


I. TETRODUCTION
The purnose of this vaper is the relations between the energy-
-momentum tensors to be found as well as the connections between
them and the covariant Euler-Lagrange equations. In Sec. I. condi-
tiong for the existence of the symmetric energy-momentum tensor
as a local conserved quantity will be considered as well as re-
lations between them and the covariant Buler-Lagrange equations.
In Sec. II. connections between the symmetric energy-momentum ten-
gor of Belinfante »nd that of Hilbert (introduced by means of the
functional variation of the Lagrangian density along the compo-
nents of the metric tensor gij) will be found. In Sec. III. the
tasic relations between all elements of the structure of the La-
grangian system connected with the energy-momentum tensors will
be given in a scheme. Ag an example of all these relations, Ein-
stein's theory of gravitation will be investigated from = more
general point of view for existence of energy-momentum tensors
for the gravitational field in vacuum. At the end some conclusions
will be drawn about the construction of field theories on the
basis of their structure, connected with the energy-momentum
tensors.
II. ENERGY-MOMENTUM TENSORS AKD COVARTANMT EULER-~LAGRANGE

EQUATIOKS
1. The covariant Buler-Lagrange equations (CELE) for the field
VAB can be found by means of the functional variation 8¢ orf

the Lagrangian density & under the condition

§¥ =0, (2:1)
Sgij =0, 8.5 =E.8 , Srdi =0, {2.1a)
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in the form

9L A oL A oL A
81 = W—SV B+ a—vr-—.S(V B/i) + -a-V—A—-—.S(V B/i/j) =0,
B B/i B/i/j (2.2)

The prerequisites (2.1-2.1a) are suffic¢ient conditions
for the commutation between the variation 8§ and the covariant

derivative ,; along the basic vector field E;, i.e.

A A
8(vig) = BV, . (2.3)
Using (2.3), 8L can be written in the form:
5L = g%l-‘SVAB + ji/i , (2.4)

B
where
i JL dL L A
=1 Y - 5% + 7 )/.].SV 5+
Wi Wiy %4 7Y
+ (QLI_____.SVABJ/j (2.5)
s34

Under the conditions
A B A _ A ~
Sv B v =0 S(v B/j) /(v®y = 0 (or (dv B),j (v = 0)
(2.6)
for the variation of VAB on the boundary of the volume Vn,

for which the action

s = j L.dw = S ¥ aln)y

¥ Vo

ig defined, the CELE follow.
2. The connections between the CELE for a given Lagrangian
density & and the energy-momentum tensors can be investigated
on the ground of the GCBI, At that, the following propositions
can be proved:
Proposition 1, The covariant Euler-Lagrange equations are
sufficient conditions for the equality between.oij and sTij'
Proof: From CELE and the expression (Part I - 3.8) for Q;J, it
follows that Qij = 0. From the identity (I-3.30) and Qij =0,

- - i
it follows €,¢ = T,<.



Fropogition 2. The necessary and sufficient conditionse (VAB=¢ v)

for the existence of sTij as a local conserved quantity, i.e.

bl =
&3 /5= o, (2.7)
are the conditiors
J P =
Qi /3 + Pi =C ., (2.8)

Froof: a) Fecessity: from (2.7) and the identity (I-3.29) and
(I-2,30), it follows (2.8).

b) Sufficiency: from (2.2) and the identities (I-3.29) and
(I-3.3C), it follows (2.7).
Propogition 2.1. The necesearv and sufficient conditiors for
the existerce of sTij as a local conserved quantity (2.7) for
Lagrangian densities, constructed only of senlar fields (and
their first and second covariant derivatives), i.e. for
VAP = Y, are the conditions

P, =0 or %i.yyi +W; =0, (2.9)
Proof: a) Necessity: from (2.7) and the identities (I-3.29) and
(I-3.30) under the condition Qij =0 for scalar fields, follows
(2.7).

b) Sufficiency: from (2.2) and the iderntities (I-3.29) and
(I-3.30) under the cordition &3 = U, follows (2.7)

Propocition 2.2. The necessary and sufficient conditions for

the existence of OiJ as a local conserved guantity, i.e.

0;9/5 =0 {2.10a)
are the conditione
Fi =0, (2.10b)

Proof: It follows directly from the identity (I-3.29).

Pronogition 2. Sufficient conditions for the existence of

sTij ae a locul conserved quantities (2.7) are the conditions

A

S?K; , vy =0, (2.11)



Proof: Fror the identities (I-3.29) and (I-3.30) and the con-

dition (2.11), one obtains (2.7)

Proposition_ 4, Sufficient conditions for the existence of

BTij as A local conserved quantity (2.7) are the conditions
Gl=0,F =0. (2.12)

Proof: From the identities (I-3.29) and (I-3.30) and the condi-

tions (2.12), follows (2.7).

ITI. SYMMETRIC ENERGY-VNGMEXTUM TENSOR OF BELINFANTE AND

SY.'METRIC ENERGY~XOMENTUM TEYSOR OF HTLBEBRT

1. The symmetric energy-momentum tencor sTij’ defined in (I-3.16),
is equal to Gij (s. (I-3.13)) if the covariant Euler-lLagrange
equations are fulfilled. In this case sTij can be congidered

as a tensor constructed on the basis of the canonical tersor

tij by means of adding the term Kij (I-3.3)(when L is derending
on the second covariant derivative of VAB) and the term Wijkk.

The last one is analogous to the composition of Belinfante

terms /1-3/, proposed for symmetrization of tij ané obtaining
aTij (if Kij = 0) in V,-zpaces /5/ for Lagrangian dersities
depending on VAB and their first (and gecond) partial derivatives
with respect to the coordinates /1,2,7,10/. This method for find-
ing sTiJ from tij by means of Wijkk (= Wijk/k in Vn-spaces) has
been called Belinfante method; and the tensor aTij' symmetric
energy-momentum tensor of Belinfante. In this method the GCBI
from which in a natural way the structure of Gij and STij apreare,
are not considered.

2. In Einstein'e theory of gravitation (ETG) the symmetric
energy-momentum tensor for material distribution is defined

by means of the functional variation of the Lagrangian density
for material fields VAB with respect to the components of the

metric tensor gij and its first (and second) partial derivatives



with respect to the coordinates /2,3,9,12,13/, i.e.

ii-] 1= - L—,.S_E__ or E“:j = — L.it-g N (3.1)
S v_—g Sgl‘] B 1 v:g Sng ik
where
g” - ¥ Sy e By
€53 81j g3,k €53,k1
S o (L AP 16 AN ) SRS [ ¢/ RS S I -
5 9815,k 815,21 °
In this way Tia can be written in the form
=3 3L dL 9L
STiJ = - Z.B——‘.gik gg L + 2(_——),1'gik - 2(8 ) ml.gik.
B3k 8ix,1 €5x,1m
(3.3

The method for obteining the symmetric energy-momentum
tensor siij by means of variation of & with respect to g5
is called Hilbert method and SEij - gymmeitric energy-momentum
tensor of Hilbert /2/.
3. The symmetric temsor ,T;9 which has the form (I-3.16) for
the Lagrangian density (I-0.2) (where VAB #* gij) can be rewritten

using the equality

L 2 82
2.7—.gqy + gi.L = .glk . (3.4)
3, Ve "8z
where
L -0, oL -0,
de5x/1 883x/1/m
in the form
. s 83 . -
pd = 7)o 2 2E g o+ 0 . (3.5)
g i i T:E Sgak ik i 81
In this case JT;” will be equal to ,I;”, defined by the
expression
7. 282 (3.6)

s1 - (g gg 8. Bik
J_
if 71 =0 .
For more general cases, when L depends not only on the

components B4y but also on their first (and second) cowariant



derivatives, i.e.
A

A
L= Llg;5 8y &i5//10 ¥ w

A
v B/i’ v B/l/:j) ] (3-7)

and the functional variation of ¥ = y<g.L with resvect to

will have the form

gij
S - 0% - (a¥ ) + (Bx )/ . (3.8)
Sei; Oei;  O8ij/k 381 3/x/1
and
=3 2 S
T.¢Y = -~ S= T, , (3.9
i ik
s V=& e
sTij can be written in the form
= - _g__Sé! e+ T3 = 7.3 4+ £93 y (3.10)
al k i
V:E ngk 1 1 s 1
where
e rio 2@, @ ) g, - G
/1 /m/1 k
. . -z aﬁjk/l agjk/l/m " *

Using (3.10J), the following proposition can be proved in

a very standart way:

Eroposition 5. The necessary and sufficient conditions for the

equality of the symmetric energy-momentum tensor of Belinfante,
defined in (I-3,16) and the symmetric energy-momentum tensor of
qilbert, defined in (3.9) or in (3.6), are the conditions

rd-=o0. (3.12)
Example: In the case of Lagrangian density for the electromagne-
tic field in Vn-epace

Y e
#o T Y‘E.Fijr = V_E’Lel s (3.13)

where

7 J = J_ 7.3
79 =0and 7,70 = 7479 .

Proposition 5.1. For the Lagranglan density of the type
e VT A
= v .L(gij’ v B> (3-14)

the condition
= gnyd (3.15)

is always valid,



i J_ A3 Jo_ R B |
€ LTl h o i os’i 0~
Fy ofi
:.‘ 11: = W j —
i* 90 o1t o8y = O
Fie,

Elements and connections of the clacsical Lagrangiar theory



Proof: From (3.11), (I-3.16-3.18, 3.25-3.27) and (I-3.4-3.7),
it follows that 715 = 0. Fror (3.5) and 713 = 0 follows (3.15)
Remark: In the case of (3.14) an important role plays the fact
that in the structure of Taj only the covariant derivatives of
VAB appear and not VAB themselves, Ther .fore, if L does not
depend on the covariant derivatives of VAE, then 713 = 0.

In the general case of tve lagrangian density (I-C.2) or
(3.7) the SEKT(R) sTij differs from the SZNT() siij by the
symmetric part 713 (or i}j) in contrast to the case of laecran-
gian densities (I-G.1)(without the second partial derivatives

of VA with respect to the coordinztes), for which both tensors

B
appear to te identical /1-3/.

III. APPLICATIOK OF THE REERGY-MONENTUN TENSORS IK FI®LD THEOKISS

1. The covariant Zuler-Lasrange equations and the energy-momen-
tum tensor are essential characteristics in the structure of

the field thecry. On the basis of the found connections between
them, a rough scheme can be drawn describing the elements and

the connections of the clasesical Lagrangian theory with respect
to the CELE and the energy-momentum tensors (s.the Figure).If one
has two Lagrangian systeme (with Lagrangian densities & = V-g.L
and xo = V:F.Lo respectivliy), which can be considered as a
joint system with Lagrangian density ¥, = x+ %y = VIE.Lt

= V=g(L + Lo). then different relations between the elements

of both schemes for L and L can be defined.They would describe on
the one hand the field equations as well as the relations between
the energy-momentum tensors, and on the other hand the relations
determining the character of the interaction between the indi-

viduel fields.
In most field theories in Vn-spaces, the validity of the



Suler-lagrange equations is assumed /1,2/. That leads auto-
matically to the equivalence between sTij and Oij, to the dis-
appearence of Qij and to the existence of STij as a local
conserved guantity.

2. On the basis of the proposed scheme for the Lagrangian
theory in Ln-spaces, one can consider Eingtein's theory of
gravitation (ETG) from a more general point of view.

In In-space {n = 4) a Lagrangian density z@ of the type

/is4,1%/

2y = V:E.Lg(gij, lekl) ’ (4.1)
can be defined, where
A i
Vi = Bigg

are the componente of the curvature tensor

i
R(E , .=V V. E, -V V E -V E, = R, .E; .
[R(E,, BBy By EyT3 T By VEy i (Bir Eq] %3 sk1Ee
(4.2)
The connection I" in Ln—space is not connected with

the metric g, so that gij and lekl can be considered as in-

dependent to each other functions, i.e.

aRi. ag
Ikl _ o, 5.%2__ =0 . (4.3)
98;n B 511
Using the functional variation and (3.8), one can find
81 3L 34 31
g = , g_ﬂL = 5_5_ , (4.4)
B OF 5i Biy 98y
and forgQij it follows from (I-3.8)
. aL L X aL K
Qd = g gd _ & R -2 & _.R . (4.5
g~i 1 kmn 3Rk imn 9K mni
dR kemn R Jmn mnj

On the other hand, for Lg, independent of the covariant
derivatives of Rijkl’ and of the type (4.1), one can find easily
for Kid in (I-3.3), Vikj1 in (I-3.4).and 713 in (I-3.17) that

they all vanish, i.e.



j ki _ Jo_ Jko Jk _
Kia =0, Vv 31 =0, 73Y =0, W;j*"p =0, W;" =0. (4.6)
- J d J J
The energy-momentum tensors gti , goi , ngi and gQi
(5. (4.5.-4.8)) have the form
J =2 pd =9q.J .
gti giéis Oi s (4.7)
J - & _ gl
ngi = - 2.ag “Bik gl.Lg , (4.8)
.jk
y oL,
. = 2.——9—-?- ]
=] k
gi ag;‘k i
respectively. )
. < _ j 7
From the identity (I-3.30) and the form of goi , ngi
and Q.9 the identity for 1_ follows
- g
; aL 3L j aL K
gt = 2. <Bik T —£—.r kmn ~ _—é'_'ﬁ imn ~
= 3 " oR oR™,
jmn
aL
- 2.—B— RF {4.9)
3Rk . mai
mnj
or Wi and Fi we have from (I-3.22) and (I-3.21):
aL
oL X aL ,
F, = 5;5“"R mn1/i * 5—5—.gjk/i . 4.11)
mnl &5k
The functional variation of !% with respect to Rijkl
is
81, 9L, ngL )
: = —E , - = Vg, —b— . (4,12)
8ri, 3ri, St art,
Jk1 Jkl k1 jk1

The functional variaticn of ¥g with respect to g;, will

have the form

S RE AL ;s
B = A= (B s Lgtn ) L (1.13)
Sei;  Deiy B

The covariant Buler-Lagrange equations for the field

variables 8i 5 are
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S aL ) i
—£2 = 0 or V-g(—E& + E.glJ.LF) =0, i.e. (4.14)
83 5 Big ’
aL .
—E s o+ xgd L =0,
3 ik T 2%
&51k
The last expreseion 1s egqual up to a factor -2, to the
expression (4.8) for ngiJ’ i.e.
. 8¢
L R (4.15)
sg i ik °? °
V_ Seak

3
and from (4.14) it follows that ngi =0 .

Therefore for a lagrangian denecity of the type (4.1) (ir
accordance with proposition 5.1 the equality
Tj: 'j
sg i sg i
is valid. If the CALE (4.14) are =2lso fulfilled, then the

symmetric energv-momentum teneor I‘iJ is equal to zero and

e
eg

it is identizal in ite form with the CELE for gij'

3. When & of type (4.1) hae the evecial form

, * - 21;4:75'(3 - = VR, , (4.18)
where
L o= - 1(r- 2z, A = const., R = g"'R (4.17)
3 22 ’ » &= const., £ By oo :
_ 1
Rep = 8By o (4.18)

ir thie caee

oL . . . )
gy - (leg e Ry - R R (4.19)
g
551
S 3L ;
g—z—'gik = v-(s_s_ 7.+ 5 gJ L ) = ?_V——[E{R h RJ )
g g4
EhLs jk
- 2l - W], (4.20)
ngij =- %[%(Rij + & - Ll - v . (4.21)

The CELE for gij will have the form
%(Rij + Rji) - %'gij(R - ) =0, (4.22)

or
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1 k.1 1 1 X1 n_m
58 (R g + Flygg) - 3085508 g Ryg, - ) = 0.

If the comvonents Rijkl of the curvature tensor are
given (in some way independent of Eij’ that means T" is not
a metric connection) and coneidered as the well-known functions
2f the coordinates xk, then (4.22) avpear as alpebrasic egua-
tions for giﬂ' There exists, however, a poseibility of choosing
I}i as components of the Riemannian connection I', i.e.

I}i = Iﬂ% = 1’gil(gkl,j * 851,k " Byk,1) (4.23)
and gy5/ = ©. That would mean that the equations (4.22) con-

sidered ae algebraic equations for g;s in L -spaces (n=4) with

J
given IS; can be reconsidered as differential equationes for

- in Vn-space (n=4) without torsion and with a given Rieman-

nian connection, depending on gij' and their first partial de-
rivatives with respect to the coordinates., In the last casze

Rij = Rji and (4.2?) receives the form of Einstein's equations
for the gravitational field in vacuum (with cosmological term

L)
1 _ , 1
Gij = Ri,j - Z(R -~ 1)gij =0 or Rij = ?.l.gij (4.24)
for which
=21 1 = -1 -
ety = " 1![Rij - 3lE - Vggy) = - 2.655=0C. (4.25)

The fact that Einstein's tensor Gij coincides in ite form
with the symmetric energy-momentum tensor ngij is well-known
/2,14,15/ and leads to the important conclusion that in ETG for
gravitational fie’d in vacuum, one cannot define a nonzero sym-
metric (or canonical) energy-momentum tensor because of the
equality between the Einstein's tensor in the field egquations
Tij, which vanishes outeide

for the gravitational field and sg

the gravitational sources, coneidered as a Lagrangian system
with Lagrangien density of the type (0.1) (V; # gij) or (0.2)

and with an energy-momentum tensor sﬁij’ different in the ge-

neral case from QTiJ. This conclusion is the reason for construc-
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tion of gravitational theories other than ETG, If one coneiders
in the Figure L0 as Lg and L as LM of material distribution,then
the connections between Lg and Ly reflecting the structure of

2TG in the Figure are given with dotted lines,

IV. CONCLUSION

1. In contrast to the case in V ~spaces in Up- and L -spaces

sTij is not & local conserved quantity, when the covariant Euler-
Lagrange equatione are valid for the Lagrangian system,

2. The construction of affine-metric theories for the gravita-
tional interaction on the basls of models, using more general
spaces than Vn—spaces, requires the deterrination not only of

the field equations but also the energy-momentum tensors as

locnl coneerved quantities. Moreover, in the general case there
exists a difference between the symmetric energy-momentum tensor

of Belinfante and that, introduced by Hilbert,

3. In corsidering ETG with respect to the existence of a sym-
metric energy-momentum tensor for the gravitational field, omne
can show that such a tensor of Belinfante, identical with that
of Jilbert can be found by means of KLCD. This tensor is unfor-
tunatelly equal to Einstein's tensor, identical to the left side
of the field equations for the gravitational field in ETG. For
the gravitational field in vacuum it vanishes (A = Q). This
leads to the critical conclusions of Logunov /2,14,15/ with re-
snect to ETG, found on the ground of other methods for obtaining
local conserved quantities in Vn-spaces /16/.

4. The constructed scheme for description of the elements anrd
the connections for the Lagrangian system concerming the CELE
and the energy-momentum tensors reveals a possibility of fin-
ding other field equations than the CELE or other gravitational
equations than Einstein's equations in ETG, or its variants in

Un— or Ln-spaces.
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