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Introduction

The object of this paper is to present a large class of
realizations of the Lie algebra of the real symplectic
group in the Weyl algebra, i.e., through polynomials in
quantum canonical variables q; , p; Wwith various good
properties.

For physical relevance of canonical realizations of
Lie algebras in general we refer to thereview articles/ !/
and /2 and the references therein. As to the symplectic
group, we remember only that it occurs in physics as a
subgroup of general canonical transformations, namely, of

the group ISp (2n, R) of inhomogeneous linear trans-
formations which leave the commutation relations of n
canonical pairs [p,,q.1=6,,2, [q;,q.]1 :[pi,pjl =0,

i,j =1,2,....n invariant /2,3/' _TheLie algebra sp(2n,R)

is the dynamical algebra of the n -dimensional harmo-
nical oscillator /1/.

The proposed canonical realizations have common
features with those of real forms of the other classical
Lie algebras A, B,, D, presented in/4/ and/5/.The
realizations are recurrently defined by meansof 2n-1 ca-
nonical pairs and a canonical realization of the algebra
sp(2n-2, R) with one free real parameter. Using, for
realization of the auxiliary Lie algebra sp(2n-2,R) ,either
the trivialoneor therealization defined by the same for-
mulas e.t.c. we obtain a set of realizations sp(2n,R) .
Realizations of this setareinone-to-one correspondence
with the sequences (d50,.0,0,a 4. 15 ee s an), d=
=1,2,..,n, a; &€ R; these sequences we call signatu-
res. The generators of sp(2n, R) in a realization with
signature (d;0,...,0, a _4. .., a,) lie in the Weyl al-
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gebra W,y ,,, where N(d) =d(2n-4d), i.e., they are
polynomials in N(d) canonical pairs. All realizationsare
Schur realizations which means that every Casimir opera-
tor is realized by complex multiple of theidentity element
and all realizations are skew-hermitean with respect to
an involution defined on the Weyl algebra. Two realiza-
tions characterized by different signatures cannot be
transformed from one to another by means of endomor- "
phisms of the Weyl algebra.

The number N(d) =d(2n-d) of pairs used in the con-
struction of the realizations with signature
(40,...,0,a__, . seesap)  is the smallest for d=1
when N(1) =2n-~1. Of course, this is not the minimal
number of canonical pairs which allows a faithful
realization of sp(2n, R). The well-known minimal rea-
lization r; of sp(2n,R) is given by the following ex-
pressions

1 . . -
qip],+ Eaij , 1qiqj , 1pipj, i,j =1,..,n, (1)

where canonical pairs are used. On the basis of
JOSEPH’s result(/7/ , Lemma 1) it could be proved
for o > 2 that in any realization r of sp(2n,R) in the
quotient division ring Do(g9,_9y0of Wo(o,-2) (i.e., by
means of rational functions in 2, -2 canonical pairs)

T(z):rl(z) =)\z, )\ZGC

holds for any Casimir operator z of sp(2n,R)/12/,

So, the possibility to obtain realizationsof sp(2n,R)in
which Casimir operators are realized by expressions
other than in realization 7; wou\l;il appear only in
Woy or Doy with N>2n- 1. The mentioned one-pa-
rameter set of realizations with signatures(1;0,...,0,a, )
in Woon-1) shows that N equals just 2n-1 and
that canonical realizations are given by polynomials. Fur-
ther, in these realizations, e.g., the quadratic Casimir
operator C(2 depends on the parameter anq,
r(C2)) =-2(a2 + n2), whereasforrealization 7, one
finds rl(C(z) ) =-n? - %n.

The fact that these realizations are still Schur-reali-
zations is not accidental as it could be proved that in
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Wo(2n —1) any realization of sp(2n,R) is Schur-reali-

zation /12/,
In the Conclusion we show how this ’minimal’’ one- -

parameter set of realization of sp(Zm,R) can be obtain-
ed by means of the one-parameter set of minimal reali-
zations of gf(2n, R)  given in our paper/% . Wediscuss
a formula very useful to construct canonical realizations
of any finite dimensional Lie algebra. .

Some considerations determine, for any compact
classical Lie algebra, the minimal of canonical pairs

needed for skew-hermitean realizations.

Preliminaries

In the Lie algebra of the symplectic group, i.e. the
group of linear transformations of the 2n-dimensional
vector space which left invariant the bilinear form

n
S (xiy-i- x=iy i) )

i=1
we choose a %p,sis consisting of n(2n + 1) generators
B —eqegX_h a,B=-n,..,-1.1.0ym satisfying

the commutation rules

~F -
[x‘éxg]=agx;_a‘gxg+eaeﬁaSl*x_yaﬁﬁeyafaxa .(3)

€ = 8 a .
a g

A 21 x 2n -matrix representation is

a L]
= Pt . 4
(X B)}’5 EYaEﬁo eaeﬂb—aa a-ﬁ}’ 4)
A canonical realization of a Lie algebra L isa homomor-
phism of L in the Weyl algebra Won, the associative

algebra over C with identity generatedby 2N elements

qsP gy 11,2 N with commutation relations

[pi,qj] =8ij 1.



The homomorphism r extends naturally to a homomor-
phism (denoted by the same symbol ) ofthe enveloping
algebra UL of L into Wan

If in a realization of L every Casimir operator,i.e.,
every element from the center of the enveloping algebra
of L, is realized by a multiple of the identity element,
then the realization is called to be a Schur-realization.
Two realizations + and 7'of . in Wgn  are called to
be related if an endomorphism ¢ of W,y exists such
that either 9.r=7" or 6O.7"=r.
In W,y wedefine an involution induced by

+ ~
O
1 1 5)
¢ =q . (
1 1
A canonicalrealization 7 ofthereal Liealgebra
L is called skew-hermitean iff 7(x)* =-7(x) for

all x e L.

Canonical Realization of sp(2n,R)
Theorem 1: Let Z|
sp(2n-2, R)

be a canonical realization of
in W, . Then the generators

p_;+ Z,

i
Xj=a;pjmeiepa j

=
i_ . j

Xn— qj(q-p+n--1a)-—ej qOP—j+quk’
n

Xj= -pj-¢€j9-pos |

" (6)
= ~2p,, .

X = 2q,(q- ia) 7t
= qoq p+n—-1a +€B k ngk,

X" i
= "‘JOPO"‘]'P"(D“W) -1,

i,jo k0 ==(n=1),..,-1,1,.

wy,n-—-1,

define a reali-
This realization

where a<c C and q-P=9qgPg * 9kP k-’

zation of sp(2n,R) in W2(2n—l+m’)'
has the following properties:

i The realization is skew-hermitean if «

and if 7Z; is skew-hermitean. .

ii The realization is a Schur-realization if 7
is a Schur-realization.

ili Two realizations (6) with different parameters
are non-related.

iv Two realizations (6) differing ohly in the reali-
zations of sp(2n-2,R) are related if and only if
these realizations of sp(2n-2,R) are related.

Proof: The verification that the generators (6) fulfil the
commutation relations (3) of sp(2n,R) and that they are
skew-hermitean under the involution defined by (5) is
straightforward and will be omitted here.

In the proof of (ii)-(iv) we use two assertions which are
easily probable using the relation [qp, qkp 5= (k-s) gkp *for
each canonical pair occuring in Way.

is real

Assertion 1: If x& Wy commutes with p; (resp.q ;)
then x does not depend on q; (resp. p;).
Assertion 2: Assume that for x< Won there holds

Laypy+ e + gy xlemex
for some m = 0,+1,+2,... where N" < N
Then

T Ed agratp

k—-fT=m

where L Lo g 0

k 0 _ . 1 N” "1 N’
2£9°P =“k]...kN,IZl...EN,'q1 Gy Py Py
k —Esk1+...+kN,—El—...—EN, and ¢, p do not

depend On  q ;. qyss Pyoeees Py
(ii) Let Y be an element from the center oPthe envelop-
ing algebra of sp(2n, R) in its realization induced by
(6). By definition Y commutes with all generators of
sp(2n, R) . First, we consider the consequence of this
fact using only generators which do not depend on Z}

[Y,X_nn]=0’ i.e., [Y,p0]=0, (7)



[Y,X2;1=0,ie, [Y,p;l+e;[¥,q_5pol=0, (8)
[Y,X71 =0, 1e, [Y,2qpg+q;p;l =0, 9)

From (7) it follows, due to Assertion 1, that Y does not
depend on q,. Therefore Y can be written in the form

Y=2Syp! (10)
r

where ap are polynomials in Z; . We show that

only ago can differ from zero. For y  relation (9)
gives
[quj,yrl=2ryr , t=0,1,... . 9’)

Taking (8) for the 0-th power in p, we obtain further
[yo , pj] =0, j=—(n—l),...,—l,1,...,n—l

and, due to Assertionl, y, does not dependon gq, ,

o ¢
Yo = % “ogp -
Equation (9’) in combination with Assertion 2leads imme-

diately to
0 i
Yo =¢100(zj ) |

since the condition k-f =-f_, _;y-...-f,_; =0 necessary for

agg to be nonzero is fulfilled only for f_(, j)=...={, , =o0.

If we take (8) for the first power in p, we obtain
[}’l,pj] +6j[}/0,q_j] =0,
which, due to Assertion 1, implies

1./
N =§ %gP -+ (10)

AR it e T

Equation (9’) and Assertion 2 give, for the difference
k-0 =-0_( _--.-f _, thecondition ¢_ _, +... Al == 2,
which cannot be fulfllled for non- negative integers s .
Consequently all the coefficients aog in (10) must be

zero, i.e.,
y1 =0.
Putting y, in (8) taken for the 2-nd power in py Wwe

get by the same arguments y2=0 and soon. Thus we can
show that Y - a), is a polynomial in the generators
Z; of sp(2n-2,R) only. Hence from the condition that
Y commutes with the remaining three types ofgenerators

X! X X ;" which contain the generators Z

j ’ n'?
follows that Y =A.1,AcC if Z
on and (ii) is proved.

In the proof of (iii) and (iv) we use very similar argu-
ments. Let 6 be an endomorphism of the Weyl algebra
Wo(2n~14+m) which connects two realizations (6)

o(ig) XG5 @, B=nser =L, L e, (11)

where the realization y: p dependson a and Z-i and the
realization X3 dependson a and z/.
From the equations (11) we use first only three types

form a Schur- realizaﬁ—

O(X_n) =X__nl-e-19(p0) =Pgy (12)
0 n .

G(Xj) = Xj l-e-,G(pj+ch_ij)=pj+fj 9% Po> 13)

0(X)) = X\ i.e.,0(qupy+q-pral) =ggpgta-p+a-1.  (14)

Now we turn to 0(q; ) and determineitfromits commu-
tation realizations with (12)-(14). Because of (12)

[6(q;) —q,,pyl =0

holds which, due to Assertion 1, implies that (0(q)-q;)

does not depend on 9y We denote this element again
by Y andwe can write



Y=0(q)~q,=2 v -
with

ey oip o
where «, are polynomials in ]; . From equation (13)
we obtain

. ’
| Y,p‘j lnjq_ipol 0 13’)

and from (14) it follows that
(14’)

}qkqm,ﬁj|:(2r+ 1) Y,
A comparison with (8) and (9’) shows that we have the
same problem as in the proof of (ii). The only difference
is the factor (2r+1) in the r.h.s. of (14’) instead of
2y in (9’). Using the same argument as in the proof of
(ii) one finds Y- 0 since with the factor (2r+1) instead
of 2r the necessaryconditionfor «,y # 0 reads k -l=
2r+ 1 which cannotbe fulfilled evenfor «J,. Soweget
0(q;) = q; and it follows then immediately from (12)
and (13) that 0(p) =p,. Therefore (14) turns into

(0(qy) ~qgpy=(a~a)-l, (15)

which in the Weyl algebra, wherenegativepowersin p,do
not occur, can be fulfilled only if «= « . This proves (iii).
From (15) we get further that 9(q;) =q, because of the
absence of nonzero zero divisors in the Weyl algebra.

So, we assume a = a and show (iv) as follows. Since
the canonical pairs from the subalgebra Wy, commute
with the remaining 2, -1 canonical pairs Woon —1+m)»
6(a) for ac Wy, cannot depend on these remaining
2n-1 pairs because of Assertion,1. Thus ¢ restricted
to W, must be an endomorphism ¢ of W,,. Therefore

the relations (11) O(f(g) = X‘Ié taken for X ‘J
imply
0(2,) =7 (16)

On the other hand if Z) and ,Z; are related, i.e.,
there exists an endomorphism ¢ of Wy, such that
(16) holds, then the identical extension of ¢ to an endo-
morphism ¢ of Wy, _1.,m)  yields (11), i.e., X‘b
and X% are related, the proof is completed.

The obviously inducing character of Theorem 1 gives
rise to the construction of dJd-parameter sets of canonical
realizations of sp(2n,R) . For this purpose let us define
”signatures” as the (n+1)-tuples (d;0,...,0,a,_gy1ses @p) >

where d=1,2,...,n and ¢ are real numbers.

Theorem 2: To everysignature (d;0,...,0,a,_g;] seeer@y)
there corresponds a canonical realization
of sp(2n,R) in Won(d) , N(d) = d(2n-d
defined as follows
a) (1,0,...,0,a,) denotes the realization
(6) of sp(2n,R), where a = a, and
7% = 0.

b)J (d;0,...,0, @, _ 4,1 seeray) d>1 denotes the
realization (6) where a = a, and therea-
lization of sp(2n-2,R) has the signature
(d;0,...,0,a, 4 qsersap_1 ) For these
realizations it holds that:
i The realizations are skew-hermitean.
ii The realizations are Schur-realizations.
ili Two realizations are related if and only
if their sugnatures are the same.
Theorem 2 follows immediately from Theorem 1. The
number of canonical pairs is

n by
3 (2k -1) =d(2n ~4d).
k=n-d+1

Remark: For property (iii) it is of course assumed that
Won(4) 1is naturally embedded in Woy(4-) if d< d’.
Concluding Remarks

A. If we consider the generators X% given by (6)
as the basis of a linear space over C,i.e., if we replace



sp(2n, R) by its complexification sp(2n,C), then all
assertions of Theoremsl1and2arealsotrue with excep-
tion of skew-hermiticity, which has no sense for complex
Lie algebras. The parameters a;,i=n-d+1,..,n, then
can be taken from C since the restriction to real para-
meters was caused only by skew-hermiticity and other
parts of the proof do not depend on this restriction. So,
together with the results from /4 and /% series of
canonical realizations with the same properties described
here for sp(2n,C) are given for all thefour fundamen-
tal series A, B,, C_,, D_;of the Cartan classifica-
tion of complex simple Lie algebras. ,

B. A verywell-known method of getting, for an arbit-
rary Lie algebra 1. with a basis x!....,x?, a canonical
realization which is bilinear in i, and P starts with
a N x N -matrix representation X °= (X; ]) ofthege-
nerators x® of L and uses the formula

r(xa)zxa='2 q.X..p, . am
Formula (17) already used by SCHWINGER /8/ in 1952
for the Lie algebra su(2) was generalized and used for
Lie algebras of non-compact groups (U (6,6)) in hadron
classification by DOTHAN, GELL-MANN, NE‘EMAN /9
with the help of HERMANN and FEYNMAN (see related
remarks in /9/ ). As is pointed out by CORDERO and
GHIRARDI in the review article /!/ some properties
of formula (17) restric strongly its generality. So, the
number N of canonical pairs depends on the existence of
a N x N -matrix representation of the Lie algebra L .
Further, the realizations by bilinear expressions in q;
and p; give only a small subset of all possible canonical
realizations and the minimal realizations are usually not
of this type.

It is possible to generalize formula (17): The commu-
tation relations among (X%)will be conserved if we sub-

stitute q; p by ElJ satisfying the commutation relati-
ons of the L]le algebra gf(N),, i.e., if

[Eij’Ekf]=8jkEif—: %, E kj’ /18/
then
12

7 a
(x%) = ,,2—1 X& E (19)

fulfil the commutation relations of the algebra L.

Whereas in the literature for E;; there were often
used q, P or, because of skew-hermiticity i P+ 7‘o‘ij
we shall stress the possibility to take other realizations
of g (N) for E ;. . So we can use, e.g., the canonical
realizations of gf(Ni given in/° and among them the
one-parameter set of minimal realizationsin Wo(y._1) *
which reduce the number of canonical pairsincomparison
to those used in (17).

The canonical realizations of sp(2n,R) (6) with
AR can be got by (19) using just the mentioned
mimmal one-parameter set of realizations of gf.(2n,R)
an((i th}e)matrlx representation (4) of the generators of
sp{ 2n

As the matrix representation (4) of sp(2n,R) isreal
and the realization of gf(2n,R) is skew-hermitean, the
realization of bp(2n R) defined by (19) is skew-hermi-
tean, too.

C To take a representation’of 1. by real matrices
is not, of course, the only possibility by means of (19)
to get a skew-hermitean realization of L. . The suitable
chioce of a representation of . by N xN -dimensional
complex matrices in combination with a suitable non-skew-
hermitean realization of gf (N,R) can leadalsotoa skew-
hermitean realization of 1., If we are interested, at the
same time, in the realizatidns with the smallest number .
of canonical pairs, we have to usea matrix-representation
with the smallest dimension N. For example,taking the
fundamental n -dimensional ( 2n -dimensional)skew-her-

------ T N .
*}‘_,#Vz q P ot -Q_SP.V’EN;L:_pp.’ E#N= qp (quVT 5 ia),
N-1 . i /5
ENN= “q P, - i, p,v=1,...,N-1,uc R(eq.(11) in/5/ ).

These realizations are skew-hermitean and they are
Schur-realizations.
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mitean representation of L =su(n) (=sp(2n) *)andtherea-
lization of gf(n,R) (gf(2n,R)) given by

E. =

]
— (p.p, p.—q.P.—q.q.)
LTI FLET I TR PR

for which Ejj = E ; holds, we obtain a skew-hermi-
tean realization of ~ su(n)(sp(2n)) in Wy (Wg 5 ).

These realizations are minimal skew-hermiteanreali-
zations of the Lie algebras su(n) and sp(2n) , i.e.
realizations with the smallest number of canonical pairs
among all skew-hermitean realizations. The following
consideratigns show thatin Wy _,)Woo . ) no skew-
hermitean realization of su(n) (sp(2n)) exists. Due to
JOSEPH /'0/ ,(Th 4.4) no skew-hermitean nontrivial
realization of a compact Lie algebra is a Schur-realiza-
tion. It was shown, however, that all realizations of the
Lie algebra A,_, in Wo(,_ 1 are Schur-realizati-
ons /10:11/, Consequently, the same assertion takes
place for any real formof A _, including su(n) and
therefore a skew-hermitean realization of su(n) in
Wo(y—1) does not exist. The same assertion is valid
for sp(2n) in Wy(o,.1) because as we mentioned in
the Introduction, any realizationof sp(2n,11) in Wa(y,-1)is
a Schur-realization and sp(2n) is another real form
of the common complexification sp{(2n,C) .

Since, it wasprovedin/® thatminimal skew-hermi-
tean canonical realizations of the Lie algebra o(n)
exist in Wy(,_;), the problem of the existence of these
realizations is solved completely for all compact clas-
sical Lie algebras.
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