n , R) is given by the following ex­
pressions 

l 8 . . 
q. p . + - .. ' 1 q. q. ' 1 p. p . ' 

I J 2 IJ I J I J 
i, j = l, ... , n, (1) 

where canonical pairs are used. On the basis of 
JOSEPH's result( I~ I , Lemma 1) it could be proved 
for n ~ 2 that in any realization r of sp ( 2n ,R) in the 
quotient division ring D 2 < 2n _ 2) of W 2 ( 2n- 2) (i.e., by 
means of rational functions in 2n - 2 canonical pairs) 

r(z) = r (z) =A , A I; C 
1 z z 

holds for any Casimir operator z of sp ( 2n, R) 1121. 
So, the possibility to obtain realizations of sp ( 2n, R) in 

which Casimir operators are realized by expressions 
other than in realization t 1 wouJp appear only in 
W2111 or D 2N with N ~ 2n- l. The mentioned one-pa­
rameter set of realizations with signatures ( l ; 0, ... , 0, a n ) 

in W2( 2n _ 1 ) shows that N equals just 2n - l and 
that canonical realizations are given by polynomials. Fur­
ther, in these realizations, e.g., the quadratic Casimir 
operator C < 2) depends on the parameter a n , 

r ( C (2)) = - 2 (a~ + n 2) , whereas for realization r 1 one 
finds r 1 ( C < 2) ) = - n 2 - ~ n • 

The fact that these realizations are still Schur-reali­
zations is not accidental as it could be proved that in 
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W 2 ( 2n -1) any realization of sp ( 2n, R) is Schur-reali­
zation 1121. 

In the ~conclusion we show how this "minimal" one- · 
parameter set of realization of sp ( Zn, R) can be obtain­
ed by means of the one-parameter set of minimal reali­
zations of g{'(2n, R) given in our paper151. Wediscuss 
a formula very useful to construct canonical realizations 
of any finite dimensional Lie algebra. 

Some considerations determine, for any compact 
classical Lie algebra, the minimal of canonical pairs 
needed for skew-hermitean realizations. 

Preliminaries 

In the Lie algebra of the symplectic group, i.e. the 
group of linear transformations of the 2n -dimensional 
vector space which left invariant the bilinear form 

n 
:£ (xiy-i- x-i y i) (2) 

i =1 

w~ choose a_ ~sis consisting of n ( 2n + l ) 
X f3= - l a l f3 X_ a a, (3 = - n, ••• , -1 . l .••. , n 

generators 
satisfying 

the commutation rules 

[ 
a y] y a a y -,H ... y Y -{3 (3) 

X{JXB =8{3X 8 -B 8Xf3+lal(38B ·x_a+lf3ty8-aXB, 

la = sgn a • 

A 2n x 2n -matrix representation is 
a t 

( X (3) ~> = 8 8 m; - l t r-.0 ~ o f.< • ( 4) yu ya f-.I<J a p· -ao -,.._.y 
A canonical realization of a Lie algebra L is a homomor­
phism of L in the Weyl algelrra w2 N, the associative 
algebra over C with identity generated by 2N elements 
q i, pi, i = l, 2:, ... , N with commutation relations 

[pi,qj.] =0 .. 1. 
lj 
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The homomorphism r extends naturally to a homomor­
phism (denoted by the same symbol r ) ofthe enveloping 
algebra lJL of L into W2N • 

If in a realization of L every Casimir operator, i.e., 
every element from the center of the enveloping algebra 
of L, is realized by a multiple of the identity element, 
then the realization is called to be a Schur-realization. 
Two realizations r and ·r·~of L in W2N are called to 
be related if an endomorphism e of W2N exists such 
that either e. T = T I or e . T, = T • 

In w
2

N we define an involution induced by 
+ r--1 

p 0 = -p 0 ' 

I I 

+ q 0 = q 0 • 

I I 

A canonical realization r of the real Lie algebra 
L is called skew-hermiteaniff r(x)+ =-r(x) 
all x ~ L. 

Canonical Realization of sp( 2n, R) 

(5) 

for 

Theorem 1: Let 
sp(2n-2, R) 

zio 
J 

be a canonical realization of 
in W2m • Then the generators 

i i 
Xo=qopo-<o<oq op 0+ Zo, 

J I J I J -J -J J 

X~= q j ( q • p + n - i a)- <i q oP-j + Z t qk, 

X j = -pi - < i q_i p o. 

xn = - 2p 0' 
-n 

(6) 

-f 
X-~ 2q (q·p+n-ia) +<eZk qfqk' n 0 

xn == - q p - q p ( . ) J n o 0 • - n-Ja • , 

i,j,k,f =-(n-l), ... ,-l,l, ... ,n-l, 

6 

.. 

where a~ C and q·p = q 0ro + qkp k' define a reali­
zation of sp ( 2n, R) in W2 ( 2n -1 + m) • This realization 
has the following properties: 

i The realization is skew-hermitean if a is real 
and if zj is skew-hermitean. 

ii The realization is a Schur- realization if 
is a Schur-realization. 

z~ 
J 

iii Two realizations (6) with different parameters 
are non-related. 

iv Two realizations (6) differing oflly in the reali­
zations of sp ( 2n-2, R) are related if and only if 
these realizations of sp ( 2n - 2, R) are related. 

Proof: The verification that the generators (6) fulfil the 
commutation relations (3) of sp ( 2n, R) and that they are 
skew-hermitean under the involution defined by (5) is 
straightforward and will be omitted here. 
In the proof of (ii)-(iv) we use two assertions which are 
easily probable using the relation [ qp, q kp s] = (k -s) q kp s for 
each canonical pair occuring in W2N· 

Assertion 1: If x c;. W2N commutes with p i (resp. q i ) 

then x does not depend on q i (resp. pi ). 
Assertion Z: Assume that for x c;. "2N there holds 

[ q] pI+ ... + qN~ fN~' x j o;= m • X 

for some m = 0,±1, ±2, .•• where N':::; N • 
Then 

X = }.; 
k _k,ef, m au. qkp e 

where 
k e k 1 k N ~ e1 eN' 

akfq P =oak
1 

... kN,'r 1 ••• fN~·ql ••. qN 1 PJ ···PN 1 

k - e = kl + ... + k N I- e l - ••• - e N I and a k e do not 
depend on q 1, ... , qN,, pI' ... , PN, • 

(ii) Let Y be an element from the center of the envelop­
ing algebra of sp ( 2n , R) in its realization induced by 
(6). By definition Y commutes with all generators of 
sp ( 2 n, R) • First, we consider the consequence of this 

fact using only generators which do not depend on zj 

[ Y, X n ] =OJ i.e., [ Y, p 0 l = 0, 
-n 

(7) 
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[Y,X~i] =0, i.e., [Y,pi]+fi[Y,q_i p 0 l =0, (8) 

[Y, x:] =0, i.e., [Y,2q0p 0 +qjPjJ = 0. (9) 

From (7) it follows, due to Assertion 1, that Y does not 
depend on q0 • Therefore Y can be written in the form 

r 
Y = I YrP O' 

r 

with 
r--1 

Y r = I a r nqkp e 
k ,e kt • 

(10) 

where a~e are polynomials in Z J . We show that 
only a 8o can differ from zero. For y r relation (9) 
gives 

[q.p.,y J =2ry , r=0,1,.... (9') 
J 1 r r 

Taking (8) for the 0 -th power in p 0 we obtain further 

[ y 
0 

, p j ] = 0 , j = - ( n - 1) , ... , -1 , 1, ... , n - 1 

and, due to Assertion ·1, y 0 does not depend on q i , 

o e 
Yo = I aoeP e 

Equation (9') in combination with Assertion 2leads imme­
diately to 

0 i 
Yo=aoo<zj) 

since the condition k - e = - e_(n-1 l- ... - en_1 = o necessary for 
a8e to be nonzero is fulfilled only for L(n-ll = ... =fn-J, =O. 
If we take (8) for the first power in Po we obtain 

[ Y1 • P j ] + f j [ Yo • q_ j ] = 0 , 

which, due to Assertion 1, implies 

yl = f aolfPf. (10) 
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Equation (9') and Assertion 2 give, for the difference 
k- e = -f_(n-n-··· -e n-1 the condition e_(n-ll + ... +f n-1 = - 2, 
which cannot be fulfilled for non-negative integers f's . 
Consequently all the coefficients abe in (10) must be 
zero, i.e., 

YI = 0. 

Putting y1 in (8) taken for the 2-nd power in Po we 
get by the same arguments Y2 = o and so on. Thus we can 
show that y = a8o is a polynomial in the generators 
Z j of sp ( 2n -2, R) only. Hence from the condition that 
Y commutes with the remaining threetypesofgenerators 

X i. , X i , X -n which contain the generators Z ~ 
J n n J 

i 
follows that Y ""A·l ,A~ C if Z i formaSchur-realizati-
on and (ii) is proved. 

In the proof of (iii) and (iv) we use very similar argu­
ments. Let () be an endomorphism of the Weyl algebra 
W 2 ( 2n-I + m l which connects two realizations (6) 

"'a a 
()(X/3) =Xf3;a,p=-~, ... ,-1,1, ... ,n, (11) 

"'a "' "'i 
where the realization X f3 depends on a and Z i and the 
realization X {3 depends on a and Z / • 
From the equations (11) we use first only three types 

"'n n . 
()(X ) =X 1.e., e(p

0
) = Po• 

-n -n (12) 

"'n n . 
()(X.) = X.l.e.,()(p.+t.q_.p

0
)=p.H.q .p

0
, (13) 

J J J J J J J -J 
~ n n. ~~ === 

()(Xn) = Xnl.e.,()(q0p0+q·p+al)=-l6Pt>+q·p+a·l. (14) 

Now we turn to ()(q i) and determineitfromits commu-
tation realizations with (12)-(14). Because of (12) 

[()(q.) -q.,po] =0 
I I 

holds which, due to Assertion 1, implies that {IJ(q i) -q i) 
does not depend on q • We denote this element again 
by Y and we can write 0 
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Y=O(q.)-q.=I. y ·p' 
1 1 r r 0 

with 
'\.' I k f 

Y, =k~P aky· q p , 

where u~jl 
we obtain 

are polynomials in Z! . From equation (13) 
J 

IY,p.l•.q.pl o J J _, () 
(13') 

and from (14) it follows that 

\ 1!-..opk'< l =(~r+ 1) }'
1

• 
(14') 

A comparison with (8) and (9') shows that we have the 
same problem as in the proof of (ii). The only difference 
is the factor ( 2r + 1) in the r.h.s. of (14') instead of 
2r in (9'). Using the same argument as in the proof of 
(ii) one finds Y = 0 since with the factor (2r+ l) instead 
of 2 r the necessary condition for a k.e f- o reads k -1 = 

2r -1 1 which cannot be fulfilled even for a 8o. So we get 
O(qi) - q i and it follows then immediately from(12) 
and (13) that 0( pi) =pi. Therefore (14) turns into 

( () ( q 0) - q 0) P 0 = (a - ~ ) • J' (15) 

which in the Weyl algebra, where negative powers in p 0 do 
not occur, can be fulfilled only if~= a . This proves (iii). 
From (15) we get further that O(q0 ) = q 0 because of the 
absence of nonzer_Q zero divisors in the Weyl algebra. 

So, we assume a= a and show (iv~ as follows. Since 
the canonical pairs from the subalgebra W 2m commute 
with theremaining 2n-l canonicalpairs W2(2n-l+m), 
0( a) for a~ W 2m cannot depend on these remaining 
2n - l pairs because of Assertion~ 1. Thus e restricted 
to W 2m must be an e~domorphism e of W2m. ~herefore 
!he relations (11) O( X~) =X~ taken for X 

1
i 

1m ply 

; <'z ~) = z i_. 
J J 

(16) 
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On the other hand if z ii and ,.Z j are related, i.e., 
there exists an endomorphism e of W2m such that 
(16) holds, then the identical extension of e to an endo­
morp~ism e of w 2( 2n- l + m) yields (11), i.e., x{3 
and X {3 are related, the proof is completed. 

The obviously inducing character of Theorem 1 gives 
rise to the construction of d-parameter sets ofcanonical 
realizations of sp(2n, R) • For this purpose let us define 
"signatures" as the (n + l) -tuples ( d; 0, ... ,O,an-d+l , ... ,an) , 

where d=l,2, ... ,n and ai are real numbers. 

Theorem Z: To every signature 
there corresponds 
of sp(2n, R) in 
defined as follows 

(d;O ' ... ' O,an-d+l , ... ,an) 
a canonical realization 
W2N(d) , N(d) = d(2n-d) 

a) (l ; 0 , ... , o, an) denotes the realization 
(6) of sp ( 2n, R) , where a = a n and 
Z

1i = o . . 
b) (d;O, ... ,O, an-d+l , ... ,an) d>l denotesthe 
realization (6) where a = a 0 and the rea­
lization of sp ( 2 n - 2, R) has the signature 
( d; 0, ... , 0 , an_ d + 1 , ... , an _ 1 ) • For these 
realizations it holds that: 
i The realizations are skew-hermitean. 
ii The realizations are Schur-realizations. 
iii Two realizations are related if and only 

if their sugnatures are the same. 
Theorem 2 follows immediately from Theorem 1. The 
number of canonical pairs is 

n c 
I. ( 2k - 1 ) = d ( 2 n - d) • 

k=n-d+l 

Remark: For property (iii) it is of course assumed that 
W 2N < d l is naturally embedded in W 2N < d, l if d < d'. 

, Concluding Remarks 

A. If we consider the generators X~ given by (6) 
as the basis of a linear space over· C, i.e., if we replace 

II 
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sp ( 2 n, R) by its complexification sp ( 2 n, C) , then all 
assertions of Theorems 1 and 2 are also true with excep­
tion of skew-hermiticity, which bas no sense for complex 
Lie algebras. The parameters a i , i = n- d+ l , ••. , n, then 
can be taken from C since the restriction to real para­
meters was caused only by skew-bermiticity and other 
parts of the proof do not depend 

1
op this restriction. So, 

together with the results from 41 and /S/ series of 
canonical realizations with the same properties described 
here for sp ( 2 n, C) are given for all the four fundamen-
tal series An , B n, C n , Dn ·, of the Cartan classifica-
tion of compl9 simple Lie algebras. , 

B. A verywell-knownmethodofgetting, for an arbit­
rary Lie algebra L with a basis xl , ••• , x n , a canonical 
realization which is bilinear in q i and pi starts with 
a N x N -matrix representation X a= (X~) ofthege­
nerators x a of L and uses the formula 

a ""a N a 
dx)=X =I q.X .. p .• 

j' j=1 I IJ J 
(17) 

Formula (17) already used by SCHWINGER /B/ in 1952 
for the Lie algebra su ( 2) was generalized and used for 
Lie algebras of non-compact groups (U ( 6,6) ) in hadron 
classification by DOTHAN, GELL-MANN, NE'EMAN 191 
with the help of HERMANN and FEYNMAN (see related 
remarks in /9/ ). As is pointed out by CORDERO and 
GHIRARDI in the review article /I/ some properties 
of formula (17) restric strongly its generality. So, the 
number N of canonical pairs depends on the existence of 
a N x N -matrix representation of the Lie algebra L . 
Further, the realizations by bilinear expressions in q i 
and pi give only a small subset of all possible canonical 
realizations and the minimal realizations are usually not 
of this type. 

It is possible to generalize formula (17): The commu­
tation relations among r(Xa) will be conserved if we sub­
stitute qi p . by E ii satisfying the commutation relati­
ons of the Lle algebra gf( N) , , i.e., if 

[ Eii • EkeJ = 8ik Eie- 8ej Eki • 

then 

12 

/18/ 

N 
r( x a) = I X~.E .. 

i,j = 1 IJ I) 
(19) 

fulfil the commutation relations of the algebra L. 
Whereas in the literature for E ij there wer; often 

used qi pi or, because of skew-hermiticity qi pi+ 2 o ij 

we shall. stress the possibility to take other realizations 
of g£ (N) for E ij • So we can use, e.g., the canonical 
realizations of gf(NJ given in/S/ and among them the 
one-parameter set of minimal realizations in W 2 ( N _ 1) * 
which reduce the number of canonical pairsincomparison 
to those used in (17). 

. The canonical realizations of sp ( 2n , R) (6) with 
z! = o can be got by (19) using just the mentioned 
minimal one-parameter set of realizations of gf. ( 2n, R) 
and the matrix representation (4) of the generators of 
sp(2n,R). 

As the matrix representation (4) of sp ( 2n, n) is real 
and the realization of gf ( 2n, R) is skew-hermitean, the 
realization of sp ( 2n, R) defined by (19) is skew-hermi­
tean, too. 

C. To take a representation· of L by real matrices 
is not, of course, the only possibility by means of (19) 
to get a skew-hermitean realization of L . The suitable 
chioce of a representation of L by N x N -dimensional 
complex matrices in combination with a suitable non-skew­
hermitean realization of ge (N, R) can leadalsotoaskew­
hermitean realization of L. If we are interested, at the 
same time, in the realizatidns with the smallest number 
of canonical pairs, we have touseamatrix-representation 
with the smallest dimension N. For example ,taking the 
fundamental n -dimensional ( 2n -dimensional) skew-her-

*E/Lv=~pv+ ~ollv'ENIL=-plt'EILN=q/t(qvpv-;- ~ -ia), 

ENN= -<Jvpv- _N;_L+ ia, Jt,v=l , ... ,N-l,u~R(eq.(ll) m/5/ ). 

These realizations are skew·-hermitean and they are 
Schur- realizations. 

13 

I ________________________ __ 



mite an representation of L = su ( n) ( =sp (2n) *)and the rea-
lization of gf(n, R) ( gf(2n, R)) given by 

] 
E .. =-(p.p.+q.p.-q.p.-q.q.) 

IJ 2 I J I J J I I J 

for which E~i = F, ji holds, we obtain a skew-hermi-
tean realization of su(n)(sp(2n)) in W2n(W2.2n) · 

These realizations are minimal skew-hermitean reali­
zations of the Lie algebras su ( n) and sp ( 2 n) , i.e. 
realizations with the smallest number of canonical pairs 
among all skew-hermitean realizations. The following 
considerati~ns show that in W 2< n _1 l W 2< 2n ·- n no skew­
hermitean realization of su ( n) ( sp ( 2n) ) exists. Due to 
JOSEPH /I 0 I , (Th 4.4) no skew-hermitean nontrivial 
realization of a compact Lie algebra is a Schur-realiza­
tion. It was shown, however, that all realizations of the 
Lie algebra An -I in W2( n _ 1 l are Schur- realizati­
ons I 10 ' 11 I. Consequently, the same assertion takes 
place for any real form of A n _ 1 including su ( n) and 
therefore a skew-hermitean realization of su ( n) in 
W2( n- n does not exist. The same assertion is valid 
for sp ( 2n) in W 2< 2n _ 1 l because as we mentioned in 
the Introduction, any realization of sp( 2n,H) in W2( 2n-1 lis 
a Schur-realization and sp( 2n) is another real form 
of the common complexification sp ( 2n, C) • 

Since, itwasprovedin/6/ thatminimalskew-hermi­
tean canonical realizations of the Lie algebra o ( n) 
exist in W 2 <n-Il , the problem of the existence of these 
realizations is solved completely for all compact clas­
sical Lie algebras. 
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