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1. Introduction. Space-time pattern of charmonium photoproduction 

A salient prediction of QCD is a close connection between an 
interaction cross section of a hadron and its transverse dimension: 
the more compact is the hadron, the weaker it interacts [1-3]. As a 
result a nucleus should be transparent for a high-energy hadron 
participating in a process where only compact fluctuations of the 
hadron can survive [4,5]. It means that nuclear transparency 
defined as 

T r = sir ' d) 
N 

where a and a are the cross sections of the process on a nuclear 
and nucleon targets, should be close to unity. Indeed, analyses 
[6,7] of experimental data from Serpukhov on quasifree charge-
exchange scattering тг~р=>тг°п on bound protons at 40 GeV demonstrates 
a steep easing of the pion attenuation in a nucleus depending on 
momentum transfer. It is a clear signal of the colour transparency. 
On the contrary, measurements of quasielastic pp scattering at 90° 
in c. m. frame, performed at BNL [8] at energies up to 13 GeV, 
provided an unexpected fall of the nuclear transparency. Any of 
existing explanations [9,10] considers a considerable admixture of 
non point-like hadron configurations. This uncertainty obscures the 
situation and makes one to look around for another hard processes, 
where a more definite information about the hadron wave function at 
the moment of interaction is available. The diftractive 
photoproduction of charmonium, considered below, is one of the 
examples. 

The influence of the color transparency on the J/* 
photoproduction on nuclei was considered on a qualitative level in 
Ref.ll. The authors divided conventionally the process of j/q> 
production to two stages, shown in fig.l. The first one is the 
creation of a compact cc-pair, localized in a small volume with 
dimension of about 1/m . Due to the uncertainty principle this 

с 
stage takes in the laboratory frame a time 

x » — - — ~ 0.02 P M i * ) F m -
As the matter of fact, this is a time of life of the hadronic fluc­
tuation with rw*2m in vacuum. According to this estimate the 
creation of the cc-pair at energy below 100-150 GeV, can be attri­
buted to the interaction with a single nucleon in the nucleus. 
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a b 
Fig.l. Space-time pattern of diffracti^e phot oproduct ion of 
charmonium in two energy regions: i) the time of cc creation, т , 
is much shorter than intermicleon distance (a); ii) the time т 

p 
considerably exceeds the nuclear radius (b). 

The second stage is the formation of the charmonium wave 
function. It lasts in the laboratory frame for a period x , related 
to the reversed distance between low energy levels of the cc-
system, multiplied by the Lorcnz-factor. 

т * — (—) «0.2 f_ ̂  J Fm . ( j) 
F v - m * UiJ i 1 G e V J 

This estimate demonstrates that starting from energies of a few 
tens of GeV the formation zone of the charmonium exceeds nucleus 
radii. In this case one can expect that transparency should exceed 
the prediction of the Glauber model due to a weak attenuation of 
the compact cc-system in nuclear medium [11]. The Glauber model is 
valid only at low energies, when т is much shorter than the 
nuclear radius. 

Numerical estimation of the nuclear transparency in the J/* 
photoproduction was first performed in Ref.12 under assumption that 
cc-pair propagate along fixed trajectories starting from point-].ike 
configuration. It was assumed that the absorption cross section of 
the cc-system increased proportionally a distance covered by che 
quarks in th<5 laboratory frame. The formation time т was twice as 
small a: ours. The authors of (12) found that the Glauber approacn 
is approximately valid at SLAC energies. However their predictions 
overestimate the high-energy data [13]. 

It worthwhile noting that starting from the same arguments the 
authors of [11] came to the opposite conclusion, they argued that 
the Glauber approximation should be crudely violated even at 
energies of SLAC. From our viewpoint a source of the disagreement 
is the too large value of formation time used in [11], four times 
higher than ours, (3). 
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Anyway it is obvious that an approach based only on 
qualitative arguments and semiclassical estimations can not produce 
any rigorous quantitative results. It is argued in present paper 
that an inner dynamics of cc-system including quantum effects are 
of great importance. We approximate the wave function of charmonium 
with the nonrelntivistic harmonic oscillator, and find an exact 
solution for the evolution operator of cc-system, propagating 
through a nuclear medium of varying density. Analogous approach was 
used by the authors earlier [7] for analysis of BNL data [8] on 
nuclear transparency in quasielastic pp data. Of course the 
application of the oscillator model in the latter case was rather 
questionable. As for the cc-system it is much more justified. 

From the point of view of the double-step approach [11] to the 
process of cc photoproduction, shown in fig.l, one can single out 
two energy-regions, where the treatment is most simplified. The 
first one corresponds to the case of т «R , shown in fiq.la. 

P A ^ 
Nuclear transparency can be written in the following form, 

[d:ir p ( r ) | < » |U|*. >|г 

Tr = -i ' • (4) Al <Ф |Ф > I2 
1 f ' in ' 

Here p (r) is a nuclear density function; * is a wave function of 
the cc-system originated from the process yNaccN (fig.la); * is a 
wave function of the produced charmonium, J/*, Ф' etc.; U is the 
evolution operator of the cc-system in nuclear medium. We neglect 
the integration over the momentum transfer in the reaction yN-sccN, 
because the transferred momentum can not affect essentially the 
wave function Ф of the compact cc-system. For the same reason, 

in 

i.e. due to the smallness of the radius of the cc-system and its 
interaction cross section, we ignore in (4) any incoherent final 
state interactions. 

At much higher energies, when z »R , the pattern of charmonium 
photoproduction changes drastically. Now the photon converts into 
the cc-pair long before the nucleus, as it is shown in fig.lb. The 
condition т »R , guaranties simultaneously a smallness of a 

p A 
variation of the transverse size of the cc-system during 
propagation through the nucleus. So the influence of the nuclear 
medium is reduced to a simple attenuation factor, and the nuclear 
transparency takes a form, 
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ГагЬТ(Ь)|<* |<т(р)ехр[-сг(р)Т(Ь)/2)|* >|2 

Tr = -J • (5) 
А|<*г |о-(р)Ф1п>|2 

Here b is an impact parameters of the cc-pair center of mass; 
T(b)=X"d2 p (b,z) is the nucleus profile function; <r(p) is the 

-w A 
interaction cross section of the cc-pair, depending on their 
relative impact parameter p. The integration over p is assumed in 
(5). In analogy to formula (4) we neglect the multiple incoherent 
interactions of the cc-pair, as well as the integration over 
transverse momentum. 

It worthwhile emphasizing that the colour transparency 
phenomenon is not reduced to a simple filtering of point-like cc-
pairs. The nuclear absorption distorts the form of the cc wave 
function. From the phenomenological point of view, this phenomenon 
is equivalent to the effects of the Gribov's inelastic corrections 
[14]. The latter are known to bring about an antishadowing [15,16] 
in some cases, i.e. an increase of the nuclear transparency in 
comparison with expectations of the Glauber approximation. It is 
shown below that just this phenomenon takes place for the Ф' 
photoproduction on nuclei: in spite of the attenuation in nuclear 
matter, the yield of *' per nucleon is predicted be higher than on 
a free nucleon target. So the nuclear transparency, formally 
defined in (1), is above one in this case. 

2. Evolution of cc-system passing a nucleus 

Let us go to the cm. of cc-pair where a nonrelativistic 
quantum-mechanical description is appropriate for lowest states. If 
one represent the evolution operator in the form of functional 
integral, the influence of nuclear medium will result in a 
supplementary attenuation factor, exp[ -1/2 |dl<r(p)pft(r) ] for each 
virtual trajectory, where <r(p) is the total cross section of cc 
pair interaction with a nucleon, depending on the transverse 
interquark distance p. The integral is taken along the trajectory 
in the laboratory frame. So the evolution operator can be 
represented in the form, 

U = l"D3r exp[ij-dt L (r,T,t)] (6) 
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L,fr(?,T,t) = L(t,t) + i|i or(TT)PA[r(t>] . (7) 

Here т is an interquark radius-vector; i and v are the Lorenz-
factor and the velocity of the cc-pair in the laboratory frame; 
L(?,r) is the vacuum Lagrangian of the cc-system. We approximate 
the latter with the harmonic oscillator model: 

L(r,r) = Ц- - ̂ LJL , (8) 

where д=т/2, m=1.5 GeV. The oscillatory frequency, u=(M.,-M.)/2, 
is adjusted to the low states of charmonium. 

The wide spread approach to the problem of total cross section 
of hadron interactions is the double-gluon approximation in QCD 
il-3J. A qq-pair with relative impact parameter p interacts with a 
nucleor. with the cross section, 

„(p) • J!^ Ш [l-exp(ikp)Ul-F(k)], ( 9 ) 
3 J (k 2VV 

The effective gluon mass, m , is introduced to account for the 
e 

confinement. We fix it at pion mass. The double-quark formfactor 
F(k) =<K | exp[ i£( r -r )|N> is averaged over the nucleon wave 
function. 

We take into account also the evolution of the QCD coupling, 
a (q2), which is essential due to smallness of the charmonium 
radius. According to the usual prescription [17], one should choose 
a maximal virtuality q2 of lines on a Feyrunan diagram entering the 
vertex. So we put the product a (kz)a [max(k, 1/p2}} in place of of 
in (9), where 1/рг characterizes the virtuality of the c-quark 
line. We use the one-loop approximation for k2 behaviour of a . 
However at small values of кг the perturbative QCD fails, then we 
fix a (k2) at a constant value. These two regimes join at some 
border value of k=k : 

a (k) = 

2n 
91n(k /Л ) 

ЛпПГ7Д—Г 

if k<k 

if k>k 

Normalizing «r(p) > =*"" »24 rab, we fijc к =0.47 GeV at Л =0.2 GeV. 
The computed in this way o{p) well reproduces the EMC data on 
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q -evolution of the nucleon structure function at small x [18]. 
At small values of p z a <p2>.,, ,,,. the cross section (9) is 

iff t у) 
close to a simple behaviour 

<r(p) » Cpz, (10) 
used hereafter for the computing of the nuclear transparency. The 
factor С is fixed by the relation, 

t (*N) 
<P'\/, <P'\/ 

С = - ^ * — ^ , (U) 

where a (0N) and a (0'N) are the average values of <r(p) 
weighted with squares of J/ф and 0'wave functions respectively. 
Using the oscillatory model and the double-gluon approximation we 
find a (tfN)=5.75 mb and a (di'N) = 12.23 mb. The mean radii are, tot ̂  ' tot v r ' ' 
<p2>.=2/mu, <p2>.,=7<p2> /3. Note that this value of <рг>й (and 
consequently cr ((UN)) obtained in simplified oscillatory model, 
are close to result of exact calculations with realistic wave 
function of J/ф [19]. At the same time this estimate of a ($N) is 
considerably higher than the value extracted from photoproductior. 
data using the vector dominance hypothesis [20]. The latter however 
is known to fail crudely for J/ф [21,22]. 

We compare behaviour (10) shown in fig.2 by a dashed curve, 
with the more sophisticated double-gluon approximation. One can see 
that both curves are very close at small p2s<p>z-. 

The absorption term in (7) leads to a modification of the 
frequency, u , of transverse oscillators [7]: 

. 2 . „,-» t ,1/2 oT = [u -iS(r) ] , 
where 

4(r) = РА(г)у™сг1и<,№) . 
To calculate the evolution operator of the cc system 

propagating though a nucleus with varying density function, we 
changed the latter with a multistep function. Within each slice of 
constant density one can use the known expression for the evolution 
operator for a harmonic oscillator with constant frequency [23, V]. 
For the one-dimension oscillator, 

<y|«ct>|*> > {^т^Т1^) ;^{2&Е,[(^^)" 3(^)- г^])- <-! 
where x anrl у nre the initial and final coordinates of the 
oscillator. 
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I I I I 

0 1 2 3 4 5 
p*(Fm2) 

Fig.2. Interaction cross section of a qq pair separated by a 
relative impact parameter p, on a nucleon target. The solid curve 
corresponds to the double-gluon exchange approximation. The dashed 
curve shovs a simple p z behaviour (10). 

The evolution operator for the raultistep nuclear density can 
be found using the following convolution relation, 

U(tn>l) = U(tn>|-tn)eU(tn). ( 1 3 ) 
Here t is the moment of passing by the cc-pair the border between 
corresponding slices. Note that recurrent sequence (13> can be 
finished as soon as the nuclear density becomes sufficiently small, 
because the evolution operator in vacuum provides only a phase 
factor, unessential for nuclear transparency (4). 

After applying expression (12) and relation (13) we get the 
entire evolution operator, which also has a Gaussian form: 

<y|U(t)|x> = A(t)exp{< [a(t)y2+<3(t)x2+y(t)xy]l, (Ц) 
Here t is the total time of propagation of the cc-pair along the 
given trajectory through the nucleus. Values of the factors A(t), 
a(t), /3(t) and jr(t) can be computed using the following recurrent 
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relations following from (13) 
i 

« < t ) = « < t - t ) n.i' " ( n.i n' 4[a(t )+0(t -t )] 
1 Ч П Г. • 1 П 

"(t.,) = * <* , -ч>»<ч.> 
n.i' 2 [ a ( t n ) + / 3 ( t n ] - t n ) ] 

The factors A, a, /3, у depending on argument t -t , are ''efined 
according to expression (12). 

Summarizing, expression (14) and relations (15) solve the 
problem of determination of the entire evolution operator for a 
given trajectory of cc pair. 

3. Choice of initial wave function of cc-pair 

In order to calculate the nuclear transparency using formula 
(4) one needs also for an initial wave function, Ф , of the 
v ' _ ' i n ' 
diffractively produced cc-pair in the process yN=>ccN. For the sake 
of simplicity we restrict ourself with two variants of * . The 
first one uses the wave function of the cc-pair produced in the 
process JTN*CCN at very high energies, when the production time x 

p 
is considerably higher than a nucleon radius. We assume that this 
choice of Ф can be used at maximal allowed energies (see the 
Introduction) about 100-150 GeV, where the ratio т /г is of the 

p N 

order of 2-3. 
In accordance with diftractive mechanism of cc-pair production 

shown in fig.l, the asymptotic cc wave function is a product of the 
quark wave function of the photon, and the amplitude of cc-pair 
interaction with a nucleon, i.e. <r(p). The former should be taken 
for that photon component which has a helicity equal to a sum of 
helicities of с and c, because we are working within the 
nonrelativistic approach to the charmonium wave function. Using the 
formula of the noncovariant perturbative theory in the infinite 
momentum frame 
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I*> |n><n|V|i> 

we get the wave function in the momentum representation 

V a ' V <* (гаЧк̂ )-', (16) 
where a is the light-cone variable of the ёс-pair. Coming back to 
the p-representation we get the transverse part of the photon wave 
function in the form of the modified Bessel function, K(mp). 
Gathering all parts together, the transverse part of the cc wave 
function Ф. [18] takes the form, 

*{n(P) ° Ko(mcp)o-(p). (17) 
This behaviour shown in fig.3, except the very far tail, is quite 
exactly reproduced with a simple parameterization 

*]jp) x Const[exp(-p2/a2)-exp(-p2/b)], 
wnere a=0.536 Fm, b=0.11 Fm. 

0.0 0.5 1.0 
P(Fm) 

1.5 

Fig.3. The input wave function *lnfpJ of cc pair photoprodaced on a 
nucieon. The solid curve corresponds to the exact expression (17). 
The dashed curve is the result of fit with tvo-Gaussian 
parameterization. 
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A longitudinal part of the cc-pair wave function (16) produced 
in the reaction yN=*ccN, is independent on a. So in the cm. of cc-
pair the intrinsic momentum is distributed in a region of the order 
of ш . Then the cc-pair is located within a region Az~l/m , of the 
longitudinal coordinate. A specific choice of the form of the 
longitudinal part of Ф does not play any role for the J/* 
production because of a factorization of transverse and 
longitudinal coordinates in the oscillatory model. It doesn't 
affect considerably the nuclear transparency for \ji' photoproduction 
also, in spite of the lack of the factorization. We use the 
Gaussian parameterization, * L «exp(-z2/d2), with d=l/2m . We check 
below an sensitivity of the lesults to the parameter d. j 

An additional test of validity of input wave function (27) is 
calculation of a ratio of yields of J/Ф to *' on a nucleon taroet, 

,<J/*|* >,2 
l<J/*l*,„>l ' 

The computed value R=6.5 nicely agrees with the measured value [24) 
R=6.8±2.4. Nevertheless we should note that the input wave function 
(17) is approximate even at asymptotic energies. We used in (16) 
the free-quark approximation, neglecting the interquark 
interaction. The latter brings about to the mass of the cc-system a 
correction of about 30% at relative distance of 1/ir . This effect 
is important for the absolute value of the photoproduction cross 
section, but are not essential for the nuclear transparency. 

Let us remind that the minimum in p-dependence of 4»| (p) at 
p=0 is the result of modulation of the wave function with the 
factor o-(p) in (17). It is true only if the transverse coordinates 
of the cc-pair are "frozen" during the interaction with a single 
nucleon. The latter is possible at sufficiently high energy, which 
provides т »r . At lower eneraies, when this condition is crudely 

p p violated, a transverse shift of quarks during the interaction with 
the nucleon, is important. Indeed, Ap^v r «1/m , where v ~2m /E is ' c н т p с' т с зг 
the velocity of transfer motion cf c-quarks iu the laboratory 
frame. Thus the transverse shift of quarks during the interaction 
is of the order of the quark localization region. As the result, 
the specific form of the wave function (17) is entirely wiped out. 
For this reason at low energies we use a simple parameterization of 
the initial cc wave function in the form, 

ф|п(р)«ехР(-рг/а2) . (18) 
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Note that the decreasing of the time of life of the cc -pair, т , 
leads to the reduction of the transverse dimension of the 
fluctuation, because the hadronic fluctuation of the photon starts 
from a point. For this reason the parameter a in (18) is not 
connected directly with the dimension of asymptotic distribution 
(17). Below we will test a few values of a. 

4.Results of calculations 

The results of calculation of transparency of nuclei Be, Fe 
and 2 0 7Pb with the Saxon-Woods nuclear density, for the 
photoproduction of J/Ф and Ф', are shown in fig.4. We used 
expression (4J_and cc initial wave function in the form of (17). 
Experimental tieta [13] on J/Ф photoproduction at the energy E «120 
GeV are depicted in the same picture. Though the calculations were 
performed in a wide energy interval, we remind that the usage of 
the asymptotic form of wave function (17) is questionable at low 
energies. Besides, the results of the Glauber model for photopro­
duction of J/Ф and Ф', 

^ 0.9 
g yCl(J/*) 

J/ъ 
yGl(*') 

f'Jo.8 <--—•—--' ^ _ i _ ^ _ 
** 0 20 40 60 80 100 120 140 180 

E7(GeV) 

fig. ti. Energy-dependence ot J/Ф and Ф' photoproduction cross 
s c. jo s- on 'fv- (л), " Fe (b) and "''Fb (c). computed i/ith the 
.•.ч/mptci :c ir,[Mi wave function (17). The crosses depicted on tue 
Y-axisi. >аге the predictions of the Glauber approximat.ior; (19), 
independent on energy. 
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are also depicted in fig.4 with crosses. 
One can see that the transparency for J/Ф photoproduction is 

nearly energy-independent and is close to the Glauber model 
prediction. At high energy, where this variant of calculations is 
most justified, our predictions well agree with the experimental 
data [13]. 

On the contrary, the photoproduction of Ф' displays some 
peculiarities. First, at high energies the transparency is 
considerably higher than the Glauber predictions, so inelastic 
corrections play an important role. Second, the transparency for 
J/Ф is higher than for Ф' production, in spite the fact that 
о (|//'N)is more than two times higher than a (#N). At last the 
transparency exceeds unity at energies higher than 40-60 GeV, i.e. 
nuclei enhance the yield of Ф'. This means that the nuclear 
transparency defined in (1) can not be interpreted in accordance 
with an intuitive understanding, as a simple attenuation in the 
nuclear medium. This result shows also that the distortion of the 
cc wave function during propagation through the nucleus plays a 
more important role than the nuclear attenuation. Of course the 
total yield of cc is shadowed. Note that the possibility of 
positive contribution of inelastic corrections was discussed 
earlier in Refs.15,1.6. 

The results of calculations with the second variant (18) of 
Ф more appropriate at low energies are shown in fig.5 versus 
value of the parameter a. This choice of the initial wave function 
essentially modifies the nuclear transparency: first, in the case 
of J/Ф production a strong energy dependence appears. Second, the 
relation between yields of J/Ф and Ф' is found to be sensitive to 
the size of the initial cc system: the larger is the parameter a, 
the higher is the relative yield of Ф'. Within the uncertainty of 
the parameter a, the results well agree with the measurements at 
SLAC at E =20 GeV [25]. The measured value of ratio 
R=Tr(9Be)/Tr( Ta)=1.21±0.08 ehould be compared with prediction 
ranged from 1.25 to 1.27 for parameter a=(l-3)/m . 

Now let us proceed to another energy region where both т and 
т are much higher than the nuclear radius R . Under theee 
conditions the relative impact parameter p of the cc-pair is 
"frozen" during the propagation through the nucleus, so one can use 
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asymptotic expressions (5), for the transparency, and (14) for the 
cc-pair wave function. The results of calculations are collected in 
table 1. f Q 

0.4 

- 1 1 1— i - n r-

— a = / / m e 

- a-2/mc 

a=3/mc 

I l I 1 1 i— 1 L_ 

0 20 40 60 80 fOO 120 
Ey(GeV) 

Fig.5. Energy-dependence of J/* and Ф' photoproduction cross 
sections on Pb computed with the low-energy input wave function 
(18), v.s. value of parameter a. 

Table 1. 
Nuclear transparency for J/t and *' at asymptotic energies 

A Be Fe Pb 

J / t 0.85 0.72 0 . 5 

*' 1.08 1.12 1.08 

Note that the asymptotic values of the transparency are lower for 
J/t and a little higher for *' than those at intermediate energies, 
depicted in fig.4. Consequently the growth of the transparency at 
intermediate energies should turn to a fall at higher energies. The 
reason is obvious: in the latter case a path covered by the 
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hadronic fluctuation inside a nucleus is longer. As the result the 
influence of the nucleus at asymptotic energies is stronger, but we 
have found out that it manifests itself as the shadowing for J/ф 
and the antishadowing for Ф'. 

- A 
5.Conclusions 

Let us summarize the main conclusions of present paper. 
- Quantum effects for a quark system propagating through 

nuclear medium are very important. The nuclear absorption causes 
not or.iy an attenuation but distorts also the quark wave function. 

Nuclear transparency essentially depends on the wave 
function of the quark system at a moment of its creation. Figs.4 
and 5 illustrate the sensitivity to the choice of wave function. We 
conclude that the nuclear shadowing of the charmcnium production in 
hadron-nucleus interaction is uncertain up to the initial cc wave 
function which depends on a production mechanism. 

The lelative yields of different fir.ai states considerably 
vary depending on tiieir wave functions. The exciting prediction of 
this paper is the nuclear antishadowing of the Ф' photoprcduction 
in spite of the nuclear absorption. 

Ot; the contrary to naive expectation of the Glauber 
approach, the nuclear transparency for the photoproduction of ty' is 
r.igne: than for J/*, in spite of the larger absorption cross 
•-fcct̂ .:-. *:f the former. This result might explain the experimentally 
r.hr-erved high yield of i' in hadron-nucleus interactions [26]. 

,V asymptotic energies the nuclear effects are enhanced, 
rioth '.he snadowing for Л/Ф and the antishadowing for $' . 

• :i. • parizinq, the colour transparency phenomenon is analyzed ir. 
;rtse 't paper in a simple and clear case of the heav> quarkonium 
LM.O* o\.reduction. Tl.e theoretical expectations well agree with the 
ava i . ib'. о experimental data on nuclear enhancement of the ^/* 
p,,o*-o..roductiou cross section. Nevertheless mere precise 
:; e;5S':re:"e;its if. a wide energy range, as iveli as data fcr 4'' , are 
desirjbie to have more definite confirmation of the colour 
transparency phenomenon. It would be of high interest to have also 
data for a photoproduction of Bb quarkonia where the present 
approach can be used. 
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