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Recently the attempts have been made to 
construct the dynamical models of the exten­
ded particles. 

These attempts taking roots long ago 
have resulted recently in certain success 
within the models of strongly coupled par­
ticles and fields. 

A consistent theory of strong coupling 
was developed in papers/1 , 21 where the prob­
lem was considered on a particle coupled 
with the scalar quantum field. The method 
used there is based on the canonical trans­
formation introduced by N.N.Bogolubov in 
studying the quantum problem of polaron. 
These problems then have been studied in 
subsequent papers (see, e.g.,h.~). 

When considering the case of two and more 
interacting particles a number of interes­
ting problems arises. As is known, the 
strong interaction of a particle with a quan­
tum field can be described by the effective 
potential due to the polarization field 
around the particle. The overlapping of the 
polarization regions can significantly 
change the character of forces between dif­
ferent particles at comparatively small 
distances. 

A criterion for the problem to be solved 
correctly is the requirement of the "cor­
relation weakening" stated in paper/W. By 
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this requirement, the multiparticle Green 
function transforms into the product of 
the one-particles ones with increasing re­
lative distance between particles. 

In this paper we are studying the prob­
lem on bound states of two polarons by meth­
ods we have developed in papers/4,6/. In 
the first section we obtain the functional 
integrals representing the Green function 
of the problem. In the second section these 
integrals are calculated approximately and 
then the expressions for the particle in­
teraction potentials are found. Using those 
potentials we calculate the energy of the 
ground state in sect. 3 and the effective 
mass of the bound state of polarons in 
sect. 4. The strong and weak coupling are 
studied in detail; the account for transla­
tional invariance makes the presentation 
more consistent. 

1. FUNCTIONAL REPRESENTATIONS 

The Hamiltonian of the system under consi 
deration is 

~... ...-+ 
1 2 1 2 -ikr1 -ikr2 

H=--V'l--V2+2[ak(Ake +Bke )+ 
2p. l 2p.2 k 

-+-+ -+-+ 

+ * i k r 1 i k r2 1 + 
+ak(Ake + B*ke )! + 2wkakak + V(r1 - r 2), 

k 

(1.1) 

where 11 1 and 11 2 are the masses of two non­
relativistic particles, Ak and Bk are 
the Fourier components of the source densi­
ties, a~ and ak are the creation and 
annihilation operators of the scalar field 

. ... + 
w1th momentum k and energy wk:[ak,ak,]=okk' 
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w~ change the particle coordinates rl 
and_,r 2 by the coordinates of the mass cen­
ter R and relative distance ; 

... 
R 

-+ r-+ -+ -+ -+ 

Ill r l + 11 2 2 ' r = rl - r 2 ' 

lll+/12 (1.2) 
-+ -+ Ill -+ -+ ... 112 -+ 
v =v +v, v =v -v 

I R lli+IJ. 2 r 2 Rp. 1+p. 2 r 

Then introduce the notation for the total 
mass of two particles m and for the reduced 
mass 11 

m = Ill + 112 ' 
lllll2 

(1. 3) /1 = 
Ill +p.2 

In terms of eqs. (1.2), 
an (1.1) takes the form 

(1.3) the Hamiltoni-

l -+2 l ... 2 -+-+ -+ 11 
H =--VR-- V + 2[ak(Akexp(-ikR-ikr-) + 

2m 2p. r k /11 

-+-+ ...... 11 . + ... 
+Bkexp(-ikR+ikr-)) +h.c. J+2wkakak +V(r) 

112 k 

Now we are able to make the Bogolubov cano­
nical transformation with respect to the -+ 
variable R: 

-+-+ 
-ik R 

ak-+ ( k = ak e 

-+-+ 

+ + + ikR (7 ;-+ 1 -s 
ak-+(k= ake ' "'k'"'k'·- kk'' 

-+ -Jo -t + 
-iVR ... P- t k(k(k 

and to represent the Hamiltonian in the form 
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1 .... .... + 2 1 .... 2 .... + 
H = -(P- Ik(k(k) --

2 
V + I[(kCk(r) +(kC*ktr'}] + 

2m k fl r k 

+ .... 
+ Iwk(k(k+ V(r), 

k 
.... 

where the total momentum of the system P 

is .... .... .... 

p =-i'V R + ~k(k(k, 

which may~be put c- number due to the conser­
vation law [P,HJ=O. 

The functions of the relative distance 
Ck (;) are defined by the formula 

.... .... .... fl ....... fl 
C k ( r ) = A k exp (- i k r -) + B k exp ( i k r - ) 

fl 1 ~-'-2 
To find out the energy levels of the system 
it suffices to construct the quantity 
exp (- rll) . In terms of the Feynman ordering 
variable s it is 

T 

exp(-rH) =Texp(-f dsHs). 
0 

( 1. 4) 

Then, following paper!~ we can obtain the 
functional representation for(l.4). 

Indeed, performing the continual integra­
tion with the Gaussian measure we linearize 
the operators of the kinetic energy of par-
ticles 1 

l T + 2 T 2' +. 
exp [-- f ds (P-I k(k(k) 1 = f[ov 10 exp [-ivf- f dsv(s) (P-Ikt;:ki;:;' 

2m 0 k s m 0 k k's· 

->2 
T (V ) 

( 
r s-

exp r ds--l 
0 2p. 

->.T 2 T -> -> 

= f Ls a l 0 exp ( - v - f ds a ( s) < v r ) s l , 
1'- 0 

where 
r r 

-+r .... -+2 .... ->2 
{ov]

0
=ovexp(-[v )j[ovexp(-fv ). 

0 0 

6 

After some calculations (see ref./4
/. ) we 

arrive at the representation 
-+r ->r 2-+r_. 2-+ r_. 

exp(-rH)=f[ov] [oal exp[-ivf--P fv (s)ds-v/,v f a(s)ds]x 
0 0 m 0 r ro 

T - s T S] 
+ - .... 2 .... 

x ff f exp 1- f ds V ( r + y- f d17 a ( 11) ) + t f ds 1 f ds2 x 
o flo o o 

( 1. 5) 
-"I - "2 
2 ? 

xCk(r+v/- J a(7J)d7J)C~(r+v' 
1
: J a(rJ)drJ)expl-wkts 1-sJ+ 

fl 0 0 

- .... sl 
. 2 .... ) I +tv'-~ J v(7J d17 , 

m 
52 

where 
+ T 2 ->., 

f= exp['I(k(kf d7J(-£JJk+ iy-bd7J)), 
k 0 m 

T - "I . - -• sl 
+ I ~ 7 + . d • (.... 2 J- ... ) I · 2 -•, I £ =exp -"'-<:,kj s 1Ck r+y- u cxp c<~ksl-1\-~ ( 1'1, 

k 0 11 0 m 0 ( 1 • 6) 
T - 5 1 -_. "2 

- .... 2 -· ? -+ 
f =expi-I(kf ds1Ck(r+v-J u)expl-wks 1 +iv--=-k ( vll. 

k 0 11 0 m 0 

To calculate the characteristics of the pro­
cess when the field oscillators in the initi­
al and final states are unexcited one should 
compute the vacuum expectation value of the 
operator exp (-rll) .Since according to (1.6) 

+ -< 0 I r r r I 0 > = 1 then < 0 ! exp (- T H ) I 0 > 
is given by (1.5).where the product ff+f­

should be put unity. 

2. APPROXIMATE CALCULATION OF THE 
FUNCTIONAL INTEGRALS 

With the aim to calculate the energy of 
the ground state we pu~ i; =0. Instead of in-
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tegra tion over .; we will integrate over the 
Feynman paths changing the variables ;; .... ; 
whe:e _ 11 .... 

x(r-,) =vl2fdr-,'v(r-,'). 
0 

Then we obtain 

-+~ T 2 -> T -> 

< 0 I exp (- r H) I 0 > = f [ 8 a lo exp (-V- V r f a) x 
11 0 

T -> ~ s -> -> 

x exp [ -J ds V ( r + V- f a) l G (a ) 
0 f.1 0 

where 

G(~) = f8;es[x,~] 

(2 .1) 

.... .... l r .:.2 r sl .... 2si .... 
S[x,al=--

2 
fx (r-,)dr-,+'t fds1 f ds2Ck(r+ v-f a)x(2.2) 
0 k"6 o 11 0 

.... 2 s2.... . .... .... .... 
xCk(r+V-f a)exp[-wk(sJ-s2)+ 1 k(x(s 1)-x(s2))J. 

11 o Vm 
To calculate the quantity G(a) we introduce, 
following Feynman/7/, the approximating ac­
tion 

-> l r ~ C r -wlsl-5 21 -+ -+ 
S'[x]=--fx --fds1ds 2e [x(s 1)-x(s

2
)J .(2.3) 

2 0 2 0 

The action S' approximates S in the sense 
that the functional variables x.,(s) describe 
the quantum vibrations after s~parating the 
motion along the classical trajectory (in 
this section it is x(s) =0 ). 

Since the time intervals are limited by 
the exponential damping the distance l~<s 1 )­
-;(s 2)1 cannot be very large and we expand 

expl v'im k[:;(s1)-;(s2)JI in (2.2) up to the quad-

ratic terms. The constant C defines the 
attraction force between two polarons (see 
ref. 171 ) • It is considered as a variatio-

8 

nal parameter. As we shall see below, 
value is the same as for one polaron. 
the approximate formula 
G(c:7) ""f8;e s'[;!explf8X'e5 ' (S- S')/( i'iX'e s'1. 

with the use of formulae of paperiV 
also 161 ) we arrive at the following 
sult 

its 
From 

(see 
re-

2 T s - s 
--+ 3r (V-w) , ~ .1 • 2 l --+ 

G ( a) ~ exp!- - --v- + t j ds I { ds 2 c k ( r I v - r a ) )< 

4 0 0 fl () 
- s ... (2.4) 

--+ 2 2 k2 
xC*k(r+y-( aJexp[-(ok(s

1
-s)----F(Is -s 1)11, 

11 0 2 2mV2 1 2 

where 

V 2 2 4C 
~ w + 2 2 - v (J) V -~ ( 1- e · --\~,-

Hu) 2 = 0.1 a + 
w 

The expression (2.4) for G should be in­
serted into (2.1) and integrated over ~ 
As a result we obtain some operator. The 
approximate form of the operator may be 
taken as follows 

<0 I exp(-r!l) IO>"' exp (-rllerr), T-)oo; 

l .... 2 ·• 
11 rr ~ - - '\' + V rr ( r) · 

( 2. 5) 
e 211 r <> 

In other words, in this approximation the 
relative motion of "dressed" particles is 
described by the Schrodinger equation, all 
the quantum effects due to the scalar field 
being taken into account by the effective 
potential V eff (;) • If the relation ( 2. 5) 
were exact the functional representation 
(2 .1) in the limit r .... "" would be of the 
form: 

-rH ->r 2 .... r .... T --+ 2s ..... 
<0 I e I 0> = f [b a J exp (- V- V f a ) exp [- f ds V (r + y- f a) ] • 

0 f.1 r 0 0 
eff 11 

0 
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The deviations from the representation (2.6) 
sl ... 

arise due to the terms of the type f a <11) d71 
. s2 

in G. From the equation (2.4) it is clear 
that large time intervals (s 1- s 2 ) are sup­
pressed and the main contribution comes 
from the region s 1 "'s2 • However, to put the 

sl ... 
terms of the type f a(71) d71 zero would be 

rather tOugh approiimation. We proceed the­
refore in the following way: change the 

s 1 sl .... 
terms f ~ ( 11 ) d71 by f {:H 71) d77 and consider 

... s 2 s 2 
~(71) to be a new functional variable, then 

average the resulting functional over ~(71) 
with the Gaussian measure 

2 -
-rH -+r 3r (V-w) 2 .... ' ... 

<0 I e I Of == f [ Sal exp [ - - ---- - ....; - V f a i x 
0 4 v 11 ro 

-- s 
T _. 2 S_. -> T T 1 _. 

x exp[ - J d s V ( r + y- f a) l f[ 8 ~I 0 exp ll f d s 1 f d s 2 C k ( r + 
o llo ko o 

~'.;!. 

2 s2_. 2 sl.... -+ 2 So.!.... k2 
+y- f a+y- f {J)Ct(r+y-fa)exp[-wk(s 1-s 2)---{(s1-s2)11. 

11 0 11 s2 11 0 2m V 

.... 

The integral over ~( 71 ) is calpulated with • 
the use of the approximating action (2.3). \ 
In doing so, the parameter C may be accep-
ted the same as in calculating (2.2), due to 
symmetry of the problem. 

As a result, we have 
2 T T 

-rH -or 3r (V-w) ') _, . _, -> 
<Ole IO>==f[8al0 exp[--- , -v'...:.\ j a:expi-JV(r+ 

2 V 11 r 0 0 

10 
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. . 

2 s_. r oo -~a ,.. 2 s _. 11 ... _. zs 
+ y- f a)ds+ f ds l f due Ck(r+ v- f a)[A exp(-i-k (r+y-f d)) X 

11 o o k o 11 o k Ill llo 

k2 ... ... 2 s... k2 
x exp(- --

2 
F(a )) + B kexp( iLk(r + y- f a)- F(a)]l,. 

2111 v 112 11o 2112 v2 

which give the following effective potential 
of interaction -- 2 

00 -wka 2 k 2 
V (;)==V(;)-I.fdae IIAkl exp[-~F(a)i+ll\1 x 

eff ko 2/llv 

k2 ...... k2 -. 
x exp [---

2 
H a ) 1 + A kBk exp [- i k r - 2 H a ) I + ( 2 • 7 ) 

2112 v 21LJ v 
-+2 2 

[ . .... ... k r· ( ) II 3 ( v - cu) 
+ Ak Bk. exp 1 k r- 2 ' a + - y 

2112 v 2 

Provided the particles are the same: 112 = 11 1 , 

Ak.= Bk. , the potential (2.7} is somewhat 
simplified 

2 
v ( i) == ~ ( v - (l)) + v ( -;.') -

eff 2 V 
2 ...... 00 . 'k 2 (2.8} 

-2liAkl (l + coskr)f daexp[ -wka- --2 F(a) I. 
k 0 211 IV 

In the case of 7~ong coupling the parameter 
V, as shown in 7 

, is large and F (a) "' V. 
Then the potential (2.8) takes the form 

I 1
2 ... 2 

( S) ... 3 ... Ak. ... ... k 
V ££ ( r) =- V + V ( r) - 21 -- (l +cos k r) exp (- --) .( 2 • 9} 

e 2 k Wk_ 2/lly 

In the case of weak coupling V "' w and 
F(a), w 2 a therefore 

2 
( W) ... ... lA k I ....... 

V rr ( r) = V ( r) - 2 I. ... ( l + cos k r ) 
e k. k /'> wk. + -111 

(2 .10) 
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3. A CALCULATION OF THE ENERGY OF THE 
GROUND STATE 

Let us calculate the lowest level for the 
polaron coupling and neglecting the direct 
interaction of particles: 

V ( ;) = 0, wk = w , 

~\A k\ ~_j= 
w 3/2 a 

-2-
2y2rr Y/11 

... 
dk 

f~· 
( 3 .1) 

Consider first the case of strong coupling. 
The equation (2.9) together with (3.1) brings 
to the potential 

Ill~) 
¢(ry 2 ,(3. 2) y(e~~ (~ = ~ y _ 2aywV _ 2ayw 

yrr y2J11 r 

where cjJ ( r) is the probability integral. When 
r ~ oo 

v~;: (oo) = E"" 
3 -rrY-2aywV TT • 

The minimum in the expression (3.3) is 
reached when 

( 3. 3) 

- 2a w 
yV = --v- (3.4a) 

3 TT 

and it equals 

2a 2 w (3.4b) EQO = 
3rr 

which is twice as large as the energy of one 
polaron. 

Inserting the parameter (3.4a) into 
(3.2) we find the ultimate result for the 
effective potential in the case of strong 
coupling (the particle mass 111 is expressed 

12 

1.' 
'1''': ' 

.. :, ··~-r. 
\ !' 

.'\j~,,, I 

\' 

·'~ 
.,~,~,i'l 
:,.~-'! ~ 

through the reduced mass 11 =Jlr/2): 

- ¢(r 2a VI!:.!:}_ 
( S) -> 2 2 w 3 71 

V ff ( r) = - -a w - a y- ( 3. 5) 
e 3rr /l r 

To estimate the lowest level we introduce 
the P5schl-Teller approximating potential/sf 

2 
V ( ;) = - ~a 2 w - _c_ ,\ ( ,\ - ~ ) 

a 3rr 211 ~2 cr 
( 3. 6) 

where c and ,\ are certain parameters. One 
of them will be defined from the condition 
of coincidence of the potentials (3.5) and 
(3.6) at the point r=O (as r~oo these also 
coincide) • Then we obtain 

,\ = l +.!. y 1 + 32a2w 11 
2 2 3 2 

( 3. 7) 
TTC 

Assuming (3.6) to be leading term of in­
teraction we find parameter c from the 
condition 'for the first correction to the 
lowest level, by perturbation theory, to be 
zero. The known solutions/8 / of the Schro­
dinger equation with potential (3.6) are 

2 2 c 2 (,\ -2) 2 
E

0
=--aw-

2 
, ,\~2, 

3 TT /l 
l -,\ 3 00 2 l ( 3 • 8) 

x 
0
(r) =Ash cr• i:h cr, A= y c/2 rrB( 7 , ,\- 2), f !x01 dr=-. 

0 4rr 

These are the energy of the ground state E 0, 
the radial wave function x0 (r) ,and the cond1-
tion of existence of the bound states. 

The first correction to energy 8E 0 is 
given by the formula 

00 2 2 
BE 

0 
= 4rr J dr8V\x 0(r) I = 4rr \A I 

0 

00 f dr sh 2 c r . ch 2( 1-A) 0 cr x 

x[- 4a 2w -¢(r2:::..-;/lW) ~---a·lw 3 v--
3 

71 

h 2 vu --- " 1 c. cr r r J • 

( 3. 9) 
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Changing variables in (3.9) r ~ ~c and 
equating BE 0 to zero we get the equation 

r dr sh 2 r [ ~- - y TT cp ( r X) ] = 0 
0 ch 2 ( I -A\ ch r 2 r x ' 

(3.10) 

where we introduce the parameter 

2a pw 
x=--y-. 

3 C TT 
n. 11> 

~ 

Substituting (3.11) into (3.7) and (3.8) we 
obtain ,\ and E 0 as functions of x : 

1 1 2 -
A = 2 + 2 V] + 24 X , X 2::_ 11 v_3_; --· 

2a2w 5 + l8x2 - 3 y'1 + 24x2 
Eo=---

3" 6x 

(3.12) 

The numerical integration produces the fol­
lowing value of x 

x=l.9ll. (3.13) 

At this value of x the energy of the ground 
state is 

2a 2 w 2 
E0 =- --- 1.939 = -0.4lla w • 

377 
( 3 .14) 

As is seen, the effective interaction po­
tential gives the energy of the ground state 
smaller by about a factor of two as compared 
to the minimum energy of two free polarons 
(cf. (3.4) and (3.14).). 

In the case of weak coupling, as we shall 
see below, the interaction of polarons via 
the scalar field leads only to small correc­
tions to the energy of noninteracting pola­
rons. 

14 
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For the weak coupling the potential is 

V ( W) ( -+) 2 2 l - exp ( - 2 y/lW r) 
eff r =- aw - aw __ . ( 3 .15) 

2 y p.w r 

It is not difficult to see that the energy 
of the ground state differs from the doubled 
polaron energy -2aw by a value of order a 2• 

Indeed,for q, the mean momentum in the 
ground state, the value of r in that state 
is defined from the uncer.tainty relation 
r=llq and the energy then is as follows 

E ( q) = L - 2 a w - 2 a (i) 1 - exp ( - 2 v'"ii'V I q) • 
2P. 2 ..[iii/ I q 

Solving the equation dE{q) ldq = o for 
small a we find that the E(q) minimum is 
reached at q = a , i.e. , the energy of the 
ground state Eo is given by the expression 

E 0 = -2aw + O(a 2). 
To obtain the terms of the order a

2 it 
suffices to calculate them in the part of 
the effective potential (3.15) independent 
of r. However, as has been mentioned, this 
part of the potential represents the doubled 
polaron energy. Using the results ofl71 
we obtain the same potential (3.15) up to 
terms of the order a 2 

( W) -> 2a2w . ---;- 1- exp(-2ryp.w 
V ff (r) =-2aw- ---ay- .(3.16) 

e 81 ll r 

The considerations on the basis of the 
uncertainty relation have shown that for the 
ground state the mean value of r is of 
the order 11 a , i.e. , we may neglect the 
exponentially small terms in (3.16). In this 
way we arrive at the Coulomb potential 

( W) 2a 2w w- l 
V (r) = -2aw- --- -av- -, 

e ff 81 ll r 

15 
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for which the energy of the ground state is 
2 2 

2a w a w a 2 
E0 =- 2aw- - -- = -2aw- 52.47 (-) w.(3 .17) 

81 2 10 

Thus, the interaction of polarons in the 
case of weak coupling results in the appea­
rance, in the energy, of terms small as 
compared to the energy of two noninteracting 
polarons. However, this interaction has to 
be taken into account when calculating with 
an accuracy to terms of the order of the 
squared~coupling constant a since these 
terms are almost entirely due to the pre­
sence of that interaction. 

4. EFFECTIVE MASS OF THE BOUND 
STATE OF TWO PARTICLES 

In the previous section we have put to­
tal momentum of the system zero in calcula­
tions of the energy of the ground state. To 
calculate the effective mass of the system 
one should determine the effective potential 
up to terms of the order P-2. To begin with, 
we follow paper/6/ and obtain the classical 
trajectory ~ 0 (7J, ;) • On this trajectory one 
reaches the extremum in the variable I! of 
the action in the exponent of (1.5). The 
equation for ~0 is 

-+ -+ T 7] -s 
-+ P k -+ 2 I..., 
v 0 ( 7J) = - i ---=- + i t -=- f d8I f d8 2 C k ( r + y- f a) x 

yi2m y2m 7J o flo (4.1) 
-S2 - SI 

-+ 2 -+ 2-+ -+ 
x C \ ( r + yl - f a) exp [ - wk ( 8 I - 8 2) + i yl-k f v 

0
] • 

J1 0 m 
82 

-+ .... 
Note, first, that at P = O,vo = 0 too. Since 
we are interested in small P we may expand 
the exponent dependent on 1!0 • Second, we 
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need the value of V"0 (7J) only at large va­
lues of TJ and for r .... oo. In this case the 
main contribution to eq. (4.1) comes from 
the region 8 1 = 8 2 ""TJ. As a result, we have 
the equation 

-+ -+ -+ .... p 2 k(kv0 (7])) .... 27J .... 2 
v0 (7J')=-i-==::---~ 1Ck(r+yi-fa)i.(4.2) 

yl2m m k wt J1 0 

From equation (4.2) it follows that the 
dependence of : 0 on TJ is defined by the 

-+ 27] .... 
vector r + yl- f a: 

J1 - 7J 
-+ -+ y 2 -+ 
v 0 (7]) = v (r + yl- f a) • 

Changing now the ~£riables in (1. 5) ~ .... v + v0 
we arrive at the representation 

- rH -+ T -+ T 2-+ T -+ 
<Ole iO>=f[Bv] [BaJ

0
exp(-yi-V fa) x 

0 J1 r 0 

T 2-+ T 28 
x exp I - f dry ~ ( 7J) [ i yl Iii P + 2 J o ( 7]) l - f d8 [ V ( ; + V p:- f ~) + 

0 0 0 

-+ -+ 2 s -+ 2 -+ -+ -+ 2 s .... r s 1 ( 4 • 3 ) 
+ V 2 ( r + yi- f a) + i yi- p V ( f + y- f a) J + ~ f dstf ds 2 X 

J1 0 m J1 0 k 0 0 

- sl - s2 
.... 2 .... -+ 2 .... 

x C k( r + yl- f a ) Ct ( r + yl- f a) exp [ - w k ( s C s 2) + 
p. 0 J1 0 

- s - 7J 
2-+ 1 -+ ........ 2 . 

+iyi-k fd7J(V(7]) +v(r+yi-fa)) ]}. 
m sz J1 0 

Then to the representation (4.3) we may 
apply the functional integral approximation 
presented in sect. 2. As a result, we obtain 
the followiQg expression for the effective 
potential Veff (;) (which is a generaliza­
tion of ( 2. 7) ) : 
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r 

I 

::::: -+ ~ =:::: ~ 

V ,. If ( r) = V e ff ( r) + V ( r) , 

"" 2-+ oo 2 -wka 2-+_. 
V(;) = ~2(~ +iy-P ;(t1-'£ J da £.._e [ iV;;;-kv(-;.) J2 x 

m 1(0 2 m (4.4) 
->2 ->2 

2 k ' 2 k 
x [ I A I exp (- --- f ( a ) ) + I B I exp (- ---F (a ) ) + 

k y2 k 2 v 2 2J1 I -> /12 -> 
---- k2 ---- k2 +AkR~ex p(-ikr- 2 F(a))•+A~Bkexp(ikr- 2

F(a))], 
2J1IV 211 2 V 

where V~r is given by (2.7). 
For the identical particles the expres­

sion (4.4) is simplified: 

":---._ ->2-> 2------ 2 2->->--».2 
V ( r 1 = v ( r) + i v'- P v ( r) + - I I Ak I ( k v ( rJ ) x 

m mk (4.5) 
00 ->2 

---- 2 k x (l + cos k r) J da a exp [- w k a - --
2 

F (a) ] , 
0 2J1IV 

where ~(7) is defined by the equation 
-> 

->-> p 2 2 ->_. -> ->_. 
v ( r) = - i -===- - - I I A k I (I + cos kr) k ( k v (.:)) :.: 

00 
y2m m k (4.6) 

x fdaa 2 exp[ -wka -k2f(a) J, 
0 

following from (4. 2) at a= 0. In the equa­
tion (4.6) we have introduced the cutoff in 
momenta on the upper limit to remove diver-
gences. The cutoff function f(a) is obtai-
ned in the following way. In the limit r-+oo 

we have two independent particles therefore 
in that limit the ratio of the effective 
to the total mass should be equal to that 
in the case of one particle. 

Just from that condition of coincidence 
we shall define the function f(a). 

Further calculations will be performed 
for polarons, i.e., with allowing for the 

18 

relations (3.1). When r-+ oo, in eqs. (4.5) 
and (4.6) the rapidly oscillating cosine may 
be neglected and we obtain immediately the 
equation 

-> 
->-> p [ v(r) =-i-- l+ 

aw 312 

6 v2; 3/2 
J1I 

00 

f da a2 e-wa f-312 (a)] -I. 

v'Zm 0 

Inserting it in (4.5) we have 

- -> p2 312 00 V(;) =P 212M= -12 [l + aw J daa 2e-wa f- 312 (a) j -I -
2m 6y2"J1f12 0 

312 3 00 

-[l + aw V f daa2e-warl2(a) I x 
0 3rrr 

312 oo I 
x[ l + aw I J daa2e-wa f-3 2 (a)r21. 

6v'2"J1~2o 
It is clear that the Feynman expression 

312 v 3 oo I M 1 aw J d 2 -waF-3 2( ) - = + aa e a 
m 3yrr 0 

(4. 7) 

is obtained when 

f(a) =F<a)I2J1IV
2

• (4.8) 

For the relation (4.8) eqs. (4.5), (4.6) 
take the form 

=:::: -+ -+-+ -+ -
V ( r) = i P v( r) I V 2m , ( 4 • 9 ) 

where ;(.:) obeys the equation 

_. _. I 
v(r)[l+ aw32 y3 j daa2e-wa F-312 (a) J 

0 3vrr 
(4.10) 

. p 
=-l---

y2m 

312 00 -> .... 
a w 2 dk .... -+ -+ -> .... .... k 2 

I 
J daa e-waf 7-!<(k v(r)) coskr• exp[---F(a)]. 

2y2 ,2/13 2 k 2J1 y2 1 . I 

' ' 19 
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In the case of weak coupling, as has been 
discussed above, the mean value of r is of 
the order· 1/a, i.e., the term with cosine 
in (4.10) is exponentially small and for 
the mass we obtain eq. (4.7) resulting in 
the following expression 

M= m[ l+a/6 +0(a 2)], 

which is well known from the theory of free 
polarons. 

In th~ case of strong coupling F(u) "" V 
and eq. (4.10) is of the form 

- .... 
.... "'\ 32a 4 . 2 -+ 32a 4 dk ............ .; 2 ........ -
v(rJ --2 = -1 v'mP- 772 f ~k (k v) e cos (b)v'~IV},( 4 .11) 

8117 'lJ IT k 

where V is given by the relation (3 .4a). 
The solution of eq. (4.11) is searc~ed 

in the form 

2 ............ 
.... .... · 81 .... -- ( P) --
v( r) =-

1 ~ [ PW I ( r v' 2/li V) + ~W 2 (r v'21li V) ]. ( 4 • 12) 
y'2m 16a r 

Inserting eq. (4.12) into (4.11) we obtain 
the functions WI and W2 

3r I 2 -- -r277 2/4 -I 
WI (r) = [1 + --f d7171 y'l-77 2 e 1 , ""0 I 2 2 2 r2 2/4 I W2(r) =-WI(r) +[ 1+3fd1111 0-r 71 /2)·Je- 11 ]-. 

0 

Then the potential (4.9) takes the form 

"".... p2 81172 -- (;~2 --
V(r) =---4 [WI(rv'21liV)+ ~\l 2 (rv'21LIV)]. (4.13) 

2m 16a r 2P 

Treating the potential (4.13) as a small 
perturbation we find the first-order correc­
tion to the ground state energy (recall that 
the wave functipn of the ground state is 
given by (3.8)): 

20 

p2 .... lx 0<f>l 2 
"' .... 

BE= --=fdr V(r) 
2M r 2 ' 

and obtain the expression for the effective 
mass 

2 00 2 m 8117 2 sh r 
M = 16a4 38(3/2;,\-2) [ dr ch2(A-l\ [3Wl(2xr)+W2(2xr)l, 

where parameters x and >. are given by (3.12) 
and (3.13) resp. 

The numerical integration produces the 
following value of M: 

. 16a 4 4 M = m-- 1.161 = 232( a/10) m. 
811T2 

As we see, for strong coupling the effective 
interaction between polarons results in the 
increase of the mass of the system by 16% as 
compared to the mass of free polarons. Note 
that the functional integration method 
gives underestimated value for the mass 
therefore the effect of the mass increase 
can be even larger. 

In conclusion we would like to stress that 
the technique we have developed allows, in 
principle, the energy and effective mass of 
the system to be calculated for another de­
pendence of Ak and wk on momentum, as 
well as with the account of the direct in­
teraction of particles. All the required 
formulae are presented. 
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