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1. Introduction 

By analogy with the geometrical limit of optics the 
high-energy potential scattering theory can be constructed 
due to existence of a scatterer characteristic scale. We 
shall assume the scattering of a particle with the rest mass 
m and the energy I< ~ k 2 01 .- ~m , l) occurs on a poten
tial v c;) with the effective range of interaction a 

and amplitude Vo. 
The eikonal approximation for the potential scattering 

amplitude /1 -:1/, 

, . 
• -· -I . -· i 'I " • I ' ' I f(k 

1
.k ~)- (-•lrr) I dre • \ (r) • exp ix k.(r, q) . (1) 

where the eikonal phase x k is 

' • 1 ~ . ·) 
X (r,q) - -- • I dz'· V(h z') 

k. 2k -""' ' ' ' 
(2) 

is the most popular one at present. 
The z -direction__. in ~2), • is c,hosen parallel to the 

average momentum k = "2" ( k 1 -+ k~). In this coordin~te 
system the longitudinal components of the incident k 1 __. I 
and the final k 2 momenta are equal to t0 = k · cosz- 0 
( o is th_e ~catter~g anf~~) an~ their trans_vefsal compo
nents. are .• k 1 _ ~- k ~ 1 = :!'CJ s 0 , s 0 ~ k . s1n z o , where 
q =- k 1 - k 

2 
, • To accen~uate this choice of reference 

frame the notation \ ' 1 •• ~ 1 ) ' , 1 1 •• q' l in (1) is used. 
The eikonal approximation is extensively dis.cussed 

in the nonrelativistic quantum mechanics 1 
-

101 and 
in quantum-field theory I I - '-. The well-founded 
result is its validi_ty for the high- energy scattering on a 
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smooth potential and for small angles 0 :; (k a)-l/ 2 . In 
this connection the problem of the generalisation of 
(1,2) to large momentum transfers arises. 

The eikonal amplitude (1 ,2) permits /:JI a simple 
representation in the form of a two:-dimensional Fourier 
transform (an impact parameter representation). But one 
has to use the representation (1) if one wants to carry 
out a generalisation of the eikonal approximation to 
large angles region on the basis of a potential smooth
ness. Such a consideration was first given by Schiff I~/ . 
His approximation has been extensively used in analysis 
of electron-nucleon collisions I". I r, 1 

• The Schiff formula 
is well-founded for the so-called dynamically large 
scattering angles 0 '-· ( ka)- 112 • Its refinement has 
been made in papers / Jl/. • The discussion and compa
risons of various approximations for the scattering 
amplitude at large angles was given in survey l () / . 

The need is pointed out for a further investigation of the 
large-momentum-transfer region. 

The present work develops a new approach to the 
high-energy potential theory which is based on the natu
ral generalisation of the phase function method / 17 - 20 / • 

In Sect. 2 we discuss basic equations of the theory: an 
equation for the potential scattering amplitude and an 
equation for the so-called total phase function. In Sect. 3 
an extension of the eikonal approximation to the large
angle region is derived. This approximation for the 
scattering amplitude is compared with well-known ones. 
Section 4 contains the systematic method for calculation 
of non-linear in potential corrections. Their role for 
large scattering angles is discussed. In sect. 5 the main 
results are summarized. Some possibilities of the present 
approach in potential theory and its relativistic generali
sation are pointed out. 

2. An Equation for the Total Phase Function 

In the spirit of the phase method 117/ the elastic 
scattering amplitude f ( k 1, k 2 ) can be considered as 
the asymptotic limit of the so-called scattering function 
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f s (k1, k 2 ) . This function is the scattering amplitude 
for a part of the potential V s G) ... ~ontained in a surface 
S :.. Tl!,e scattering amplitude f( k 1, k 2 ) is the amplitude 
f (k 1, k 2 ) when the surface S cuts the potential at 
infinity where v ( ·;) ... o . This approach was suggested 
in/18/, where an integral equation for the scattering 
function f(R,k 1,k 2 ) wasobtained. f(R,k'1 ,k' 2) isthe 
scattering amplitude for a part of the potential V 11 (;) 

contained in a sphere of radius R . 
The eikonal approximation can be most naturally 

investigated in this approach on the basis of an equation for 
the scattering amplitude f ( ~ • k I, k 2 ) for the potential 

v ~ ( ;) = v c;) . o u; - 1 z 1 ) • (3) 

where 0 ( x) is the ordinary o -function. 
Thus (3) is a part of the potential \t (;) contained 

between two planes. These planes are perpendicular to 
some straight line, which we choose as the z -axis, and 
are symmetrically at distances ' (, from the origin. 

The exact nonlinear integral equation for the scattering 
·> -> 119 ?() I amplitude f((,, k 1 , k 2 ) can be derived' •- 1 in the 

form: 

iJ f ( c k' ' k ,2) -,,:,'1 
2 ·• 

fd b·V(r)" 
()~ 2rr 

_, .-) ---) 

ik]t l 2~ CIJH 

xle +-·fd s· 
'2rr 

... ... 
-ik.Jr 

>; I e - + _i_ r d2-> ipr s • c 
2rr ----

with the boundary condition 
-~ ·) 

f(O.k
1
,k.

1
) ~ 0. 

• f((,,p,kl)l/ 

. ru;,; ,-k2 ) 1, 

(4) 

(5) 

In eq. (4): r = ( b. t l , 

are connected as 
p = < s', t ) , where ; and 
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vfk2-s2, k > s, 

t = ----- (6) 

i vf s2 - k 2 ' k < s 

It was suggested in the derivation of equation ( 4) that 
the potential is spherically symmetric and the z -axis 
is parallel to the average momentum f . With this 
choice eq. (4) has the most simple form 120 I . The 
asymptotic limit f ( .oo , k 1 , k2 ) is the scattering ampli
tude for the total potential v ( r) . 

It is welLknown that the scattering amplitude f(k 1, k'2) 

can be evaluated if the wave function of the scattered 
particle is known only within the range of the potential. 
In the present approach one can avoid the necessity of 
finding out the wave function in the whole space in the 
following way. Let us introduce a new function xk( t,, ;, q'r 
which is defined only within the potential range v t ( r) .We 
represent scattering amplitude in the form (compare (1)) 

_,_, 
-> -> -I -> i h q -> -> 

f(t,,k 1 ,k 2) =(-4rr) ·Jdr•e ·Vr,(r)·exp[i,y k(t,,r,q)] .(7) 

For an unambiguous determination of the function 
X k (.;, r', q_,) we put the following boundary conditiol,l 

A k ((,,;, ;) \/. = ± t, = 0. (8) 

The boundary condition (8) makes it possible 120 I to 
eliminate, from the consideration, the well-known Born 
approximation. 

The quantity x k ( t,, ;, q) with tlie boundary condi-
tion (8) by analogy with (2), can be treated as the exact 
phase shift of the wave function tf; t, for the potential 
V.; . The asymptotic limit Xk (oo, r, q_,) is the phase 
shift of the wave function t/; for the total potential V ( r) 
Hence the function x k ( t,, r, cj) , in accordance with the 
phase method 117 I, can be called the total phase function. 

By substituting (7) into ( 4) an exact non-linear integra
-differential equation for the total phase function can be 
obtained 1201. This equation with the boundary condi
tion (8) can be reduced to one integral equation, 
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~~ 

.; 
X (t,,-;,q)= ¢ (.;,;,q) + J dTJ·fdr'·w (TJ,k,;,-;-,q) x 

k k I zl 2 

x exp [ i X k ( 71 , ; , q)] · V TJ ( r) , 

where 

-> -> 
¢k(.;,r,q) 

t, 
J d77 • 

I zl 
""I ( 77, k , r: ;) 

(9) 

(10) 

The functions w 1 and w2 in eqs. (9-10) are 

.... .... (+) -> .... (-) _, -) _, -) 

w
1 

\ry,k,r,q)= w1 (ry,k,r,s0 )-t w 1 (r,,k, r,H 0 ), s0 = ql2, (11) 

and 
-> 

w ( k->->-> -i(b-l;')(:+-· _\ '( 
2 TJ, ,r,r~q) =- l ·fd2-> -e . "(T _, z+ z'l ( t-tol 

s•-
2(2rr)2 t 

X 

(+\t k ->,->) xw '\TJ,, r,s, (12) 
I 

where 

i 1: (~ ~~) + i ( 71 ± z) ( l' ± t) 

(+) ->-> 1 2-> e 
w 

1
- ( TJ, k, r, s) ~ - --• J d s ', --; / (13) 

(2rr)2 .. t 

XV(; _;~TJ) 

The quantities -~ and 
(6), t = \; k 2 - 5 2 = k. cos Lo 

0 0 ~ 

V ( ~, z) = J d2b · ei [;'. ~· \ ( r) 

( f:' and t' 

and 
) are defined in 

(14) 

is the two-dimensional Fourier transform of the poten
tial. The expressions (11) and (12) can be derived from 
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exps. (30) and (31) and from the Sommerfeld represen
tation (12) for the free Green function of ref. /20/. Such 
a representation of the functions w 1 and 112 is most 
convenient for their analysis in the high-energy limit. 

Equation (9) is the basic one for the subsequent 
consideration. The existence of the exact phase equation 
makes it possible to extend the eikonal approximation 
to large angles and to investigate its corrections in a 
systematic manner. 

----" 

3. High-Energy Representation for the Scattering 
AmPlitude at Large Angles 

We shall assume now that the nonlinear term in 
Eq. (9) can be neglected. The use of this approximation 
will be discussed below (Sect. 4). .Consider the short
wave limit (A= ka _,"") for the function c,~k (10). From 
(10) and (11), it follows that the behaviour of the functions 
w ~ -> in this limit must be found. One can derive the 

asymptotic representation (the leading term of an asympto-
tic expansion) of (13) by the following simple generalisa
tion of the Laplace method/ 21 1. More close considera
tion is done in Appendix. Neglecting the unimportant va
riables we represent (13) in the form 

! ±> ( _, ) - 1· d2 -• • ( ~ ... ) • g t ". " 1) w
1 

s
0 

-. s h s,s
0 

e , (15) 

where 

h(;,;o) . -
( 2 n)2 t 

(16) 

and 

g(~.~ 0 ) =fn[V(~-S'0,ry)]+ib(~·-;;·0)+i(/1 •zHt :t:t
0
). (17) 

The two-dimensional Fourier transform of a smooth 
potential V ( s- ~ 0,ry) has a pronounced maximum at the 
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point -; = 8' 0 , when A_, "" . For example, for the Gaussian 
potential we have V(s-s'o,TJ)- exp[~(s-so) 2 /a 2 ]. The 
asymptotic expansion of (15) is determined by the beha
viour of the integrand around this point. Note, the ima
ginary part of (17) gives rise to an explicit dependence 
of the maximum point s·(A) on the asymptotic parame .... 
ter A • However, this dependence is weak for a smooth 
potential (s(A) = ~ 0 ~ 0 ( -{- )) and can be allowed for 
by the iteration. Thus, to obtain the asymptotic represen
tation for (17) it is necessary to expand the functions h 
and g around flo and to retain only the first term of 
h and two first terms of g in their expansions. As a 
result, we have 

i ( I ; I ) 1- • '·o s .!__II ( IJ ' 1 ) 
·) 

w(±) (ry,k ,f,S') 
I 0 

__ __c_ ___ • (' > (18) 
I k • !'OS 2 () 

,. 
y P ( TJ ± z ) V ( r ) , 

-> -> T} 
h, s 0 

·> ? I '" where r
71

=(b- 111-) ;- and}he translation operator 
in the impact parameter plane P 1: •

1
(x) is , ") 

,. 
A I I ' I • • (19) Pb,...~ ( x) ~ t•xp -x· tg-;-0 s

0 
• \ 1-• , s 0 ~ sr/so . 

,s{) 2 I 

The derivation of (18) is free of the small-angle limit. 
Thus, it is valid for a wide angle region. Note, the func
tion (16) has a singular point at o = n . Therefore the 
representation (18) is irregUlar with respect to the scatter
ing angle o as o -· r. • 

Taking into account eqs. (10), (11) an (18) we get 

0 (.:;,~,q) = fl (~.r'.q') ~I' I(, r. qJ, 
k k k 

(20) 

where the main slowly varying part of this phase is 

.-) -+ J ._ ,. 

ll ,_ ( f., r, q ) = -· I d 'I · I' ( 11 - z) • \ ( r ) " . I . . . . TJ 
k· cos-11 1 l·.-o 

(21) 

·) 
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and the rapidly oscillating component with respect to 
z is 

l !; 2ik cosi--0 ( 7] + z) 

=- --- J d1] • e -

k· cos~ 0 izi 
2 

vk (!;,7,q) X 

(22) 

" x p_, _, ( T) + z) • V ( r ) 
L, sO 1] 

The asymptotic limit cpk("",;, q_,J is the linear in 
potential apProximation for x k Cr:, q') In this limit the 
second terms in (20) can be neglected. Thus, as a result 
of the phase method (I~) , we obtain* 

h -> ->) - - l 
X p ( r' q . k • cos - () 

k 2 

J d;'.J>. ,(z'-z).\(r') 
i z\ J,,,.; () 

(23) 

Substitution of (23) into (1) gives our approximation 
for the scattering amplitude 

->_, 
-1 -> ibq 

fPh(q)=(-4rr) fdr·e .V(r) x (25) 

xexp!-
1 

·fdz'P_,_,(z'-z)\(r'l(. 
I I I b,so k cos- 0 z 
2 

*Note, the Schiff approximation j 4/, when z -axis is 
parallel to the average momentum k, can be represented 
in a similar form: 

XSch(1,qJ=- l ·f dz'[O(z'--z)•P.,_,(z:.z) + 
k 2k cos_!_ 0 -oo h,sO 

2 

+ O(z- z') P->L-> (z- z') 1 V(r'), 
,so 

where U ( x) is the ordinary e -function. 

10 

(24) 

' .. , ..... . ' 
'>·, .[ 

·~~. 

.I 

i• 

1\ 

I • 

Eq. (25) is one of the main results of the present 
work. This approximation is valid for wide-angle region. 
It holds when A_, ""' (see also inequality (42) below). 
The eikonal approximation is the simple limit of (25) 
as e _, o. 

A 

The replacement of the operator P 1;,: 
0 

by the unit 
one gives the nonrelativistic limit for the scattering amp
litude f AI (q) m/15/. Numerical comparisons of the 
differential cross section, the imaginary and real parts 
of the amplitude fA1(q) with the partial wave calcula
tions were presented in / r,- 9 I. A wrong behaviour of 
f AI at large angles (see also Figs. 1 and 2) was indicat
ed. Therefore the correct generalisation of the eikonal 
amplitude to large ~cattering angles can be reached if 
we replace k _, k cos..:zO in (2) and change the path of 
integration like in (2:>). 

The scattering amplitude (25) and the Schiff one (1 ,24) 
give the same result for finite range smooth potentials 
when the momentum tramsfer q -• o . Indeed, the asymp
totic representation of the amplitude (1) for these poten
tials are defined / 5/ by the value of the phase xk G,q')at z = o. 
The expressions (23) and (24) coincide at this point. 
Thus, the asymptotic representations coincide too. 

For the numerical analysis let us make some simpli
fication of (25). If V0 /E ;; A -I one can approximately 
neglect, in (23), the dependence on the azimuthal angle 
¢ when integrating over the impact parameter plane 
d2h = bdbd¢: Really, in this case it can be easily shown 
that the ¢ -depending part of (23) is coherently added to 
the quantity bq and is o (:t ) of it for those values 
of if) where ttre phase x k should not be overlooked. 

Hence we obtain a Fourier-Bessel transform like 
integral 

"" 
fPh(q) =-ik'ibdb . .J 0 (bq) ·TPh(b,q), (26) 

where the impact parameter amplitude 

TPh( b, q) = -~- • j"'d ~· V t r) •exp!- __ i -
1
-· f dz 'V[Ir'2+(z-z')2 tg~) Y,]l. 

2rk_oo k·t'os--O'z: .. , . . 

II 



Note, the amplitude h_26) turns into the eikonal appro-
ximation when 0 < ( ka) -I . A similar simplification can 
be performed for- the Schiff approximation /I · . 

On the basis of (26) we compare the scattering ampli
tude with partial wave calculations and with well known 
approximations. To compute the integral (26) and that 
for the amplitude f Sch the standard subroutine /23/ for 
calculation of multiple integrals was used. The evalua
tion was performed up to 160°. Figure 1 shows the diffe
rential cross section for scattering from the Gaussian 
potential V (--r-4 = v0 • exp [ - r 2/ a 2 J. The partial wave calc u
lation ( f -curve 1) is compared with the phase method 
( f Ph -curve 2), the eikonal approximation ( f 1.: -curve 3), 
the Schiff approximation ( fs,h -curve 4) and with the Abar
banel-Itzykson approximation ~ f \I -curve 5). The partial 
wave result was taken from, R/. The dimensionless 
parameters of the theory are: A= .~ and \0 /E ~ - o. 25 . 
Figure 2 compares the imaginary parts of the exact 
scattering amplitude ( f -curve 1), the phase method 
approximation (fph -curve ~~ and A~:approximation 

(fA! -curve3)fortheYukawapotential V(r)=V0 -exp(-r/a). 

The expansion parameters are A ~· 5 and \
0 

I·~ - o.:! . 
The partial wave result was taken from paper · 'J, • This 
example illustrates the essential role of the translation 
operator (19). Note, the values of the expansion parame
ters in both the examples are far from their asymprotic 
values. So, one must pay attention to the qualitative 
development of the curves" 1 

Figures 1 and 2 show good agreement of the phase 
method approximation for the scattering amplitude with 
the partial wave calculations in a wide angle region. The 
difference for very large angles is a consequence of the 
irregularity in the scattering anlge of (18). It is some
what surprising that f Sch in Fig. 1 is accurate at 
forward angles and is not especially good at large angles 
(see also i 6 I ). Probably, this gives evidence that for 
potentials like the Gaussian potential the improved va
riant /I+/ of Schiff formula is more adequate. 
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Fig. 1. Comparison of differential cross section for the 
Gaussian Potential scattering. Curve 1 - the partial UK.Zve 
result, curve 2 - the phase method approximation ( f Ph ) , 
curve 3 - the eikonal approximation ( f E) , curve 4 -
the Schiff approximation ( f 5 ·h ) and curve 5 - the AI 
approximation ( f AI ) • c 
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4. Non-Linear in Potential Corrections 

Now consider the non-linear term in the phase equa
tion (9) let us use the notation rk c;, 1:, ~i"l for it and 
represent this term in the form 

~~..., e TJ _,~ 
rk(~,r,q) ~ J dry· f dz'· W(r],k,z',r,q), (28) 
. \ z\ -1] 

Ill( k ' ·> ') •fd b' ( k > >, """') ()( I ,, ·') (29) n 7J , , z , r, q = · w 2 1J , , r, r , q • H t}, •:. r , <i , 

where 

· n(rJ,k,-;,q)=V(r)·exp[i¢k(ry,7,;) + irk(ry,7,q)]. (30) 

The function w 2 is defined in (12). As the phase ¢ k is 
well-known (10) the expressions (28-29) are an equation 
for the function \ ( ~, ;, q) . 

We assume that the phase ¢ k gives the main contri
bution to the tot::>.l phase function Xk ( ~, r, q) . In the high
energy limit A -· "" the eq. (28-29) is essentially simp
lified. Substituting (18) into (12) the asymptotic represen
tation of the function w 2 can be obtained. Then substi
tuting it into (29) we get 

W(ry,k,z',;,q) '""'- ;-exp[2it 0(ry+z')]x 

l X - j" 2-~ --. d b'f d 2"""' 
(2rr) 2 s• 

....... 
i(b-b') (-;t-~ 0 l+i(2rJ+z'-z) (t-tJ 

e " 
t 

X 

~ ~~ -) 

x A. (ry,k,r',s,s 0 ), (31). 

where 

... ... ... ... ... A 2 2 I/2 
A. ( ry, k, r, s, s ) =fH ry, k,r,q) • P ...... ( 7J+ z) • V( r ) , r = (b +7J ) • (32) 

0 b, so 7J 7J 

Using the approximation (20) it can be easily shown 
that (32) is a slowly varying function in the impact para
meter b -plane. Tlie scale of variation is 
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I 

d minla•costO,a·cos~(:I/(V0 a/k)l. (33) 

The quantity cl refines the scale a . Hence, when A=kd-· oo 

eq. (32) is the integral of type (15) and its asymptotic 
representation (in accordance with (18)) is 

_, ' I -
W ( 11 , k , z ', r, q) -' - -- • e xp [ 2 i t 

0 
( 1J + z ') I x 

2t2 
0 

A A -+-+ '"'""+ 

X P,~ (Tj-z) I V(r ) ·P___,_, (r,~ z').fl(r,,k,r~q)l, r'=(b,z'). 
b,s 0 TJ b,s 0 

_______1 

(34) 

Now inserting (34) into (28) and taking account of (20) 
and (30) we obtain 

t . :::- "' 
... _, ) I I -> -> 

rk(.;,-,r,q) c--.)- {drj•P_,_,(Tj-z) V(r7) . .J(rj,k,r,q)l, 
2t(l \z\ b,s0 I 

where 

TJ 
.I ( T/' k , ; 'q) = I d z'. exp r 2 i t ( 1! + z,) i X 

-ry 

(35) 

(36) 

xP_,_, (r/+z').{V(r')•exp[iJLk(ry,;~q)+i~' (ry,;~q) +ir (ry,;',q)ll. 
b,s0 k k 

The quantities JL k (21) and 'k are slowly vary-
in~ functions of z' . In estimation of (36) a difficulty due 
to the rapidly varying function ,, k ar~es. Indeed, the in
tegration by p:uts of (22), gives, when A _, "" . 

,_,.. i 2it 0 (z+\z\l 
''k(TJ.r,ql"'---[e x 

2t 2 
0 

' _ ~ j to ( z+ TJ) A _ 

•P..._, (z+\z\).\(r)-e ·P___,_, (z+ry)\(rl])l. 
"·"(I b. s 0 

and ·' k i JL k I for I z I '"' TJ 

16 

(37) 

The evaluation of (36) can be reduced to estimation 
of the Fourier-integral in the following way. We expand 
exp (i v x) into the power series, substitute (37}' in 
each term of it and decompose every binomial. We sub
stitute the final result of this procedure into (36) and 
change the order of summation and integration. Then the 
double sum arises each term of which is the Fourier-type 
integral. Using the Erdl!lyi theorem 121 1 we obtain the 
asymptotic representation of (36). Consequently, in the 
limit A __, ~ the equation for the function 'k is 

~ -> -> l [ , " , 2 , 00 V (r') n 
\(S",r,q) =--?-·[dz ·P___,_,(z-z).{V(r)·I[--] x 

2t0 \zl b,so n=O 2t~ 

n (-I/ 1 ,. 
xi .rl- .p__,_,(2z').V(r')+ 

f= 0 
( n - f) : (e + I ) ' 2 t ~ ( f + l) b • so 

+ • (_d_ r ( , --->, -> 1 
2t (f+l) d, k z ,r ,q)) 1

-o z z. ,, = - z , 1 (38) 

l -> ~ 
where to=k· cosz-O,,.,?'=(b, z') , r"=(h,z") and the 
translation operatOr P "h.~o is defined in (19). In the 
derivation of (38) we take into account that fill zl=11 =Vk II zl=11 = 

d l A 2 2.J/2 =rkl\1 =0,-d-JLk! =--Pb_,__,(2n).V(r),r =(b +n r and . z =1] z . z =- TJ to s,So -, ., ., 

that all terms of order 0(2.) 
,\ in comparison with 

leading ones were omitted. 

If Yo « l 
E 

the solution of equation (38) can be 

obtained by interation setting 'k = ~ - 1- 'k( n l 
n=O ,\ n 

,( 0) = 0. 
k For example, the first two terms are 

with 
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I 

(ll _, ·• 
r ~~.r,q) 

k 
~-- ./ dz'• P_, ., (z'-z).V 2(r'), 

4 t~ I zl b ,sO 
(39) 

l t " V2( ') " ,(2l((,r:,;;)~- -· ( dz~ P_. (z~:~:)l--r [P_. (2z')V(r')+l
2

V(r')]l. 
k 3 - -> 2 .... 

4t 
0 

lzl b,s0 2t 0 b,s 0 
(40) 

There are no difficulties in evaluation of the subsequent 
corrections. 

The aSymptotic quantities rtl(oo, ;, ~) (n= l ,2,3, ... ) are 
the non-linear corrections for the phase x P (23). 
Taking into account only the first term (39) we thus ob
tain 

') 

X P~-; ,ql =- -
1---- fdz '. P ........ (z '-z) [V (r') + ~~--L(41) 

k k • cos .lo 1z1 b, so 4k 2· cos 2 .lo 
2 2 

Consequently, the nonlinear ter~ in the phase equa
tion (9) leads to corrections 0 (-{!--) in comparison 
with (10). Note, thus corrections are analogous to those 
which arise when the eikonal phase (2) is replaced by the 
WKB-phase but do not reduce to them. It is pointed out 
in ref. /8/ that these of the WKB-phase not always 
improves (1,2). 

Let us discuss the role of the correction 0 (Yo /E) at 
large angles. From (41) it follows that this correction 
is irregular with respect to the scattrring angle o . Its 
degree of irregularity does not depend on a potential type 
and is defined by the factor cos-2 -} 0 • . In Appendix 
it is noted tha· the correction 0 <{) is irregular with 
respect e too. But in this case the degree of irregula
rity depends on the potential form. For example, for 
Gaussian potential this factor is cos- 5 ~ 0 and for the 
Yukawa potential cos-4 ~ 0 . Thus for these types of po
tentials the degree of irregularity of the correction 0 ( I ) 
is larger than that of the correction 0 ( v0 /E) . So, if 
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~<A - E = (42) 

the linear in potential phase X kh (23) and, respective
ly, the approximation for the scattering amplitude fph 

(25), dominates at all angles where the parameter A can 
be considered as the asymptotical one. 

5. Conclusion 

We have presented the high-energy potential 9teory 
which is a generalisation of the phase method 1 7 I . 
Within the framework of this approach the natural exten
tion to large angles of the eikonal approximation is ob
tained. On the basis of equation (38) one can consistently 
evaluate the non-linear in potential corrections. It makes 
it possible to investigate the importance of the corrections 

0(.!_) 
A. 

Yo 
and O(y) at large angles. It has been 

established that the approximation (25) is valid for a 
wide class of potentials if the inequality (42) holds. 
The degree of angle irregularity of (25) in general depends 
on the potential shape. The simplification of (25) is ob
tained. The numerical calculations show its agreement 
with partial wave results in a wide-angle region. 

The equation for the scattering amplitude inpaper/ 18/ 
can also be considered in terms of the total phase func
tion. The geometry of this equation seems to be more 
adequate for investigation of the large-angle scattering /24/. 

This approach can be generalised to the relativistic 
case in the framework ofthequasipotentialequations/11-12~ 
The possibility of such an extension , is supported by the 
recent relativistic generalisation 1251 of the standard 
phase method. 

In conclusion the author is grateful to V .K.Lukyanov 
and R.M.Mir-Kasimov for permanent interest in thework. 
The author also thanks sincerely V .A.Ale bastrov, V .R.Gar
sevanishvili, S.P.Kuleshov, V.V.Nesterenko, V.N.Pervu
shin, A.N.Sissakian, M.A.Smondyrev for discussions 
and A.I.Saltykov for co,nsultations in carrying out the 
numerical calculations. 
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Appendix 

To obtain the asymptotic representation of (13) for 
,\ ~ ka ' "" it is convenient to introduce new dimension-• ~ 

less variables r = t/ a and p ~. it'k ( p o. k ) . Suppose that 
this has been done and keep the earlier notations. Thus the 
parameter A arises. Now the problem is to obtain an 
asymptotic expansion of the integral (compare (15)) 

.J(,\) = II d 2s'· h (~,,\) • ·e-A!((~,,\)• (A.1) 
(II) 

If the functions g and h in (A.1) are real and inde
pendent or'the parameter ,\ and if the function g(1,) has 
a minimum at the interior point ~ 0 of the domain D of 
integration (the first-order critical point), the asymptotic 
series representation of J is given by the formula (111) 
in ref. /22/. 

In the case of (13) both h and g are in general func
tions of ,\ and is complex. However the potential smooth
ness permits to take into account these complications by 
iteration. Let functions g and h be expanded into the 
series in powers of f. around the poL-It ,\ ="" . Then 
one can easily show that the asymptotic representation 
of (A.1) is the following generalisation of eq. (111) /22/ 

J( ,·, 2rr li(0)->(0)) l ! '[ (0)(-> (0)) 
1\ • "' • \ s • - exp -/\ g s + 

? ,\ 
V aof3o- Yo 

-(A.2) 

1 (I) (->(o) ->( ll ) Jl +A g s ,s . 

The first-order critical point ~(,.\) 
equation 

is defined by the 

a _. 
-g(s, ,.\) =0, 
a-; (A.3) 

and can be represented in the series 1,(,\) = l-1--1(n) 
n=O ,\ n 

The functions g and h can be also represented at this 
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. -) 1 () -· 1 () pomt as follows: g(s (,\)) =I-. g n and h (s, ,\) = I -h n : 
,\ n =0 ,\ n 

The quantities ao 'f'3o and Y o are the asymptotic 

limits, respectively, of 2 2 
a(,.\)= (a glas x )~,= ~· (,.\), {3(,\) = 

•) 2 2 2 2 
(irgliJs )_, _. and y(A)=(iJ glas iJs )_, • when ,.\ _. oo. 

Ys=s(A) x Ys=s(,.\) 

For example, consider the high-energy limit of (13) 
f~r the Gaussian potential Y(r) = Y

0
• exp(-r% 2) . In dimen

sionless variables, in this case eq. (13) is the integral 
(A.1) with 

( +) -) 1 _, ·) ? . ' ) ) 
g- (s,A) ~-A(s-s )- -i l (s-s) btU;+ z) (t ± t )] , 

~ () 0 - 0 
(A.4) 

and 2 
. -t 

-• I ? e (A 5) h(s,A) =- --· rr·a-· Y0 • • • 
(2rr) 2 t 

We find the critical point-;,(,.\) from eq. (A.3) and re
presen~ it n,t the, power ... se!ies ~e ~rst ,..ter_~s of which 
are s<Ol, s 0 , s0l=2i[ b-(.;±z)•tg;rO·s0 1, so=s0 /so. The 
evaluation of the quantities g<o> , g<l) and h(O) in 
(A.2) at s(A) gives 

g(O) (;(<))) =-i(t ±z) ·cos~&(] ±1), 

( I) _. ( 0) • (l) 
g (s ,s ) 

- l->(1)2 
---s 

4 " 

2 
· 2 e -(, 

( 0) ( > ( 0) ) = _ _ __ I - • 77 a y () -- l (j 

h0 s ( 277)2 k·cos2 

Finally the calculation of a 
0 

, {3 0 and 

(aof3o- yJ)-1/2 = 2f,.\. 

(A.6) 

Yo gives 

(A.7) 

On substituting (A.6-A. 7) into (A.2) and passing to the 
old variables we ·obtain the asymptotic representation 
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(18) of the functions w 1
1±) • Note, the function (A.5) has 

a singularity at s ~ l . That leads to an· irregularity of 
the representation (18) with respect to 0 as 0 _, 7T • 

Corrections 0(-}) for (18) can be evaluated ~l a fur
ther generalisation of the formula (110) of ref. /:!. /. The 
investigation of these corrections for the Gaussian poten
tial shows that for validity of (18) the quantity A co,., 5 .J 0 
must be asymptotically large. So, the factorofirregulari
ty is cos- :, .\r-o. This factor is different for various poten
tials. For the Yukawa potential a similar consideration 
yields the ~ctor cos -1 ~ o . 
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