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Introduction 

The object of this paper is to present a large class of 
realizations of the Lie algebra of the real symplectic 
group in the Weyl algebra, i.e., through polynomials in 
quantum canonical variables q i , pi with various good 
properties. 

For physical relevance of canonical realizations of 
Lie algebras in general we refer to the review articles I I I 
and 121 and the references therein. As to thesymplectic 
group, we remember only that it occurs in physics as a 
subgroup of general canonical transformations, namely, of 
the group ISp ( 2n, R) of inhomogeneous linear trans
formations which leave the commutation relations of n 

canonical pairs [ p i , q . J = o .. z , [ q i , q . I = [pi, p . J = O, 
i, j = l, 2, ••• , n invariant /2,3/1 .. The Lie ~lgebra s~(2n,R) 
is the dynamical algebra of the n -dimensional harmo
nica! oscillator /I/. 

The proposed canonical realizations have common 
features with those of real forms of the other classical 
Lie algebras An, B n, D n presented in I 41 and /S/ . The 
realizations are recurrently defined by means of 2n -1 ca
nonical pairs and a canonical realization of the algebra 
sp ( 2n - 2, R) with one free real parameter. Using, for 
realization of the auxiliary Lie algebra sp ( 2n -2 ,R) ,either 
the trivial one or the realization defined by the same for
mulas e.t.c. we obtain a set of realizations sp (2n ,R) • 

Realizations of this set are in one- to-one correspondence 
with the sequences (d;O, ••• ,O,an-d+l, ••• , an), d = 

= 1, 2, ... , n , a i ~ R ; these sequences we call signatu-
res. The generators of sp ( 2n, R) in a realization with 
signature (d;O, ••• ,O, an-d+I•···•an) lieintheWeylal-
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gebra W2N <d), where N (d) = d(2n- d) , i.e., they are 
polynomials in N (d) canonical pairs. All realizations are 
Schur realizations which means that every Casimir opera
tor is realized by complex multiple oftheidentity element 
and all realizations are skew-hermitean with respect to 
an involution defined on the Weyl algebra. Two realiza
tions characterized by different signatures cannot be 
transformed from one to another by means of endomor- · 
phisms of the Weyl algebra. 

The number N( d) =d (2n-d) of pairs used in the con-
struction of the realizations with signature 
( d;O, ••• ,0, aa-L- d + 1 , ••• , an)· is the smallest for d = l 
when N ( 1) = 2n - l . Of course, this is not the minimal 
number of canonical pairs which allows a faithful 
realization of sp ( 2n, R) • The well-known minimal rea
lization r 1 of sp ( 2n , R) is given by the following ex
pressions 

l 8 . . 
q. p . + - .. ' 1 q. q. ' 1 p. p . ' 

I J 2 IJ I J I J 
i, j = l, ... , n, (1) 

where canonical pairs are used. On the basis of 
JOSEPH's result( I~ I , Lemma 1) it could be proved 
for n ~ 2 that in any realization r of sp ( 2n ,R) in the 
quotient division ring D 2 < 2n _ 2) of W 2 ( 2n- 2) (i.e., by 
means of rational functions in 2n - 2 canonical pairs) 

r(z) = r (z) =A , A I; C 
1 z z 

holds for any Casimir operator z of sp ( 2n, R) 1121. 
So, the possibility to obtain realizations of sp ( 2n, R) in 

which Casimir operators are realized by expressions 
other than in realization t 1 wouJp appear only in 
W2111 or D 2N with N ~ 2n- l. The mentioned one-pa
rameter set of realizations with signatures ( l ; 0, ... , 0, a n ) 

in W2( 2n _ 1 ) shows that N equals just 2n - l and 
that canonical realizations are given by polynomials. Fur
ther, in these realizations, e.g., the quadratic Casimir 
operator C < 2) depends on the parameter a n , 

r ( C (2)) = - 2 (a~ + n 2) , whereas for realization r 1 one 
finds r 1 ( C < 2) ) = - n 2 - ~ n • 

The fact that these realizations are still Schur-reali
zations is not accidental as it could be proved that in 
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W 2 ( 2n -1) any realization of sp ( 2n, R) is Schur-reali
zation 1121. 

In the ~conclusion we show how this "minimal" one- · 
parameter set of realization of sp ( Zn, R) can be obtain
ed by means of the one-parameter set of minimal reali
zations of g{'(2n, R) given in our paper151. Wediscuss 
a formula very useful to construct canonical realizations 
of any finite dimensional Lie algebra. 

Some considerations determine, for any compact 
classical Lie algebra, the minimal of canonical pairs 
needed for skew-hermitean realizations. 

Preliminaries 

In the Lie algebra of the symplectic group, i.e. the 
group of linear transformations of the 2n -dimensional 
vector space which left invariant the bilinear form 

n 
:£ (xiy-i- x-i y i) (2) 

i =1 

w~ choose a_ ~sis consisting of n ( 2n + l ) 
X f3= - l a l f3 X_ a a, (3 = - n, ••• , -1 . l .••. , n 

generators 
satisfying 

the commutation rules 

[ 
a y] y a a y -,H ... y Y -{3 (3) 

X{JXB =8{3X 8 -B 8Xf3+lal(38B ·x_a+lf3ty8-aXB, 

la = sgn a • 

A 2n x 2n -matrix representation is 
a t 

( X (3) ~> = 8 8 m; - l t r-.0 ~ o f.< • ( 4) yu ya f-.I<J a p· -ao -,.._.y 
A canonical realization of a Lie algebra L is a homomor
phism of L in the Weyl algelrra w2 N, the associative 
algebra over C with identity generated by 2N elements 
q i, pi, i = l, 2:, ... , N with commutation relations 

[pi,qj.] =0 .. 1. 
lj 
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The homomorphism r extends naturally to a homomor
phism (denoted by the same symbol r ) ofthe enveloping 
algebra lJL of L into W2N • 

If in a realization of L every Casimir operator, i.e., 
every element from the center of the enveloping algebra 
of L, is realized by a multiple of the identity element, 
then the realization is called to be a Schur-realization. 
Two realizations r and ·r·~of L in W2N are called to 
be related if an endomorphism e of W2N exists such 
that either e. T = T I or e . T, = T • 

In w
2

N we define an involution induced by 
+ r--1 

p 0 = -p 0 ' 

I I 

+ q 0 = q 0 • 

I I 

A canonical realization r of the real Lie algebra 
L is called skew-hermiteaniff r(x)+ =-r(x) 
all x ~ L. 

Canonical Realization of sp( 2n, R) 

(5) 

for 

Theorem 1: Let 
sp(2n-2, R) 

zio 
J 

be a canonical realization of 
in W2m • Then the generators 

i i 
Xo=qopo-<o<oq op 0+ Zo, 

J I J I J -J -J J 

X~= q j ( q • p + n - i a)- <i q oP-j + Z t qk, 

X j = -pi - < i q_i p o. 

xn = - 2p 0' 
-n 

(6) 

-f 
X-~ 2q (q·p+n-ia) +<eZk qfqk' n 0 

xn == - q p - q p ( . ) J n o 0 • - n-Ja • , 

i,j,k,f =-(n-l), ... ,-l,l, ... ,n-l, 

6 

.. 

where a~ C and q·p = q 0ro + qkp k' define a reali
zation of sp ( 2n, R) in W2 ( 2n -1 + m) • This realization 
has the following properties: 

i The realization is skew-hermitean if a is real 
and if zj is skew-hermitean. 

ii The realization is a Schur- realization if 
is a Schur-realization. 

z~ 
J 

iii Two realizations (6) with different parameters 
are non-related. 

iv Two realizations (6) differing oflly in the reali
zations of sp ( 2n-2, R) are related if and only if 
these realizations of sp ( 2n - 2, R) are related. 

Proof: The verification that the generators (6) fulfil the 
commutation relations (3) of sp ( 2n, R) and that they are 
skew-hermitean under the involution defined by (5) is 
straightforward and will be omitted here. 
In the proof of (ii)-(iv) we use two assertions which are 
easily probable using the relation [ qp, q kp s] = (k -s) q kp s for 
each canonical pair occuring in W2N· 

Assertion 1: If x c;. W2N commutes with p i (resp. q i ) 

then x does not depend on q i (resp. pi ). 
Assertion Z: Assume that for x c;. "2N there holds 

[ q] pI+ ... + qN~ fN~' x j o;= m • X 

for some m = 0,±1, ±2, .•• where N':::; N • 
Then 

X = }.; 
k _k,ef, m au. qkp e 

where 
k e k 1 k N ~ e1 eN' 

akfq P =oak
1 

... kN,'r 1 ••• fN~·ql ••. qN 1 PJ ···PN 1 

k - e = kl + ... + k N I- e l - ••• - e N I and a k e do not 
depend on q 1, ... , qN,, pI' ... , PN, • 

(ii) Let Y be an element from the center of the envelop
ing algebra of sp ( 2n , R) in its realization induced by 
(6). By definition Y commutes with all generators of 
sp ( 2 n, R) • First, we consider the consequence of this 

fact using only generators which do not depend on zj 

[ Y, X n ] =OJ i.e., [ Y, p 0 l = 0, 
-n 

(7) 
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[Y,X~i] =0, i.e., [Y,pi]+fi[Y,q_i p 0 l =0, (8) 

[Y, x:] =0, i.e., [Y,2q0p 0 +qjPjJ = 0. (9) 

From (7) it follows, due to Assertion 1, that Y does not 
depend on q0 • Therefore Y can be written in the form 

r 
Y = I YrP O' 

r 

with 
r--1 

Y r = I a r nqkp e 
k ,e kt • 

(10) 

where a~e are polynomials in Z J . We show that 
only a 8o can differ from zero. For y r relation (9) 
gives 

[q.p.,y J =2ry , r=0,1,.... (9') 
J 1 r r 

Taking (8) for the 0 -th power in p 0 we obtain further 

[ y 
0 

, p j ] = 0 , j = - ( n - 1) , ... , -1 , 1, ... , n - 1 

and, due to Assertion ·1, y 0 does not depend on q i , 

o e 
Yo = I aoeP e 

Equation (9') in combination with Assertion 2leads imme
diately to 

0 i 
Yo=aoo<zj) 

since the condition k - e = - e_(n-1 l- ... - en_1 = o necessary for 
a8e to be nonzero is fulfilled only for L(n-ll = ... =fn-J, =O. 
If we take (8) for the first power in Po we obtain 

[ Y1 • P j ] + f j [ Yo • q_ j ] = 0 , 

which, due to Assertion 1, implies 

yl = f aolfPf. (10) 
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Equation (9') and Assertion 2 give, for the difference 
k- e = -f_(n-n-··· -e n-1 the condition e_(n-ll + ... +f n-1 = - 2, 
which cannot be fulfilled for non-negative integers f's . 
Consequently all the coefficients abe in (10) must be 
zero, i.e., 

YI = 0. 

Putting y1 in (8) taken for the 2-nd power in Po we 
get by the same arguments Y2 = o and so on. Thus we can 
show that y = a8o is a polynomial in the generators 
Z j of sp ( 2n -2, R) only. Hence from the condition that 
Y commutes with the remaining threetypesofgenerators 

X i. , X i , X -n which contain the generators Z ~ 
J n n J 

i 
follows that Y ""A·l ,A~ C if Z i formaSchur-realizati-
on and (ii) is proved. 

In the proof of (iii) and (iv) we use very similar argu
ments. Let () be an endomorphism of the Weyl algebra 
W 2 ( 2n-I + m l which connects two realizations (6) 

"'a a 
()(X/3) =Xf3;a,p=-~, ... ,-1,1, ... ,n, (11) 

"'a "' "'i 
where the realization X f3 depends on a and Z i and the 
realization X {3 depends on a and Z / • 
From the equations (11) we use first only three types 

"'n n . 
()(X ) =X 1.e., e(p

0
) = Po• 

-n -n (12) 

"'n n . 
()(X.) = X.l.e.,()(p.+t.q_.p

0
)=p.H.q .p

0
, (13) 

J J J J J J J -J 
~ n n. ~~ === 

()(Xn) = Xnl.e.,()(q0p0+q·p+al)=-l6Pt>+q·p+a·l. (14) 

Now we turn to ()(q i) and determineitfromits commu-
tation realizations with (12)-(14). Because of (12) 

[()(q.) -q.,po] =0 
I I 

holds which, due to Assertion 1, implies that {IJ(q i) -q i) 
does not depend on q • We denote this element again 
by Y and we can write 0 
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Y=O(q.)-q.=I. y ·p' 
1 1 r r 0 

with 
'\.' I k f 

Y, =k~P aky· q p , 

where u~jl 
we obtain 

are polynomials in Z! . From equation (13) 
J 

IY,p.l•.q.pl o J J _, () 
(13') 

and from (14) it follows that 

\ 1!-..opk'< l =(~r+ 1) }'
1

• 
(14') 

A comparison with (8) and (9') shows that we have the 
same problem as in the proof of (ii). The only difference 
is the factor ( 2r + 1) in the r.h.s. of (14') instead of 
2r in (9'). Using the same argument as in the proof of 
(ii) one finds Y = 0 since with the factor (2r+ l) instead 
of 2 r the necessary condition for a k.e f- o reads k -1 = 

2r -1 1 which cannot be fulfilled even for a 8o. So we get 
O(qi) - q i and it follows then immediately from(12) 
and (13) that 0( pi) =pi. Therefore (14) turns into 

( () ( q 0) - q 0) P 0 = (a - ~ ) • J' (15) 

which in the Weyl algebra, where negative powers in p 0 do 
not occur, can be fulfilled only if~= a . This proves (iii). 
From (15) we get further that O(q0 ) = q 0 because of the 
absence of nonzer_Q zero divisors in the Weyl algebra. 

So, we assume a= a and show (iv~ as follows. Since 
the canonical pairs from the subalgebra W 2m commute 
with theremaining 2n-l canonicalpairs W2(2n-l+m), 
0( a) for a~ W 2m cannot depend on these remaining 
2n - l pairs because of Assertion~ 1. Thus e restricted 
to W 2m must be an e~domorphism e of W2m. ~herefore 
!he relations (11) O( X~) =X~ taken for X 

1
i 

1m ply 

; <'z ~) = z i_. 
J J 

(16) 
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On the other hand if z ii and ,.Z j are related, i.e., 
there exists an endomorphism e of W2m such that 
(16) holds, then the identical extension of e to an endo
morp~ism e of w 2( 2n- l + m) yields (11), i.e., x{3 
and X {3 are related, the proof is completed. 

The obviously inducing character of Theorem 1 gives 
rise to the construction of d-parameter sets ofcanonical 
realizations of sp(2n, R) • For this purpose let us define 
"signatures" as the (n + l) -tuples ( d; 0, ... ,O,an-d+l , ... ,an) , 

where d=l,2, ... ,n and ai are real numbers. 

Theorem Z: To every signature 
there corresponds 
of sp(2n, R) in 
defined as follows 

(d;O ' ... ' O,an-d+l , ... ,an) 
a canonical realization 
W2N(d) , N(d) = d(2n-d) 

a) (l ; 0 , ... , o, an) denotes the realization 
(6) of sp ( 2n, R) , where a = a n and 
Z

1i = o . . 
b) (d;O, ... ,O, an-d+l , ... ,an) d>l denotesthe 
realization (6) where a = a 0 and the rea
lization of sp ( 2 n - 2, R) has the signature 
( d; 0, ... , 0 , an_ d + 1 , ... , an _ 1 ) • For these 
realizations it holds that: 
i The realizations are skew-hermitean. 
ii The realizations are Schur-realizations. 
iii Two realizations are related if and only 

if their sugnatures are the same. 
Theorem 2 follows immediately from Theorem 1. The 
number of canonical pairs is 

n c 
I. ( 2k - 1 ) = d ( 2 n - d) • 

k=n-d+l 

Remark: For property (iii) it is of course assumed that 
W 2N < d l is naturally embedded in W 2N < d, l if d < d'. 

, Concluding Remarks 

A. If we consider the generators X~ given by (6) 
as the basis of a linear space over· C, i.e., if we replace 

II 
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sp ( 2 n, R) by its complexification sp ( 2 n, C) , then all 
assertions of Theorems 1 and 2 are also true with excep
tion of skew-hermiticity, which bas no sense for complex 
Lie algebras. The parameters a i , i = n- d+ l , ••. , n, then 
can be taken from C since the restriction to real para
meters was caused only by skew-bermiticity and other 
parts of the proof do not depend 

1
op this restriction. So, 

together with the results from 41 and /S/ series of 
canonical realizations with the same properties described 
here for sp ( 2 n, C) are given for all the four fundamen-
tal series An , B n, C n , Dn ·, of the Cartan classifica-
tion of compl9 simple Lie algebras. , 

B. A verywell-knownmethodofgetting, for an arbit
rary Lie algebra L with a basis xl , ••• , x n , a canonical 
realization which is bilinear in q i and pi starts with 
a N x N -matrix representation X a= (X~) ofthege
nerators x a of L and uses the formula 

a ""a N a 
dx)=X =I q.X .. p .• 

j' j=1 I IJ J 
(17) 

Formula (17) already used by SCHWINGER /B/ in 1952 
for the Lie algebra su ( 2) was generalized and used for 
Lie algebras of non-compact groups (U ( 6,6) ) in hadron 
classification by DOTHAN, GELL-MANN, NE'EMAN 191 
with the help of HERMANN and FEYNMAN (see related 
remarks in /9/ ). As is pointed out by CORDERO and 
GHIRARDI in the review article /I/ some properties 
of formula (17) restric strongly its generality. So, the 
number N of canonical pairs depends on the existence of 
a N x N -matrix representation of the Lie algebra L . 
Further, the realizations by bilinear expressions in q i 
and pi give only a small subset of all possible canonical 
realizations and the minimal realizations are usually not 
of this type. 

It is possible to generalize formula (17): The commu
tation relations among r(Xa) will be conserved if we sub
stitute qi p . by E ii satisfying the commutation relati
ons of the Lle algebra gf( N) , , i.e., if 

[ Eii • EkeJ = 8ik Eie- 8ej Eki • 

then 

12 

/18/ 

N 
r( x a) = I X~.E .. 

i,j = 1 IJ I) 
(19) 

fulfil the commutation relations of the algebra L. 
Whereas in the literature for E ij there wer; often 

used qi pi or, because of skew-hermiticity qi pi+ 2 o ij 

we shall. stress the possibility to take other realizations 
of g£ (N) for E ij • So we can use, e.g., the canonical 
realizations of gf(NJ given in/S/ and among them the 
one-parameter set of minimal realizations in W 2 ( N _ 1) * 
which reduce the number of canonical pairsincomparison 
to those used in (17). 

. The canonical realizations of sp ( 2n , R) (6) with 
z! = o can be got by (19) using just the mentioned 
minimal one-parameter set of realizations of gf. ( 2n, R) 
and the matrix representation (4) of the generators of 
sp(2n,R). 

As the matrix representation (4) of sp ( 2n, n) is real 
and the realization of gf ( 2n, R) is skew-hermitean, the 
realization of sp ( 2n, R) defined by (19) is skew-hermi
tean, too. 

C. To take a representation· of L by real matrices 
is not, of course, the only possibility by means of (19) 
to get a skew-hermitean realization of L . The suitable 
chioce of a representation of L by N x N -dimensional 
complex matrices in combination with a suitable non-skew
hermitean realization of ge (N, R) can leadalsotoaskew
hermitean realization of L. If we are interested, at the 
same time, in the realizatidns with the smallest number 
of canonical pairs, we have touseamatrix-representation 
with the smallest dimension N. For example ,taking the 
fundamental n -dimensional ( 2n -dimensional) skew-her-

*E/Lv=~pv+ ~ollv'ENIL=-plt'EILN=q/t(qvpv-;- ~ -ia), 

ENN= -<Jvpv- _N;_L+ ia, Jt,v=l , ... ,N-l,u~R(eq.(ll) m/5/ ). 

These realizations are skew·-hermitean and they are 
Schur- realizations. 
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mite an representation of L = su ( n) ( =sp (2n) *)and the rea-
lization of gf(n, R) ( gf(2n, R)) given by 

] 
E .. =-(p.p.+q.p.-q.p.-q.q.) 

IJ 2 I J I J J I I J 

for which E~i = F, ji holds, we obtain a skew-hermi-
tean realization of su(n)(sp(2n)) in W2n(W2.2n) · 

These realizations are minimal skew-hermitean reali
zations of the Lie algebras su ( n) and sp ( 2 n) , i.e. 
realizations with the smallest number of canonical pairs 
among all skew-hermitean realizations. The following 
considerati~ns show that in W 2< n _1 l W 2< 2n ·- n no skew
hermitean realization of su ( n) ( sp ( 2n) ) exists. Due to 
JOSEPH /I 0 I , (Th 4.4) no skew-hermitean nontrivial 
realization of a compact Lie algebra is a Schur-realiza
tion. It was shown, however, that all realizations of the 
Lie algebra An -I in W2( n _ 1 l are Schur- realizati
ons I 10 ' 11 I. Consequently, the same assertion takes 
place for any real form of A n _ 1 including su ( n) and 
therefore a skew-hermitean realization of su ( n) in 
W2( n- n does not exist. The same assertion is valid 
for sp ( 2n) in W 2< 2n _ 1 l because as we mentioned in 
the Introduction, any realization of sp( 2n,H) in W2( 2n-1 lis 
a Schur-realization and sp( 2n) is another real form 
of the common complexification sp ( 2n, C) • 

Since, itwasprovedin/6/ thatminimalskew-hermi
tean canonical realizations of the Lie algebra o ( n) 
exist in W 2 <n-Il , the problem of the existence of these 
realizations is solved completely for all compact clas
sical Lie algebras. 
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