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Recently the attempts have been made to
construct the dynamical models of the exten-
ded particles.

These attempts taking roots long ago
have resulted recently in certain success
within the models of strongly coupled par-
ticles and fields.

A consistent theory of strong coupling
was developed in papers/! 2/ where the prob-
lem was considered on a particle coupled
with the scalar quantum field. The method
used there is based on the canonical trans-
formation introduced by N.N.Bogolubov in
studying the quantum problem of polaron.
These problems then have been studied in
subsequent papers (see, e.qg.,’?% ).

When considering the case of two and more
interacting particles a number of interes-
ting problems arises. As is known, the
strong interaction of a particle with a quan-
tum field can be described by the effective
potential due to the polarization field
around the particle. The overlapping of the
polarization regions can significantly
change the character of forces between dif-
ferent particles at comparatively small
distances.

A criterion for the problem to be solved
correctly is the requirement of the "cor-
relation weakening" stated in paper’”’ . By
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this requirement, the multiparticle Green
function transforms into the product of
the one-particles ones with increasing re-
lative distance between particles.

In this paper we are studying the prob-
lem on bound states of two polarons by meth-
ods we have developed in papers /4,6/, 1In
the first section we obtain the functional
integrals representing the Green function
of the problem. In the second section these
integrals are calculated approximately and
then the expressions for the particle in-
teraction potentials are found. Using those
potentials we calculate the energy of the
ground state in sect. 3 and the effective
mass of the bound state of polarons in
sect. 4. The strong and weak coupling are
studied in detail; the account for transla-
tional invariance makes the presentation
more consistent.

1. FUNCTIONAL REPRESENTATIONS

The Hamiltonian of the system under consi-j}

deration is

1 2 1 2 —ik?l -ikr,
H=—2—V1—2—V2+%[ak(Ake +Bye ) +
#1_’_’ 3 ., ( (1.1)
ikr ikr
+ a:(A*ke 1, B*ke 2)} + Zl){wkaiak + V(r1 - r2) ,

where p; and u, are the masses of two non-
relativistic particles, A, and By are

the Fourier components of the source densi-
ties, a; and a  are the creation and
annihilation operators of the scalar field
with momentum k and energy mk:[ak,d;,]=8ky
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We change the particle coordinates ?l
and ry by the coordinates of the mass cen-
ter R and relative distance &

1!'

>
g I3 + U, > ->
R - fifitke® » -

K1+ Be 1
- _'-D 2B} - > - [ > ( .2)
ViTVR T, Y Ve TV, TV

Then introduce the notation for the total
mass of two particles m and for the reduced
mass pu
Pyitq
mo=pytp,, p= — (1.3)
B+ Ky
In terms of eqs. (1.2), (1.3) the Hamiltoni-
an (l.1) takes the form
12 12 gy
_.—-2—m-\7R— —27 Vot E[ak(Akexp(-lkR-nkr:) +
+Bkexp(—ikﬁ+ik;#i;—)) thee i+ Zwapa + V(D)

Now we are able to make the Bogolubov cano-
nical transformation with respect to the
variable R:

> >
—ikR
ag - ¢y = age ,

and to represent the Hamiltonian in the form



1 (3 2o+, 2 1} 22 > +
H = 5;-"—(13— Ekékék) “ g Vet I.f.[gkck(r) +£,CE ] +

+ -,
+ % mk§k§k+ Vi),

where the total momentum of the system P
is—» > >
P=-iV g+ %kgkék,

which may_be put c¢- number due to the conser-
vation law [P, H| =0

The functions of the relative distance
c, (7 are defined by the formula

).

To find out the enérgy levels of the system
it suffices to construct the quantity
exp (-71) . In terms of the Feynman ordering
variable s it is

T

exp (-7H) =Texp(- [ dsHy) . (1.4)
0

Ck(r)— exp (- 1kr—) + By exp(lkr
M o

Then, following paper/*/ we can obtain the
functional representation for (1.4).

Indeed, performing the continual integra-
tion with the Gaussian measure we linearize
the operators of the kinetic energy of par-
ticles \

7 2 T :
exp[—al—fds(P—Ekézik)s] =f[5u](:exp[-i\/%bfdsv(s) (P-3kG8),

-9 B

7 (Vr)s
expl [ ds — o 3—[[8a]08xp[ \/—fdsa(s)(V ds 1
0

where

r 7
{60l ~v exp(=[ w7/ [Bvexp(-[v D).
0 0

After some calculations (see ref./4/- ) we
arrive at the representation

- -> -7, 5 - T
exp(—TH)=f[5'V];[5aJ:)exp[-—i\/72n~P£V(s)ds—\/%vr a()dsls

T S]

[dna(n)+ 3 [dsy [ dsp x
0 0

7
SIN expi—f[dsV(r+y/
0 0

w0

(1.5)

— 51 — S

2 2 .
ka(r+\/-ﬁ- ({ a(n)dn)C’I:(r+\/l—l- ({ a(r))dq)expl—wk(s]—52+

> S]_'
+i\/-[—2n-lr [vin)dn 1,
52

where

. +, T . 2 g
f= exp[zgkgkf dr](—-wk+ 1\/—ml:1/(1])),

W7 sy ., 8]
f—exp{—zgkj dsl(*(r+\/— j u)mplmk o 31“ [,
0 (1.6)
—. 5
f —expf Egkf ds,C (r+\/ fu)exp|—u)k l+|\/—2k [ v}
0

To calculate the characteristics of the pro-
cess when the field oscillators in the initi-
al and final states are unexcited one should
compute the vacuum expectation value of the
operator exp (-rH) .Since according to (1.6)
<0 ff 170> =1 then “Olexp(-rH)|0>

is given by (1.5)_ where the product it~
should be put unity.

2. APPROXIMATE CALCULATION OF THE
FUNCTIONAL INTEGRALS

With the aim to calculate the energy of
the ground state we pu: P’-0.Instead of in-
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tegration over » we will integrate oygr_Fhe
Feynman paths changing the variables v - x
where

> —1 ->
x(n) =v2fdp’viy’).
0
Then we obtain

<0l exp(=rH) |0> = [ [ BZ'J(;exp(—\/

‘:lml

> 7T 5
V[ a) x
R 0

(2.1)

-

r . s N
xexp[-—stV(r+\/—2—fa)}G(a) ,
0 “ oo

where .
C(3) = foneSlxral

PN LA T 5] -> -_sl->
, S[x,a]:—%ofxz(,’) d”+E'(£dslof dsy C | (r+ \/"l({ a)x(2.2)
XC;(:-;. \/_i_of2a") exp[—a)k(SI—S2)+ \/._lm_ ;(;(Sl)—;(52))J.

To calculate the quantity G(a) we introduce,
following Feynman/?/, the approximating ac-
tion

-(L)]Sl—52l >

> 175 cCrT > _
S [xl=-=[x - — [ dsydsye [x(s) —x(s) i . (2.3)
29 29

The action S approximates S in the sense
that the functional variables x(s) describe
the quantum vibrations after separating the
motion along the classical trajectory (in
this section it is x(s) =0 ).
Since the time intervals are limited by

the exponential damping the distance |§(sl)-
-;<sp| cannot be very large and we expand

exp | \/i_ l:[;(sl)—;(sz)li in (2.2) up to the quad-
m

ratic terms. The constant C defines the

attraction force between two polarons (see

ref, /7 ). It is considered as a variatio-

nal parameter. As we shall see below, its
value is the same as for one polaron. From
the approximate formula

G(@) ~ [8%e S lxptf 5265 (5 — sy [ a5e5 ).

with the use of formulae of paper/”/ (see
also /6/ ) we arrive at the following re-
sult

3 (V=) LT ST

Gla) :exp{~—4— —-—v“+t0jds|({ dsz(lk(re\/—ﬁ-of a)x
. . (2.4)
XC*(:+\/2 f-2ajex)[ w (s -s) k2 F (] Dt
A = - =8 ) ——=F(|s -5 ,
k ", F k1% T 5N 17 %2
where 5
4C . 2 % —(112 -V
V2=w2+ —, Flo) =w*n 4 — (1 -e "7 .
(7} Vv

The expression (2.4) for G should be in-
serted into (2.1) and integrated over ¢
As a result we obtain some operator. The
approximate form of the operator may be
taken as follows

<0 |exp(~rl) 0> = exp (~7H 1), 75 o ;
1 22 > (2.5)

In other words, in this approximation the
relative motion of "dressed" particles 1is
described by the Schr&dinger equation, all
the quantum effects due to the scalar field
being taken into account by the effective
potential V_ i (r).If the relation (2.5)
were exact the functional representation
(2.1) in the limit:;,~ would be of the
form:

> > T > T > S 5
<0|e_rH[0>=f[(5a];exp(—\/zv fadexpl-fdsV (¢ +\/—Zf a)l.
uor 0 0 elf #0



The deviations from the representatlon (2.6)
arise due to the terms of the type Sfa(n)dn
2

in 'G. From the equation (2.4) it is clear
that large time intervals (s;-s;) are sup-
pressed and the main contribution comes

from the region s, ~s, . However, to put the
S1 5
terms of the type [ a(np)dp zero would be

2
rather faugh approximation. We proceed the-
refore in the follow1ng way: change the

by f /3('1) dn

1
terms [ a(y) dy
S
B(n) té be a new functional variable, then
average the resulting functional over B (n)
with the Gaussian measure

-~ ..
0le”™ |of = [6ai expl - 3’ (V-u)” %\x,fa;x
0

and consider

v

T 5 o S, - T 51 5
xexp[—dfdsV(r+\/;l2—g a) U[aﬁ];expf%gdslg ds,C, (r + ‘ '

%2, L2
({ a) expl—w (s -s9)- —z—m—sz(sl—szm. ;

The integral over EW) is calculated with ié

the use of the approximating action (2.3).
In doing so, the parameter C may be accep-
ted the same as in calculating (2.2), due to
symmetry of the problem.

As a result, we have

2 7 T
-7H > 7  — A N >
<0le ’ |0>=f[8al, exp[—}—r— Q—,&))——\/—_—\ [ aiexpf-f V(r+
2V ot 0
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+\/ f a)ds+f dsE }odoe wkC*(r+\/ fa)[A exp(—l—k(r+\/— a)x :
0
(- Fe)+B (i E—k(r+ v~ - -
X exp 2#1\/2 +B |exp 1#2 r+\/# bf a) _2#2V2F(o)]¥,.

which give the following effective potential
of interaction

00 _’2
Vo D=V -Zfdoe
ko

HA o expl——k—-V?P(a) L+ B, l ¥

> ->

x [- F( )]+A‘B*ex [—ik?—- F(a) |+
exp 2#2\/2 o 2 p 2, Vz (2.7)
k 3 (V- w)
+A B [kr——————-( )lh—— —_—
R OPL 2;12\/2 v

Provided the particles are the same: p, =y, .
A = B, , the potential (2.7) is somewhat
simplified

(Vo)

3 ,
Ve (D = 5 —— + V() ~

o - o2 (2.8)
—Z)EIAk| (1 + coskr) [ doexpl-w 0 ~
0

51 (o) 1.
2p v2

In the case of 75xong coupling the parameter

V, as shown in’", is large and Flo) =
Then the potential (2. 8) takes the form

(S) - A >, 7?2

Vi (r) —-—V+V(r) —22 | i‘ (1+coskr) exp(~ 2:1\’)-(2.9)
In the case of weak coupling V=« and

F(o) =~ w20  therefore

VW A, 12 s

f(r) —V(r)—ZE 5 (1 + coskr) . (2.10)
wk + k /2y,



3. A CALCULATION OF THE ENERGY OF THE
GROUND STATE

Let us calculate the lowest level for the
polaron coupling and neglecting the direct
interaction of particles:

V(;) =0, w, =0,

w3/2a d: (3.1)
S T
2v2 7% k1

2
$IA %=
kI K

Consider first the case of strong coupling.
The equation (2.9) together with (3.1) brings

to the potential

vV
—_ —  $lry 42—
(s) 2
Ve{{ (;3’__%\/— 2aiwv~ 2(1\/(0 ,(3.2)
v V2 r
where ¢(r) is the probability integral. When
r > oo
AS) 3 V
Vi (o) =E= 5V -2ay=—. (3.3)
The minimum in the expression (3.3) is
reached when
T 2a Z !
VV = VT (3.4a)
and it equals
, 2a2w
E,=-— , (3.4b)
37
which is twice as large as the energy of one

polaron.

Inserting the parameter (3.4a) into
(3.2) we find the ultimate result for the
effective potential in the case of strong
coupling (the particle mass g, is expressed

12

through the reduced mass p =p1/2):

2a W
(S) — sy Ve

- _ 2 2 w
Ve” (I‘)——-Ea w—a\/Tl- “ T . (3.5)

To estimate the lowest level we introduce
the Poschl-Teller approximating potentiabmﬂ

2
VD - Lo - £ MAZD (3.6)

3n 2u ch?ecr

where ¢ and A are certain parameters. One
of them will be defined from the condition
of coincidence of the potentials (3.5) and
(3.6) at the point r=0 (as r» ~ these also
coincide). Then we obtain
1 1 32a2wy

)\—E-+E\/1+—?;C—2—-—. (3.7)
Assuming (3.6) to be leading term of in-
teraction we find parameter c¢ from the
condition for the first correction to the
lowest level, by perturbation theory, to be
zero. The known solutions/8/ of the Schrd&-
dinger equation with potential (3.6) are

2 2
2 2_0()\—2)___ A2,

E0=—E—a w 2# ,‘

Py ] (3.8)

L 1=A 3 >
xo(r)=Ashcr-ch cr,A=\/c/2nB(-2—,)\—2),6f|x0 dr=z;_

These are the energy of the ground state E,
the radial wave function x,(r),and the condi-
tion of existence of the bound states.

The first correction to energy &E, 1is
given by the formula

5E0= 477fwdr5le0(r)|2=477 lAl2 fodr sh2cr- ch 1-N) o
0 0

—_ 2a 1@ (3.9)
— ¢ Zey L

1

3mch?ecr '# f 13



Changing variables in (3.9) r > /¢ and
equating JE to zero we get the equation

00 2 \/77
h“r 1 ¢ (rx)
dr —= [ - ] =
(_)f l-chz(l—)\)r ch?r 2 rx 0, (3.10)
where we introduce the parameter
2a pw
x = —3—C—\/ il (2.11)
p—

Substituting (3.1ll) into (3.7) and (3.8) we
obtain A and E, as functions of «x:

1 1 2 .
A=E+E\/l+24x 5 XZ]/\/3;

202w 5+182%- 3yl 4 252 (3.12)

E = -
0 3 6x°

The numerical integration produces the fol-
lowing value of «x

x = 1,911, (3.13)

At this value of x the energy of the ground
state is

2a2m 2
E0=- 3”—1.939 =-0.41lc"w . (3.14)

As is seen, the effective interaction po-
tential gives the energy of the ground state
smaller by about a factor of two as compared
to the minimum energy of two free polarons
(cf. (3.4) and (3.14)).

In the case of weak coupling, as we shall
see below, the interaction of polarons via
.the scalar field leads only to small correc-
tions to the energy of noninteracting pola-
rons.

14

For the weak cowpling the potential is

W) - 1 - - o
V:”)(r) ==2a0 -2aw exp (-2 Vpor)

(3.15)
2\/_;;)—r

It is not difficult to see that the energy
of the ground state differs from the doubled
polaron energy -2¢0 by a value of order a2
Indeed, for q, the mean momentum in the
ground state, the value of r in that state
is defined from the uncertainty relation
r=1/q and the energy then is as follows

E(q) = Eqi -2aw -2aw 1~ exp (-2 Vv /q)

* _ 2uv/q

Solving the equation {JE(q)/dq= 0 for
small « we find that the E(¢g) minimum is
reached at q~a, i.e., the energy of the
ground state E,; 1is given by the expression

Ejp=~2aw +0(a?). 0

To obtain the terms of the order a« it
suffices to calculate them in the part of
the effective potential (3.15) independent
of r. However, as has been mentioned, this
part of the potential represents the doubled
polaron energy. Using the results of/7/
we obtain the same potential (3.15) up to
terms of the order a
2*2_;aJ?§_Llfgtﬂlffi3,15)
81 K r

The considerations on the basis of the
uncertainty relation have shown that for the
ground state the mean value of r is of
the order 1/a, i.e., we may neglect the
exponentially small terms in (3.16). In this
way we arrive at the Coulomb potential

viP () =-2¢0 -

2a® o
V(W)(r)=—2am— a‘w w 1
eff 8l por

15



for which the energy of the ground state is
2a2w a2w

Ey=-2a0 - TR

- — % — 52.47 (—1“0—)% (3.17)

Thus, the interaction of polarons in the
case of weak coupling results in the appea-
rance, in the energy, of terms small as
compared to the energy of two noninteracting
polarons. However, this interaction has to
be taken into account when calculating with
an accuracy to terms of the order of the
squared’éoupling constant 4 since these
terms are almost entirely due to the pre-
sence of that interaction.

4. EFFECTIVE MASS OF THE BOUND
STATE OF TWO PARTICLES

In the previous section we have put to-
tal momentum of the system zero in calcula-
tions of the energy of the ground state. To
calculate the effective mass of the system
one should determine the effective potential
up to terms of the order P2 To begin with,
we follow paper/6/ and obtain the classical
trajectory v, (5,r). On this trajectory one
reaches the extremum in the variable ¥ of
the action in the exponent of (1.5). The

equation for v, is
AENL I S
v () = =i —— +i - ds, C, (r+ )
-—52 — Sl

Xct(r*'\/_f a) exp[—wk(B]‘Sz) +l\/% f 17
2

Note, first, that at P= m&B:o too. Since
we are interested in small P we may expand
the exponent dependent on /. Second, we

need the value of vy(y only at large va-
lues of n and for r- ~.In this case the
main contribution to eq. (4.1l) comes from
the region s;=~ sy ~n. As a result, we have
the equation

> K(kvg () o 30, 4
Smeoi P20 e Giv2iata.2)
o Vom ™k o ) #o
k

From equation (4 2) it follows that the
dependence of uo on n 1is defined by the
> 7’—»
vector r+ \/lfa:
- 5 50
vy (n) v {r+
0 . - -» d
Changing now the variables in (l1.5) v-sv+y,
we arrive at the representation

=

<0|e_TH|0>=f[5:]5[5&’};6)([)(-\/—3—6[ ({ a) x
T > ._2-_' > T > —2_-S—>

x exp{_fdny(q)[i\/ﬁp+2vo(n)]—gds[V(r+ vﬁ-({ a) +

° E's 5 T S (4-3)

+\/-;£ a)]+2k{)dsl({ ds 9 x

8

e T Sa T s
+V2(l'+\/"l—({a)+i\/-; PV(
—_— S

x CUT+VE @) O+ v L [ ) exp [ -w (s = s,) +
0

— 5 -—7’
+i¢%Ef (vW)+vh+V—faHl}
Sg

Then to the representation (4.3) we may
apply the functional integral approximatiog
presented in sect. 2. As a result, we obtain
the following expre551on for the effective
potential V.g4 (r) (which is a generaliza-
tion of (2.7)):



Vo =V (D eV,

£ -——)_’ o0 2 - Pe 4 __>_’
V(D) =320 +iyEP (D ~F[ o e PR 12 ¢

(4.4)
2 K2 k2
x[1A " exp(~ —F(a))+|B| exp (-~ —F(a))+
2#1Va2 2pg Vaz
+ A B ex pl=ikr~ 2F(a))'+Al"“ Bkexp(ik?— sF(a)) ],

2p,V 2;12V

where V;;; is given by (2.7).
For the identical particles the expres-
sion (4.4) is simplified:

VE =320 +ivEBVD + 23 A 120RIMN 2 «
m mk

. (4.5)
x(1+cosi(':) of do o2 exp[—wka - 2:1\/2}:(0)],
where V(7) is defined by the equation
B -
v(r)——l——-——Z“Akl (1+cos r)k ( vir) x
o vV 2m m (4.6)

x [dooexpl -—w,0 —sz(a),',
0

following from (4.2) at a=0.In the equa-
tion (4.6) we have introduced the cutoff in
momenta on the upper limit to remove diver-
gences. The cutoff function flo) is obtai-
ned in the following way. In the limit r-
we have two independent particles therefore
in that limit the ratio of the effective
to the total mass should be equal to that
in the case of one particle.

Just from that condition of coincidence
we shall define the function (o).

Further calculations will be performed
for polarons, i.e., with allowing for the

relations (3.1). When r-» ~, in egs. (4.5)
and (4.6) the rapidly oscillating cosine may
be neglected and we obtain immediately the
equation* 32

‘/_2_[1+ ':‘7—‘15_(-1%_#—372——6{(10023—(00 f—3/2 (a)]"l‘
m #

Inserting it in (4.5) we have

-

vir) =-j

=, - 2 3/2 bt _
VG =PYaM= pal1s —2277 [ ao62e 00 1mY2 () ) -
2m 6v2rud/? o
3/2 y3 =
—[1+22 v f daa2e—w0F—3/2(a)l x
3yz 0
3/2 oo _
X[1+ -——‘-1_-__9—*-3—/——[(1002 d —3/2( )] 2!
6v2m p
It is clear that the Feynman expression
3/2 y3 oo
M 1y 80TV 3002 m@9F 3 2(0) (4.7)
m 3Vm 0

is obtained when
f(o) =F(o) /21, V2 (4.8)

For the relation (4.8) egs. (4.5), (4.6)
take the form

V() =iPWD /vIm , (4.9)

where v(r) obeys the equation

3/2 y3 o
aw _Y——fdaa -wo F—3/2 (0)] =

ERVE 0

_\;(:) [1+

(4.10)
3/2 e _"’_’—)—b > 22
=—i s - _iw fdaa2e_waf(i—k-k(kv(r))coskr‘e5q3[— k 2F(a)].
Vim 22 nZd/2 ko 2,V
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In the case of weak coupling, as has been
discussed above, the mean value of r 1is of
the order: 1/a, 1i.e., the term with cosine
in (4.10) is exponentially small and for
the mass we obtain eq. (4.7) resulting in
the following expression
M=ml[l+a/6 +0(a®)],

which is well known from the theory of free
polarons.

In the case of strong coupling F(o) =
and eq. (4 10) is of the form

"2

32(14 > > he 2
S kkve* cos(l:r)\/?#lv),(‘l.ll)

4
2 2 d
v( =—iy—=P-
81172 m 27"7;2f i(’

k
2

where V is given by the relation (3.4a).
The solution of eq. (4.11) is searched
in the form

v(r) ———\;;:—%—14-[ PW (r\/2#1\0+
m

Inserting eq. (4.12) into (4.l1l1) we obtain
the functions W%, and ¥,

r(rP)

W (r\/ZyIV)] (4.12)

1 9.9
L fdgyyleg? e TN 74 1
7 0

W, (r) =[1 +

1
Wyl®) =W, () +[1+3] ann? (1= Y2 e~ /4 )L,

Then the potential (4.9) takes the form

= B2 g1a2 B2
[W (r\/ZuIV)+ —g-w (r\/ZuIV) 1.(4.13)

Treating the potential (4.13) as a small
perturbation we find the first-order correc-
tion to the ground state energy (recall that
the wave function of the ground state is
given by (3.8)):

20

P2 -.lXo(l')lz = o
ok = _2"M—_fdr—'——;—2——V(l') s

and obtain the expression for the effective

mass

m 8’ 2 shZr

m _ d
M 16 a4 3B(3/2;A-2) (')[ rch2()\—l)r

where parameters x and A are given by (3.12)
and (3.13) resp.

The numerical integration produces the
following value of M:

M= m29d 1 160 —232(a/10) 4 m.

8172
As we see, for strong coupling the effective

interaction between polarons results in the
increase of the mass of the system by 16% as
compared to the mass of free polarons. Note
that the functional integration method

gives underestimated value for the mass
therefore the effect of the mass increase
can be even larger.

In conclusion we would like to stress that
the technique we have developed allows, in
principle, the energy and effective mass of
the system to be calculated for another de-
pendence of Ay and «, on momentum, as
well as with the account of the direct in-
teraction of particles. All the required
formulae are presented.

[ W, (2xr) + W, (2xr) 1,
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