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1 Green functions in a quantum theory 

In a quantum field theory vacuum expectations (rp41 (zt) · · ·rf>an(:z:n))o where rf>a(:z:) = rf>a(x,t) = 
exp(iift)rf>a(x) exp( -iift) is a field operator (a enumerates components of cp ), if is a Hamiltonian 
determining an evolution of r,?, are usually considered. In gauge theories, i.e., when there exist 
first-class constraints [1], cp contains physical (gauge invariant) variables as well as unphysical 
ones. Nevertheless, only the first of them have a physical meaning. However, a gauge invariant 
description is based on a use of curvilinear coordinates which may take their values on a part of 
a real axis. So the corresponding to them configuration and phase spaces seem to be reduced, 
i.e. they differ from corresponding Euclidean spaces [2,3]. The latter leads to a modification of a 
Hamiltonian path integral [4-7] and quasiclassical calculations [8]. 

In the present work, the influence of this phenomenon on Green functions is investigated. In 
order to explain main points, the analysis starts from a simple quantum mechanical example 
(Sections 2 and 3) and then the Yang-Mills system is considered (Sec.4). 

In quantum mechanics the quantity (T(qa(t)qa•(O))o where qa(t) = U,+qa(O)U,, qa(O) = qa, 
r], = exp( -iift) and T means a time ordering, is analogous to (T(rf>a(z)rf>a•(:z:')))o in a field theory. 
For example, consider a system containing Bose- and Fermi- oscillators 

if= b+b + j+ j 

where [b, b+J = [}, }+]+ = 1. Then q = (b+ +b)/ ..j2 and we find [7] 

Db(t)' = (T(q(t)q))o = ~l1(t)e-it +~II( -t)e'', 
2 2 

D,(t) = (T(}(t)}+))o = ll(t)e-••. 

It is easy to check that the functions (1.2) and (1.3) satisfy the following equations 

( -8[- 1) Db(t) = (i8,- 1) D,(t) = ic5(t) 

(1.1) 
' ~ 

(1.2) 

(1.3) 

(1.4) 

which define the Green functions of Bose- and Fermi-oscillators. Moreover, their Fourier transforms 
D(w) = f~oo dt exp( -iwt)D(t) have the well-known form 

Db(w) = i(w2
- 1 + i~t\ D,(w) = -i(w + 1- ic:t1 (1.5) 

c: -+ 0 and e > 0. So, the rules of calculations of Green functions in both quantum mechanics and 
quantum field theory are identical. We use this to find a modification of these rules when PCS is 
reduced. 

2 A quantum mechanical example 

Consider a two-dimensional SUSY-oscillator with a gauge group. The Lagrangian reads 

L = ~ (8,x- yTx)2 + i.,p• (8,- if) 'If- ~x2 - .,p•.,p. 
2 ~ 

• ~Vi\h•''-~<rikA KHCTIT'JT' 
•·j ,, '.. 't >.:, '"'l"'"."~.· ... , .• l . , ..u _J , • a~ . , ~, Jr; .... ,. , ..... '4, 
q ~-

,,. ~..,it;. ............. -~ -· 

(2.1) 



Here a real scalar у and two-component columns x and ф composed of real variables xa and complex 
Grassman variables Voi respectively, form dynamical degrees of freedom, T = — IVJ, Г = r 3 (тг 3 

are Pauli matrices). Lagrangian (2.1) is invariant under gauge transformations from SO(2) 

x -+ ехр{шТ)х, ф -* ехр{ил)Т)ф, у -* у - ш. (2.2) 

Let us turn now to the Hamiltonian formalism. The Hamiltonian of the system has the form 

Н = ±р> + ±х, + ф-ф-у<, ( 2 - 3 ) 

where a — pTx + ф'Тф, р is a canonical moment conjugated to x. Note that the system 
contains second-class constraints [1] {or Grassman variables which one may eliminate changing 
Poisson brackets {,} by Dirac ones {, } D [9]. Then the variables ф' and фа seem to be canonically 
conjugated {Фа,Фь}о = {Фь,Ф1}о = — *8<А- The system has also two first-class constraints because 
of the gauge symmetry, namely, the primary one -к = dL/ду = 0 and the secondary one {л-, / / } — 
<r = 0. 

A quantization is fulfilled in the usual way {,} —» — t[,] and 

[i.,Pb] = «*ak, 1Фа,Фъ]+ = *«<• (2-4) 

and operator a must annihilate physical states 

*|«) = 0 (2.5) 

(we may ignore у in the quantum theory since it is the Lagrangian multiplier in (2.3)). 
The quantum problem may be easily solved by introducing operators 6„ = (xn •+ ifa)j\/2 and 

6+. However, for the following generalizations to a field theory, one needs to solve Eq.(2.5) in the 
coordinate representation. We realize algebra (2.4) on functions Ф = Ф(х, О) where Ba are complex 
Grass man variables, i.e. р.Ф = -гд/дхлФ, хаФ = г #Ф, ф+Ф = ваФ and фаФ = д/дваФ (a left 
derivative). In this representation the scalar product reads 

(wi|w*) = J^dx f dBd$'схр(-вв'){Ф,{х,в)уФ7{х,$) (2*6) 

where dMf" = П.<*М^ «"* by definition (еМз)' = cmB\9\. Eq.(2.5) means that physical states 
are gauge invariant 

*(exp(wT)x,exp(-iu>T)e) = Ф(х,0) (2.7) 

since a is a generator of transformations (2.2). 
In order to solve Eq.(2.5), we introduce curvilinear coordinates on a superspace (x, B) \\ Oj 

x = exp(VT)p, 9 = ехр(-г^Г)^ (2 8) 

where p is a column (r,0). Variables r and (a are gauge invariant and y? is translated under 
gauge transformations <p —* <p + ш. Therefore in the new variables b - -id^ is the generator of 
translations of tp. One may directly check this rewriting d/6xa via dTt d^ and &F = ф*Гф -
(*Г£ ((а = &/&(•)• The first equality in (2.8) express a passage to usual polar coordinates on 

a plane. However, the change of variables on the Gr&esman algebra contains <p. For this reason 
8¥ — i&r appears instead of 6% in д/дхя written in the usual polar coordinates. Thus, functions 
*{r,<p,() = *(r,f) satisfy (2.5). 

Rewriting the Laplace operator in the quantum Hamiltonian (2.3), we get the Schroedinger 
equation in the physical sujxpace H^ 

2 



{-\в- - ha-+Ъ°1+V+i+i • 0 Ф Е = В Ф Е ( 2 9 ) 

(when passing to the quantum theory, it is necessary to order the operators ф'ф —* ф+ф — 1 = 
f"4"-i). 

For solving (2.9) we split H p h into four orthogonal subspaces HW Э * Е ' ( Г ) > W ( , , ) Э * £ ' = 
t„f't?]{r) and H( 3 ' Э ф£' = « i b P s V ) - The new scalar product in H p h induced by (2.6) reads 

(Ф,|Ф=) = J°° drr J'</{|«"е-«"(Ф1(т,0)'Ф('-10 (2.10) 

(wo include the constant / 0

г* J^ into a norm of Фрл). Since cVl = ffffi^ — 0 and aria — (Г£)д 

we may solve (2.9) for every 'H^ (a — 0,1,2,3) independently. These solutions normalized with 
respect to (2.10) and regular at г = 0 (see [11]) have the following form 

*™=^L4r')e-l"r', £<°> = 2n; (2.11) 

фМ = —^L^^iW^je-i/fr' #H = 2 n + 2 ( 2 1 2 } 

n ! / n + 1 

*!.31 = 6 6 * i , 0 ) . #n 3 ) = 2" + 2; (2 1Л) 

where n - 0,1, . . . . The spectrum consists of equidistant levels and each level is four-degenerated 
except of the vacuum which seems to be singlet. Note that the frequency of physical oscillations 
is doubled. It testifies that the physical phase space of the system is reduced [2-4J. 

Functions (2.11)(2.13) may be rewritten in the explicit gauge invariant form by using the 
equalities г г - x 2 , (1(2 ~ ^1^2, r(i ~ '^1 and r£2 — ~*#2 where 2 = 3"i 4- г>2 left-hand sides 
of which are gai:j!>- invariant (under gau^e transformations : —+ exp(iw)z). Thus found functions 
satisfy both the Schroedingcr equation with the quantum Hamiltonian (2.3) and (2.5) written in 
the initial 'Cartesian'" operators (2.4). 

Let us turn now directly to a calculation of the Green function for physical variables / \ ( t ) = 

4 
their Fourier transforms read as 

~ Y\n - 1/2) 
.^0 4 " ' 2 ш2 - bi2 -t гс 

fl; = J . . f IM Zl (2.15) 
^ 4n!*(7i + l ) w + 2 n 4 2 - t e 

In accordance with the De Morgan theorem [12] series (2.14) and (2.15) are absolutely convergent 
and define analytical functions on a complex plane of w with simple poles. In contrast with (1.5) 
distributions into Green functions give all eigenstates of the Hamiltontan and moreover Di(t) and 
I)"jb(t) do not satisfy Eqs.(M). The reason just finds shelter in that the PCS is reduced. Indeed, 
there should be r > 0 and <p € [0, 2JT) in (2.8) so that (2.8) could be a change of variables, and, as 
e consequence, the integration region in (2.10) of the variable r (urns out to be a semiaxis. The 
latter automatically means that the amplitudes (0|г|ф№) and (0|{„|фМ) Д 0 n o t vanish at all n, 
but their squares, in fact, determine coefficients in series (2.14) and (2.15), respectively ' . 

'Note that an anharmonic addition to the potential (I —• L - V in (2.1)) does not influence our conclusion 
because V ii alwayi a function of gauge invariant objects x J,6,0], z8, and z'S2 (the Lagrangian mast be gauge-
invariant). 
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T h u s , we see t ha t a modification of Green functions in a q u a n t u m theory is condit ioned by a 
P C S reduct ion. Therefore t he quest ions when this phenomenon takes place and how it is connected 
with t h e choice of physical variables in a theory are , undoubted ly , in te res t ing . These quest ions 
will be discussed in the next section. 

3 A PCS reduction and a residual gauge symmetry in a 
non-invariant approach 

Note first of all t h a t s ta tes (2.11)-(2.13) a re invar iant under the discrete group 5 Zi 

S: 1) r - r , ( „ - . £ , ; 2) г , - r , £ , - . - £„ . (:j .lj 

This g roup , in a sense, seems to be a m e m o r y fan original code) uf the reduced system (in winch 
all unphysicai degrees of freedom are e l imina ted) abou t i ts gauge origin. Indeed, a gauge invariant 
s t a t e is an analyt ica l function of gauge invar iant polynomials 'of x a n d в . ЛИ gau^e invariau* 
polynomials cart be cons t ruc ted with the help of four genera t ing e lements x 2 , fl;fl?, zBx and z'iu. 

On the o the r hand , as is shown in t he previous section, there exists a one- to-one correspondence 
between these genera t ing e lements and genera t ing e lements of S-invariant pnlyni>ihials. Кч the 
S-in var iance of s t a tes wr i t ten in physical variables means their gauge invarinm e in the ul;.-h-
configuration space (sec also [6,10]). 

Using this symmetry , we may cont inue functions from 7iph to thi nnphysical region v • li 
and one may change /0°° drr — JT^drlrl in (2.8) keeping or thogonal i ty of t h " basis in Vt,}t. 
However s ta tes гФ# ~ гфЕ and Cn^E ~ (a^E appear ing in a calculat ion uf the Green fuint ions 
(2 .M) and (2.15) a re not S-invariant . Therefore , if we analyt ical ly cont inue these s ta tes lo tliL-
unphysicai region, then we get obvious equali t ies D^b — A> = Q. It means I lint act ing «;n a physic.d 
s t a t e by the opera to rs г and $a

 W ( ? t ake ou t this s t a t e from the physical subspace . T h e correct 
correspondence to the q u a n t u m theory found in Sec.2 appears when cont inuing st.il*> г ф £ and 
£,? Фг to be S-invariant , i.e. as (НФг and £{r)£a*&E, respectively, where t(r) is the siiiti function. 
T h u s , we conclude t ha t the reduct ion of P C S may be ignored in the scalar product if we change 
all variables in a configuration space by thei r S-invariaut cont inua t ions 

s 

U - tf н Qb = Yl^W» •-- e<r)& ; : i : ' ) 
s 

where 9(r) is the Heviside function ( the function of a region of physical values for r ) , the .summation 
is carr ied ou t over all e lements of the g roup 5 (3 .1) . 

T h e variables r ^ and tfj cannot, describe e lementary exc i ta t ions . In fact, they arc viewed as 
coherent s ta tes of "e l ementa ry" physical exc i ta t ions described by the ^ '- invariants r2 ami r$a J i b l 
this gives rise to poles in (2.14) and (2.15) from all physical c igensla tes of the lbn i i j i e i : i an ( 2 . 1 ! ) 
(2 .13) . However, the physical exci ta t ions r 2 and т£„ ( their wave functions are (2.111 'ч'.и! (2 .12: 
at n - 1, respectively) are also composed. T h e first of them may be considered as a biinuUaiiei-u.» , 
exci ta t ion of two bosons and the second is viewed as a composed s t a t e of both :i !•'•.„.n ;i:id -. 
firmion. Cons t ra in t s j u s t give rise to a "nonlocal i ty"of t h e simplest physical eXiV.nUoii* in \\w 
theory. T h u s , the description of dynamics of the composed gau^t invariant i.tje-':.-- - : .u,-l : („ 
looks, in a sense, simpler than the one fur r and £л with a reduced I T S . 

b e t the first e.piality in (2.H) d"fine the mapp ing [r,^>) С R'1 * x t. li2. Consider .• ^ i m i i r t r y 
g roup of the mapp ing (2.8) *>', i e. such t rans format ions of r, p and ( under which x and 0 ^\^^ n,4 
change. Apparent ly , S consists of two subgroups S - Sv x 5 , S^ : p -^ ^ I 2nn, n is a number , 
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and r , ^ a re not changed, under 5- t ransformat ions <p —* ip + тс and r, £ are t ransformed in accordance 
with (3 .1) . Po in t s of the plane ( r ,y i ) connected with the help of ^ - t r ans fo rmat ions correspond to 
the s ame point x of the plane R2 . In order to convert the m a p p i n g (2.8) in to a change of variables, 
one should reduce the plane ( r , ^ ) in t he subset R2/S = R(--f)/S.^\JR(r)/S - (fl, 2n) U[0, oo). As 
a result the g roup S defined in (3.1) may be also found as a subgroup of t he s y m m e t r y group of 
a m a p p i n g separa t ing variables of a theory into physical and miphysicnl ones. 

Consider t he total configuration space of x . According to (2.2) circles with centers at x = 0 
compose gauge group orbits The gauge invariant descript ion is fulfilled by passing to t he orbi t 
space which is described by the variable г • ( x ) 1 ^ 2 . The re is ano the r way called non-invariant when 
only one representa t ive of each orbit is picked out by fixing the gauge arb i t ra r iness . Practically, 
it means that we fix a law of t ime evolution of the unphysical variable ^ in (2.8) , i.e. we must 
choose a enm rele form of the I .agrangian multiplier у since ф - {-p,H} -.. —y (a is the moment urn 
сагюпкаПу conjugated to y"). '1 he simplest case y? ~ 0 corresponds to a gauge x2 - G, hence a 
par t ic le moves along the first axis. However, t lie line x2 — 0 intersects every orbi ts twice therefore 
points Xi and -J* i are gauge ^ p i h a l e i i t . They correspond to tlie s ame physical s l a t e оГ a part icle . 
( l auge t rans format ions rt • i x 5 induce gauge t ransformat ions of the form ion \ar i : ih |e •'_, •• * ^ 
(tin* ro ta t ion through the angh- т ) . T ims , the residue! gam/.e f*r«uip appear ing as a c^usoj i ieno- of 
а ц.ип;с condi t ion i n c r n p l e l e n e s s coincides with 5", but one should emphas ize th.it these groups 
are different in na tu re . They are identical only for a special change «"if variables corr'-sp-mding to 
both a gai i jv t ransformat ion law and a chosen gauge condi t ion. 

One may determine, a gauge in t he funn of a line > ( x i , x2) " 4 . It must internet t i v r y o i U t at 
lea-t once . We paramet r i ze this line as x., f(u) and v runs over the real axis R when a pa г tick* 
]-,;I>M'S aloitj; the whole Hue \ - 0. In t ins case the residual gauge symmet ry , gcie-rally .-pe.'.kiug, 
doeo not form a group (a subgroup of the gauge g roup as Я'; in tie- previous case) , but it m:ty 
have a highly in t r ica te form because the line may intersect each i rbit several tiin*-s ;md moreow г 
a nn tuber of intersect ions may depend on u. Indeed, corresponding gauge t ran.-Tornia lions satisfy 

! be U.t ioWHlg v o n d i t l o l l 

x[n) - > e x p ( 7 > . . ( i / ) ) x ( « ) - х ( к я ) . пя ^ ч,(") (•(.!< 

-!•!«. the points x(ti) ;,ml х ( н л ) must belong It» the curve .r,; -- / , , ( " ) . Consider l lnee puit . l -
of that l>pe. x(n).x(n_,) and x(r/, .). being on the same gauge orbit. Then wi lh a general ib.r..e 
< I ftu) the group composition of two residual gauge transformations (:{ ]) x(u) —• x l n . ) and 
xi i« i • x in , . ) does not define a new residual gauge transformation, i.e. theie is no point i a the 
«Hive г, / ( " ) >'il vvhich x ( i i ) could pass undei this new transformation. This sin pie example 
give-- a good l i b e r a t i o n for the Yang; Mills system [7) where for any chosen gauge condition t he 
lesi.l'ial gejge syuii i iet iv does not also form a subgroup of a gauge group jl.'i] '«-ее ,d-o See.!). 

I ho invariant deMi ip l inn connected wi th a chosen gauge condition may be found when iu ;o. 
-!••* in.- с m vrlinear (oordiuaU's of the following form (instead of (2.S)| [ti.V.KJJ 

x - exp f r - / * ) f (» ) . 0 '. ex|>( -iT-DZ f ! ". -

u ' l i i e f is ibe lo ln inn [ft-ji). I'or these variables я "~ -tit,-, i.e. " and £ aie Lauce in \ ttia..: 
. i: bi i . le'. lb -л i it mi', the Laplace-Belt rami operator in i ooidiuates (,'t."i i , i 4 . | o iu in inu, in ii ' o ; r i -
v '•'• b •'. *-.>• ц< • lb.- physical tptantum U.uniUv ubo-.. In con i i . ^ i wi th [''. ч) in ihts i .e-e ф} 

' t ' ( • ' i . ч 

In -.'-lei I,..!, line therMatlgeoC vapables (.i..1|. it i< пе-ess..M 'o liti.l a physical и L-ioi, .-!\al::< s 
: 'i , ..-,.1 ч I o| 1 |iis [jiirpuse we consider t he м niuietry group of п Kipping \'-\.~> t >'. ()! . \ и Ил!\. 
> <. • V when- >' ; r- * r - - / , ( « ) . и ->ия[и), ч

с --* e\'p( - i r\\')£ i\iu\ / , | " ) i- deteiaiii.ed by 
1 he i --• id 11 юн id. 11. Iliiwever. (Hie has to define functions ил and y-., in na-ie detii i l to show thai 
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• 
Sis a group. Split the axis R = U"R, so that a number of solutions of (3.4) could be fixed when 
u E R". Let { u,} be a set of solutions of (3.4) for a fixed u E R". We define an elements of S = S" 
when u E R" as a rearrangement of points u,. Then the transformation u-> su = u,(u) defines a 
function u, : R" -+ R". Obviously, a composition of two thus defined functions corresponds to a 
new element of s", i.e. s" is a group. Therefore s = IL s". Note that rotations through angles 
<p,(u) corresponding to u,(u), u E R", do not form a subgroup of the gauge group because 'Ps 
are functions of u. Thus, physical values of u belong to [{ = U"[{"' where I<" is a fundamental 
region of R, with respect to S", i.e. I<" = R"/ S". Physical values of u belong to J( = R/ S 
and J( defines the integration region for the scalar product in 'Hph J d2x = 21r JK dup(u) where 
Jl = (f', f) is the Jacobian. 

In this approach a basis in.'Hph consists, as above, of functions (2.11)-(2.13) in which one should 
put r 2

-> f 2 (u), r~1 -> ZJ~J and r6 -> zj~2 where ZJ = f 1 + i/2. This is a simple consequence of 
that the quantum Hamiltonian in 'Hph for the variable u may be transformed to the one in (2.9) 
by the substitution au = 8r I aua, = ,.-1 ,L8, and moreover JK dup( u) = fooo drr by the definition 
of I< (quantum theories corresponding to different fare unitary equivalent in our approach!). 2 

Thus, Green functions (T(u(t)u))o and (T(t.(t)tt})o depend on the choice off (K depends 
on f). However it does not means that Green functions depend on a gauge since u and ~ are 
gauge invariant. In other words, one may say that Green functions depend on a parametrization 
of the orbit space which is determined by physical reasons, for example, by our wish to have 
elementary physical excitations with required quantum numbers (see also Sec.4). Because of the 
PCS reduction, a description of excitations corresponding to these variables may became highly 
complicated. Therefore it is simpler to give a classification of gauge invariant objects and to 
consider their Green functions at the beginning. 

Indeed, physical wave functions are S-invariant s<I> E( u, 0 = <I> E( su, s~) = <I> E( u, 0 where 
su = u,( u) and s~ = exp( -i<p,f)~ = ~·, s E S since they analytically depend on the gauge 
invariant generating elements x 2 , zB1 , z•B2 and 8182 • So we may continue all <l>E to the unphysical 
region R 8 I< in the S-invariant way. When calculating scalar products in 'Hph we may change 
JK dup(u) -+ Ls JK, du,p( u,), because of the S-invariance of <I> E. The region](, is determined by 
the mappings: [{-+ /(, (suE I<, if u E I<) and Us I<, = R. However, the states u<I>E = u<I>E 
and e:<I>E = '·<I>E arising in a calculation of Green functions are not S-invariant and f!1USt be 
defined in the unphysical region in the S-invariant way with the help of the operator Q by an 
analogy-with (3.2) 

UQ = L eK(su).~u, 
s 

~~ = L eK(su)s,. 
s 

(3.6) 

where 0K(u) = 1,0 if u E /(, u E R 8 /(, respectively. It is necessary for the one-to-one 
correspondence with the quantum theory in the reduced PCS. The functions uQ(u) and '~(u, 0 
contain all degrees of the elementary gauge invariant objects x 2

, z81 , z•B2 when decomposing 
them into a series. Hence the structure of poles of Green functions (T(u(t)t1))0 and (T(e.(t)(+-b))o 
is preserved and like (2.14) and (2.15). Only coefficients in series (2.14), (2.15) depend on f. On 
the other hand, gauge invariant functions like (T(x2(t)x2

)) 0 (analogously for zB1 and z*B2 ) contain 
only one pole corresponding to a composed (boson + boson or boson + fermion) gauge invariant 
state (<I>\0 ) or <I>\">). In fact Green functions (T(u(t)u) 0 and (T(e.(t),\)}0 can be expressed via 
Green functions of gauge invariant objects (x2 )n, (x2)n-1 z81 and (x2)n-J z•B2 , n = 1, 2, .... 

2 Note that quantum theories corresponding to different f and derived by the elimination of the unphysical 
variable rp in classical Hamiltonian (2.3) with the help of supplementary conditions p,., = u = 0 and x = f(u) 
and by the following quantization (Pu --+ -i8u) are not unitary equivalent (here p,., and Pu = 1/2(p, x)8u In x 2 are 
momenta canonically conjugated to rp and u , respectively). The reason is simple: operations of quantization and 
introduction of curvilinear coordinates do not commute (in contrast with our consideration when the unphysical 
variable rp is eliminated after a quantization in Cartesian variables) (~ee also [6.7]). 
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Thus we may conclude that the main reason of a modification of Green functions for physical 
Jegrees of freedom is the following. After an elimination of all unphysical degrees of freedom with 
1 he help of a supplementary condition x = 0, there exists a group S acting in PCS. Physical 
states annihilated by a quantum version of constraints must be 5-invariant: .S<I> = <I> E 'Hph ( a 
consequence of their gauge in variance ). However, a state with a certain value of a chosen physical 
variable (i.e. an eigenstate of u or t: in our case) cannot belong to 'Hph since operators 8 E S do 
not commute with the operator of this variable (with u ore: : sit= u,(u)s or .se: = ~~(u, t+)s). 
lienee, they cannot have common eigenstates except trivial, equal to zero. Just based on this 
point of view we turn now directly to the Yang-Mills system. 

4 Green functions in the Yang-Mills theory and Singer 
'theorem 

Aft<~r the consideration of the quantum mechanical example, we may state that, first, physical 
variables in a gauge theory may have a reduced configuration space (i.e. it differs from an Euclidean 
space); second, this reduction takes place if after an elimination of all unphysical variables with 
the help of constraints and chosen gauge conditions, there exists a residual gauge symmetry which 
cannot decrease the number of physical degrees of freedom but it can decrease their configuration 
space identifying some points in it; third, the PCS reduction leads to a modification of Green 
functions and moreover an excitation of a physical degree of freedom with a reduced PCS must 
be viewed as a coherent excitation of all gauge invariant states of a system. It turns out that all 
these points take place for the Yang-Mills system with fermions. 

The quantum Yang-Mills theory is defined by the functional Schroedinger equation [14,15] 

[~(fk,fk} + (Bk,Bk} + i(,P,/k~kl/J}] <l>E = E<l>E (4.1) 

and the quantum equations of constraints 

u<l>E = (8kfk + g[Ak,fk] + gJo)<l>E = 0 J4.2) 

Here fk = -ifJjfJAk (k = 1,2,3), Ak are Yang-Mills potentials being elements of a Lie algebra 
X of a semisimple compact gauge group G, Bk is the colour magnetic field, ~k is the covariant 
derivative, ,P = ¢+10 , ")',. are Dirac matrices (p = 0, k ), the brackets (,} denote the integration 
over x E R3l and a corresponding scalar product in a space of components t:K, Bk and 1/J; Jo is the 
null component of the colour 4-current J,. of fermions. States <l>E viewed as functionals of Ak(x) 
and of a Grassman field B(x) (in this functional representation, operators 1/J(x) and ¢+(x) act on 
<I>E as the left functional derivative 8/BB(x) and the left multiplication on B(x), respectively) are 
normalized as follows 

1 DAJ DBDB*exp(-(B,B*})<I>'F;<l>E' = fJEE' 
[Al 

(4.3) 

where DA = Tix(Ticomp dA(x)), DODO* = Tix<Ticomp dB(x)B*(x)), Ticomp denotes a product 
over all components of Ak or B. The integration region [A] in (4.3) is chosen so that the integration 
over each component of Ak(x) (xis fixed) is carried out over a real axis, i.e. each degree of freedom 
is assumed to be Cartesian. We also assume that Yang-Mills fields tend to zero at spatial infinity 
(lxl-+ 0) in the measure (4.4), i.e. they are defined on the 3-sphere (x E 5 3

) [16]. 
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Eq.(4.2) means that <TIE are invariant with respect. to gauge transformations [!4,l.'i] 

Ak ...... nAkn-l + 9-tnakn-l, o ...... on-! (4.4) 

generated by a where !1 = !1(x) E G. To solve it, we introduce new curvilinear functional variables 
[7] 

Ak = w Akw-l + 9-twakw- 1
, o = ~w- 1 (4.5) 

where Ak = Ak[aJ so that N (N = dim X) identities F[A[a]J = 0 are fulfilled, i.e. new variables 
are ~,w = w[A), where hw = w-16W , and 2N components of fields a = a[A]. Under gauge 
transformations~ and a are not changed, but w is translated. Hence, <TIE[w, a,~] = <ll E[a, ~] E 'Hph, 
i.e. the variables w, Ak and a are defined by analogy with cp, f and u from Sec.3, respectively. 

In order to find the Schroedinger equation in 'Hph, one should calculate the corresponding 
functional Laplace-Beltrami operator for variables (4.5) omitting functional derivatives of w in 
it (like (2.9)). However, we shall not consider this problem '(see some details in [7] where a 
Hamiltonian path integral is discussed for systems with a reduced PCS). 

As was shown above, different Fin (4.5) correspond to different choices of gauge invariant, 
physical variables. For example, one may put F[A) = akAk = 0, i.e. Ak[aJ = ak where ak 
is a transverse field of gluons (note that ak is gauge invariant in this approach!). Then ~ is a 
corresponding gauge invariant quark field. So Green functions in this case describe a propagation 
of excitations with quantum numbers of gluons and quarks (compare with the analogous functions 
considered in Sec.3). 

May a PCS reduction take place in this theory? The answer seems to be positive for any choice 
of F if Yang-Mills fields tend to zero at the spatial infinity. Therefore Green functions must be 
modified in the theory. 

First of all, mapping ( 4.5) X 0 [a) -+ [A) exists (the functional space [a) is defined like [A), 
for example, when F = akAk = 0, [a) coincides with the functional space of all transversal fields 
tending to zero when lxl -+ 0) if any Ak E [A) can be transformed to the form F[Ak) = 0 with the 
help of a non-singular gauge transformation preserving a topology of Ak [16,17). Let it be true. 
Consider the symmetry groupS of mapping (4.5). It has the formS= Sax S where Sa consists 
of transformations of w not changing W, i.e. they are translations of w through periods of the G
group manifold. Thus, permissible values of w belong to the X/ Sa = G-group manifold (compare 
with S"': cp-+ cp + 21rn, n E Z in (2.8)). The groupS contains the following transformations 

w ...... ww.-t, Ak ...... sAk = w.AkW; 1 + 9-~w.akw,-t, ~ ...... s~ = ~w.-l (4.6) 

where w. E G and F[A) = F[sAJ = 0, hence sAk[aJ = Ak[a.J, a. = a,[aJ = sa (there is a 
complete analogy with the analysis of change of variables (3.5)). Here W, must be non-singular 
group elements, i.e. s preserves a topology of Ak (a choice of a gauge condition F = 0, generally 
speaking, fixes an instanton number [16)). Thus, the group Sis not trivial if the equation 

F[sAJ = 0 where F[A)=O {4.7) 

has non-trivial solutions with respect to s. It means that the equation F[A] = 0 has some 
solutions connected with each other by gauge transformations. Therefore the problem reduces 
to the question of the existence of a global condition in [A) fixing gauge arbitrariness without 
ambiguities [18). There is the Singer theorem [19,16] forbidding the existence of such a condition 
for the Yang-Mills fields defined on the 3-sphere (or, which is equivalent, tending to zero at 
spatial infinity [16)). Hence the group S is always non-trivial and PCS of field a must be reduced 
[a) -+ K = [a)/ S. So, in the scalar product ( 4.4) for states from 'Hph, one should make the change 
ftAJ DA -+ JK Da~[aJ where J.t[a) is the Jacobian [7). 
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Physical states must be S-invariant s<ll[a) = <ll[a,) = <ll[a] E 'Hph . Indeed, let a state <ii[AJ 
satisfy Eq.( 4.2) then it is invariant under gauge transformations ( 4.4 ). Hence we have the following 

chain of equalities <ii[A] = <ii[A[a]] = <ii[sA[a]J = <ii[A[a,JJ = <ll[a,J = <II[ a] where <ii[A[a]J = <ll[a). 
Thus, the S-invariance of physical states is a "memory" of the reduced system (i.e. all unphysical 
variables are eliminated) about its gauge origin. 

In the functional representation the operators a and~+ act as the multiplication o<ll = a<ll and 
[+<t> = ~<l>. However, the action of these operators on physical states takes them out of 'Hph since 
a and t+ do not commute with s E S: so= a,[a]s and .st+ = t+w,- 1 [a]s. Hence there arc no 
common cigenstates of s and o, t+, i.e. eigenstates are absent in 'Hph· So we may conclude that 

quantum Green functions must be modified. 
Using the S-invariance of physical states we may widen the integration region in the scalar 

product from I< to [a] changing all fields a and ~ by aQ = Qa = Ls eK[a.]a. and ~Q = 
Q~ = l::s 0K(a,J~W.- 1 where W, = W,(a) and the functional 0K[a) = 1, 0 if a E I<, (a] 6 /(, 
respectively (compare with 0/\(u) in Scc.3). The operator Q defines physical fields a and~ in the 
unphysical region [a] eK in the S-invariant way. Note that for physical states <l>[Qa, Q~] = <l>[a, ~] 
because of their S-invariance and the equality L:s 0g[a.,J = 1 since K = [a]/ S. So, instead of 
Green functions of field a and ~ with the reduced PCS (i.e. defined in /\') , we may consider 
Green functions of fields aQ a.nd ~Q in the total PCS [a]. Thus, Green functions turn out to be 
modified. The analysis in the framework of the path integral approach leads to the same result 
[7]. The reason is that the evolution operator ut = exp( -iflpht) has an unusual form because 
of the PCS reduction, namely, urh = [r;ff Q where U,'1 J is defined by the standard Hamiltonian 

path integral in a gauge F = 0. 
Since operators of constraints & composing a basis of X commute with I he Hamiltonian in 

(•1.1), every solution of (4.1) may be represented in the form 

I!JE[A,O] = L\ll~)[a,~]l(n)[w] (4.8) 

(n) 

where l(n)[w] arc eigenstates of the Casimir operators of the algebra of the operators &, and (n) 

denotes a set of their eigenvalues. The physical subspace is composed of states IV~)= <l>E (l'(o) = 
const) which must be S-invariant. Thus, there exists a one-to-one correspondence between gauge 
invariant states <l>[A] in the total configuration space [A] and S-invariant states in [n]. So,rwhen 
calculating Green functions of the fields nQ and ~Q, we may decompose them into a power series 
of simplest gauge invariant (or S-invariant) objects, for example, 

Tr r exp g 1 Akdzk = Tr r cxp g 1 Ak[a]dzk j 

O(x)Pexp ( -9 ix Akdzk) o+(y) = ~(x)Pexp ( -g ix Ak[n]dzk) ~+(y) (1.9) 

etc. Green functions of objects like ( 1.9) may have simple poks in the momentum space if t lw 
dynamics of the system allows as to consider them as bound states [19] of the origin fi<'lds. 

\Vhat are qualitative pecuii<trities of a modification of Green functions? Jlased on the analysis 
of sections 2 and 3 one may expect that total Green functions of the fields nQ and ~Q in [o] 
( or a and ~ in K) contain stuns over all poles corresponding to physical excitations of the 
system. Let now the fields a and e be fields describing transversal gluons and quarks, respectively 

(Ak = ak, Dkak = 0). Then the propagators for Clk and~ cannot have poles corresponding to a 
propagation of quanta of fields Clk and~ because there are noS-invariant objects linear in n and ~ 
(or gauge invariant objects linear inAk and 0). Thus, the "kinematic" confinement of gluons and 
quarks exists because of the PCS reduction for the corresponding dynamical field variables. 
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5 Conclusion 

What happens in a perturbative theory? In this case field fluctuations of Ak are small (quasiclassics 
in the neighbourhood of the solution Ak = 0) and one should consider the change of variables 
( 4.5) at W::::: 1 + gw since g-+ 0. Locally a gauge condition F = 0 may always be chosen so that 
the group S could be trivial 3 , i.e. S = 1. Hence aQ ::::: a and ~Q ::::: ~ and Green functions must 
have the well-known form. Thus, the modification of Green functions takes place only in a non
perturbative region when field fluctuations become large (the group S is not trivial). However, 
in our opinion (and as it follows from the above consideration), the physical more consistent 
explanation why the perturbative theory works should be based on an investigation of objects like 
(4.9) (i.e. strings). 

To make stricter investigations of the modified Green functions for the fields a and ~ in a non
perturbative region, an explicit form of the functional aQ and ~Q should be considered. However, it 
is impossible to realize it practically since the group S has a highly complicated form for covariant 
gauges [13]. Therefore it seems to us that it is impossible to hope that there exists a practically fit 
non-perturbative quantum theory of non-Abelian gauge fields using covariant gauge conditions. 
In other words, physical variables separated by such gauges are not natural t~escribe physical 
excitations being coherent states of the initial fields of a non-Abelian gauge theory (for example, 
strings). 
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