


I. INTRODUCTICKN

1 In classical field theories the notion of energy-momentum
tensor is used for description of the evolution of a given
rhyeical system. This notion is introduced in some different
waye for a given field theory and, moreover, it has been con-
nected with notions, different in their mathemeticel structure
and definition, such as canonical, symmetric energy-momentum
tensor of Belinfante /1/ and symmetric energy-momentum tensor
of lilbert /1,2/. Some connections between all these tensors
are found and used for constructing one of them by means of
the others /1-3/.
2. A given physical system can be described by using a Lagran-
gian (scalar) density of the type /1-4/:

2= (vhy, VAL L VAL ) s yRELLOVA, VAL VAL .
where (0.1)
:= means "by definition", A,B,,.. - mmltiindices,

Bi=Jieeedy» 1m,...<NER, g#o0,

A := 11...11,
1AJ,k,..éviB1,.... n, aszB
VBt GT Byl *T 3xiaat

VAB = VAB(xk) are field variables, considered as components
of contra- or covariant tensor flelds of (finite) rank. VAB
can be metric (Vg = g;4) or nonmetric (Vg # gyy) field vari-

ables.
There is a posgsibility for describing a physical system

by means of a Lagrangian density of the type /1/:
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Fethods of obtsining local conserved quantities

Table 1.

Form of the identity
i

Local conserved
quantities

Method Lagrangian
density

1. Method of -4 =‘~'(VA, vA,i'
energy-momentum Ai,d
complexes -

Vy= 8y
- = k?

2. Nethod of 2.-¥(IA, vA,i’
the orivileged vA,i,j)
vector fieldse Vy = Eij

VA £ g ;

5 i
V. + t =0
A 1 !
b
¥ _ dw ¥
s Coav. Gy i
SvA a; Al
+ ( 1
' y1l,d
a«A’i,J
ti =[8¥ 2(3! ) 1}
CLIY Wa1,5 "
Jx
( &, R 3
v, . ‘VA)vJ
Ayly]

Complexes (pseudotensors)
of energy and momentum

(e. 1,3,10,11,14)

Quantities in which
structuree the compo-
nente of the vector
field £1 with nonsimple
-physical interpretation
together with the
functions VA
derivatives are in-
cluded

(s, 14-19)

and their



. kethod of the

Tethwods of obteiring locrl conserved quantities

Yethod Lasrangian
dengity

¥:=.\!(gij,gij,k,

V., V. .}

covariant de- gij.k,l’ A Ai

rivativeg of VA * 5ij

the vector

fielde (CDVF)

‘etaos of ae:::e(gij, VA’
lagrangians Vasio VA/i/j)
with covariant

Vo # 8y
ferivetives
01.CT)

Form of the ldentity

1 )
Jéx - (& )/1 =C

¥4 ik
P& + Pk & /i =

Tatle 1.
(continuation)

Local conserved
quantities

Covariant conserved

quantities

(s, 2,10,13)

Covariant (tengor)

conserved quantities
(s. 5) .



2:=2(ps 5, LETREYT VAE/i/j)

,=v:g,L(gij, VA, vAE/i, vAB/i/j) , (¢c.2)
where VAB/i is a covariant derivative of VAB along the basgic
vector field E; (or 3;).

The methods of obtaining quantities of the type of
energy-momentum tersor in (pseudo)Riemannian spaces with La-
grangian density, depending on covariant tensor fields and
their first (and second) partial (or covariant) derivatives
are given schematically ir the Table /5/.

3. In previous papers /5/ the possibilities have been considered
of defining terncsors of the type of an energy-momertum tensor

for field theories ir (pseudo)Riemannian spaces without torsion
(V_-spaces) and with torsion (Un—spaces) /6,7/. By means of the
method of Lagrangiane with covariant derivatives (IMLCD) the s.c.
gerieralized covariant Bianchi type identities (GCBI) are obtained.
On the ground of these identities the connections between the

s.c. generalized canornical enersy-momentum tensor, the symmetric
energy-momentum tensor of Belinfante ar. investigated as well as
the corditions under which the symmetric energy-momentum tensor

appears to be a local corserved quentity, i.e. a quantity of the

type Tij obeying the condition

i, = T, = ko .

T, /3 0, where s gjkTi Tji . (0.3)

At the gpame time it was shown that the covariant Euler-Lagrange
equation (CELE) for the field variables in U,,-opaces, in contrast
to the case of Vn-spaces, are not sufficient conditions for the
existence of the symmetric energy-momentum tensor as a local
conserved quantity.
4. In this paper the possibilities for obtaining tensors of
the type of energy-momentum tensor (generalized canonical, sym-

metric'etc.)will be considered by means of the MLCD for field



theories in spaces with affine connection I" (Iai=# I;;) and

metric & (gij/k :# 0) (s.c. Ly-spaces). The purpose is the rela-
tions between these energy-momentum tensors to be found as well
as the connectiors between them and the covariant Euler-Lagrange

equations in L,-spaces (s. Part II, of the article).

5. In Sec. II., the application of the MLCD will be consldered
in L,-spaces and on its basis the GCBI will be obtained. In

Sec.IIl the introduction of the notion of generalized canonical
and symmetric energy-momentum tensor and the relations between

them will be discussed.

6. Abbreviations, symbols and definitions

In order to have a clearer description of the results,
gome abbreviations, symbols and definitions, connected with the
later introduced notions will be given i~ advance. Here it is
useful to recall the paper of Thorne, Lee and Lightman /8/ where
many notions, characterizing the existing gravitational theories

(and not only thesge), are defined.

Abbreviationsg

CELE := covariant Euler-lLagrange equations
CENT := canonical energy-momentum tensor
ETG := Einstein's theory of gravitation

GCBI := generalized covariant Bianchi type identity
GCEMT := generalized canonical energy-momentum tensor
LCQ := local conserved quantity

MLCD := method of Lagrangians with covariant derivatives
SEMT := pymmetric energy-momentum temsor

SEMT(B) := symmetric emergy-momentum tensor of Belinfante

SEMT(H) := Symmetric energy-momentum tensor of Hilbert
Symbols

A,B,C,... - multilndices )
dim M « dimension of the differential manifold K
S



9 - coordinate basis vector field

k
{ak}x - coordinate basis in p. x €T (L )

By - noncoordinate basic vector field
{Ek}x ~ noncoordinate basis in p. 1:€Tx(Ln)
g := det(gij) - determinant of gij
843 - components of the metric tensor g

i,3,k,1,... - indices

& -~ Lagrangian deneity

L ~ Lagrangian invariant (scalér function)

Ln - space with affine connection and metric

Tijk ~ components of the torsion tensor T (Tijk = - Tjik)

T,(1,) - tangential space in p. x€ L,

Un - (pseudo)Riemannian space with torsion

VA - components of a contravariant tensor field

Vg - components of a covariant tensor field

Vn - (pseudo)Riemannian gpace without torsion

I}i ~ components of the affine connection T”

/i ~ covariant derivative with respect to the basic
vector field E; (if E, = 31, then /i means cova-
riant derivative wlth respect to the coordinate
X (1= 1,2,...,0)

.3 - partinl derivative with respect to the vector
field EJ (or aj)

Juvi - Lie derivative of the components of the vector
field v along the vector field u

Definitions

L -space := n-dimentional c¥-differential manifold ¥ (k = 2,
3, +s.,9°) provided with nonsymmetric affine con-
nection T"and (symmetric) metric g with gij/k:¢=o

duvi 3= vjl/:]u:J - ui/ij - Tdkiujvk , u:s= ukEk, v i= VE;



(in noncoordinate basis)

k
i
? - I;g (in coordinate basis)

J ] J -
A A c D, A
Vigsy = BfVp IEiAV B~ Im Vo
A 1=~ Aj m 1= t= j
Ial SCm I3 . A 11...11, C : dgeeedy s
B := k1...km, D := 11"'lm
. 1 i, 1 i i i
Aj J k 1 k-1 k+1 1
s 1= - > L LR . R - - S
Cm =1 Bi m "By, Je1 " Bder 851

Lagrongian system := A set of fie'd variables g, VAB (with
VAE/i, vAf/i/j, Vg = g;5 or Vp # g3), characterized by means of
a scalar densily ¥ of the type (0.2) called legranglan density.

Yunctiona) variation of the invariant function I with respect

to VAB H g%%;
ép ,_ 3 _ B , 9L ),
Sk, avhy avhy L avh, g 3
where
ar _ .. _ 4L 3L

vty ) aevhy )’ a(VAB/i/j)

Covariant Euler-Lagrange equations for the fields VAB

IT. ESNERGY-NMONENTUM TEXSORS FRON LAGRAFGIA!S WITY COVARIANT
DPERIVATIVES

1. The I'LCD conslsts of three essential steps /5/ needed to
obtain the s.c. generalized covariant Bianchi type identlties
(GCBI) by means of which the corresponding energy-momenta are
defined:

a) Representation of the lie variation of a Laprangiasn
density a2long an arbitrary vector field by meane of the lie
7



derivetive of the components of the tenso:- fields (and their
first and second covsriant derivatives) along this vector field.

In this way an identity for L will be obtaired.

b) Representation of the Lie derivatives of the compo-
nents of the tencor fields (and their first and second covariant
derivatives) by means of their covariant derivatives only and
the components of the torsior terscr using the commutation rela-
tior between the Lie derivatives and the covariant derivatives
and the connections between these derivatives. Writing down the
identity for L in a form, dependent on the comronente of the
vector field and its first covariant derivatives.

c) Cbtaining the GCBI from the identity for L under the

condition of arbitrariness of the vector field.
2. Let us now take up all three steps of the ¥LCD in the case
of Ih-space to find the correspcnding GCBI.

a) The Lie derivative of the Lagrangian dersity & of the

tyre
= A A A
= V_g'.L(gij, Vi, Vv B/’ v B/i/j) s det(gij)aé o, (2.1)
- g>0’

along an arbitrary vector field & can be written in the follow-
ing form:
1 -
o£¥ = [TE(£L + —.L.g[ofgg]}
- k
V—E[L/ki + ? L.gl d&gla] (2.2)

If one assumes that the functional variation §& of &

3x A, d¢ A
§x - 5@'-5" P 8y _'A_‘ SRy 40+
B V81 ViB/1 /3

" Sbeyy

is connected with the variation of the field variables V B

(2.3)

(and their first and second covariant derivatives) and gij

along the vector field &, i,e. 8 := oy, then the s.c. Lie
variation d%x of ¥, equal to the Lie derivetive of ¥ along



E, can be given in the form:

ofx= V_—Tg(L/i&i + %‘.L.glaotagia) =

&
_ax a¥ A & A
= A £ B + -_A__—'O’E(v B/) + _A—'JE(V B/i ) +
v avh_ o 1 avky /173
. g___ %es - (2.4)

From the last identity for ¥ it follows the 1dentity

for the scalar function (invariant) L:

aL A aL A JL A
5;3;.d&V B+ EGK;;:.JE(V B/i) + 5;1;;;;;.4&(V B/i/j) +
+ gﬁ"-‘kgia - 18t =0, (2.5)

43

The variatiog of the field variables VAB and the metric
tersor components gij along the vector field & are given by
means of their Lie derivatives along &, and the variatlion of
the nonsymmetric affine connections (and with it also the com-
ponents of the torsion tensor) is given implicitly by the Lie
derivative of the first and second covariant derivatives of VAB.

b) By means of the Lie derivatives of the tensor fields
gij’ VAB and of their first and second covariant derivatives,
the identity (2.5) can be obtained in the form:

(2, + pdng et wpdet, -0, (2.6)
where the following expressions for the Lie derivatives are

uged:

A A A3,C D Kqpl
£, Vg = [ VR + (S Wy - sp jVAD)TiJ 1et .

+ (50, M0 - SBiDjVAD)ai/j , 2.7
oty (VA1) = [VAB/i/J + (85, MVO . - SBIDkVAD/i)Tjkl +
+ VAB/ijik]£J + (chAk %1 - SBJDkvAD/i)zj/k +
+ V B/Jad/i . (2.8)

A A ¢ D A 1
A (Vs s5) = [ V1790 + (8™ B/i/3 - 5Bl V n/1/3)Tem *

A 1 A 1.k
+ Yoyt * Vet 18+



D1

Al C A Xk
* o Vipsizs = Sme Vit

A k . vA 3
+ v B/k/ja /1 s B/i/kz /5 (2.9)

c) The compcnente ot the vector field &= EiEi and their
first covariant derivatlives Ei/j can be considered as arbitrary,
independent functions of the coordinates in Ln—space (i.e. in
a coordinate syster /9/, in which in p. xelL, I&i =0,
gl/j . = El‘j). If the identity (2.6) is fulfilled for arbitra~
ry &1 and &i,j, then the components of the tensors, sitting as
coefficients before Ei and Ei/j have to be identically equal
to zero, i.e.

Jn X _ J_
T3y =0 P,Y =0 . (2.10)

From the second identity in (2.10) it follows that the

P. + P
1

first condition would have the form Pi = 0. In this way the
generalized covariant Bianchi type identities (GCBI) for the
invariant L can be written in the forr:

=0, (2.11)

Py
P, J (2.12)

¢ = 0.
III. GENERALIZED COVARIART BIAKCHI TYIE IDINTITIGS
AND ENERGY-LONTNTUM TENSCES

1. The identity (2.12) can be rewritten in the following form:

NP R I NN NP - A B P B
PY =ty K9 = Vi 2.a gy *t 8L - gt =0, (3.1)

where
¢ = 9L - (&L gl ) VA e
Py Ty ry ki E
. Wiy OWmsksy  Vomsisk / /4
oL A J
+ (5;1‘-———.V B/i)/k - gi-L , (3.2
B/k/§
y e Dn A 3L
Ky = (S Vg - Spp ¥ D)E;Ij;_;"ﬂmnik *
B/%/3
oL A 1
+ 5;} v B/lTik . (3.3)
B/K/3
k3 ki o Xj k
(A M R G T Al D (.4)

10



R - N

A %3 .« LiroL vA (3L 3L A
AR | - AR Al T/m
; 35k i/ VT
- (2 RAI = g9 (3.5)
X T’/ 1 1 /1 -
av B/%/m mt/ /
Xi B3 3L c gL oL c
P S LT et GE * W We/m -
o o/K B/</rm B/m/k o
- (& I W R ) . = B (3.6)
A L'/mJ /1 A B/i’/1 i /1
av B/k/ " av 2/ 3/ k /A /
L& ] 1 k
v1 ko vl J/k gk'vj /1 (3.7)
G = (o PIvhy - 5g MVep) gl . (3.7)
vy B
ki

4fter representation of Vy

1 by means of combination of

a symmetric end antisymmetric part in k and j, i.e.

k3 v 3
Vi = G Y (3.9
L&} 1 %3 ik ik (k3)
A L BT L DAL FL T PR (3.10)
%3 Loy K Jx kL y (53]
a¥i Y1 = 3V S ViT) = - gVt e Yy (2.11)
the components Ijj will have the form:
Jogd_ J_¢d
P.J =6, o0y T (2.12)
where
0,9 = g7 - 7 - w Ik, (3.13)
gk _ Jk _ 1 .mik
W = g 1) = e ™ (.1
mik _ jm nk _ km _nj _ Jk nm
w 3 1 gvn L svn lj avn 18 ’ (3.15)
LY =Ty 2.a—.gik -g-L , (3.16)
S k3 1
. o K4
73 =g, 7, T i a g LA Gan
ik _ ik _mj Jk i _ ij _mk
7791 ¢'m 1gm + svm 1gm svm 1gm : (3.18)

2. The identity (2.11), having the form

' T2 O,
P 5y B N S .

aL aL
P V .
TavE BT av“B/‘_l

9L
+ £
ank Jk/1

- L

A oL A
ME:TZ Ve dien il YRV 2 Ul
B/3/k

sy =0, (3.19)

can after a sequence of tranaformationes be written as

11



31 A 3 J
Pi = g;Z;.V B/i + Wi + 91 /i = Fi + 91 /5 = 0, (3.20)
where
8L LA )
F; = g;l‘-v /i *t ¥ (x.21)
B
jp, k. 3L
Wy = 84 - 5y '1‘ij + 3 Bik/i o (3.22)
£
s jk v‘]k
- . JK ;
S5 = Wi xsi - MY ks -
1w Jk 1., ik 1 m 1
o1 LRt P S ¢ P R P, IS IS
3k 1 _ 1 _ o
F WGy Ty - T T T R mjk)] +
"'Tn']kgnlﬁljik ’ (3.23)
w Jk wlik w X
g 9 o gyt oy : (3.24)
j 1k i1 mk ]
wlik | _ wikd _ stJ gm - svmklgma + avmkjgml , (3.24a)

ij = 13 i3 i oy 449 ij oy (i3]
v st + avm s EVm Vm V‘ =V 4, (3.25)

m anm
VZCLI I L AL I LIS (3.26)
1% ilk _ ik _ml 1k w3 31 mk
7 =T = Evm g +st g - Ve y (3.27)
1.1 1 1 w1
Ty /s T3/t T 75 Ty zs 0 Ty = €1 Ty gk
= gd k o ¥
T; =eg-Tyy = Ty o
3 _ 1oL 3L A L A
5 = [avA - G )l Ve + S Ve - (329
B/J B/3/1 B/1/3

The components Wi of the covariant vector field W depend
on the components of the torsion tensor and of the covariant
derivaiives of the metric tensor in such a way, that in the
case of gij/k = 0, Tijk = 0 they are identical with those de-

J J J
fined in Vn-spaces /5/. The quantities Fi, Oi , sTi and Q
can therefore have the same notations in L, -spaces as in the
case of Vn— and Un—spaces.

Now the GCBI can be written as follows:

Fi + Qij/:’ = 0 (3.29)
o, - aTij = qi-'J . . (3.30)

12



3. On the vasis of the obtained GCBI and in analogy with the

tencors of the type of energy-momentum tensor, introduced ir

Vp-and Un-spaces, the tensore of the same type can be defined

also in Ln-spaces. In accordance with the structure of 013,

sTij’ tij and Qij, the following notationes caii be usged:

tij ~ canonical energy-momentum tensor for a Lagrangian
gystem,

[} I generallzed canonical energy-momentum tensor for
a Lagrangian system,

T J - symmetric energy-momentum tensor (of Belinfante)

Q I variational energy-momentum tensor (of Euler-La-

grange).

The variational energy-momentum tensor venished if the
covariant Euler-lagrange equations (CELE) are fulfilled. It

mears that this tensor appears as typical of the Lag;gpgign

egmiew. anlisyg when the AR axe srcdesm Aoace woedas Uhe ool —

lon of sbhas, svsend 36 U7 and o flelde which axe not

included in the Lagrangian system, i.e.

81

=0 Qj=0
| 1 '
B
-g—i’r,eo : @ikoorgd-o. (3.31)
B

4. By means of GCBI and in apalogy with similar propositions
for the cases in Vn- and Un—spaces some propositions can be
proved, expressing the connections between the different types
of energy-momentum tensors.
Proposition 1. The necessary and sufficient conditions for the
equality of the generalized canonlcal energy-momentum tensor
{GCEMT) and the symmetric emergy-aomentum tensor (SEMT(E)), i.e.
the necessary and sufficient condition for

0,9 = 14 (3.32)

are the conditions

13



i . Diyh _ AjyC y ST _
Q3 = (55, PIvA - s, Jv E).m =0. (3.33)

Proof: a) Fecessity: follows from conditiocne (3.32) and identity
(3.30). ‘
b} Cufficiency: follows fror conditiore (3.33) and iden-

tity (3.30).

Prorogition 1.1. If VAB =¢is a ecalar field, then th2 con-

ditior €., = T,d ig always valid.
1 s 1 .C
DicA . Ad.
Vg = 5% "V
3

ard therefore the condition &;” = € is always fulfilled. From

= C (rank V", = ©)

o

Froof: Tor scalar fields SEi

identity (3.3C) follows (3.22). ‘Yence, the variational energy-
rorentum tensor for Lagr-rsian sy:tems, corstructed only of seilar
fielde, ie identicelly equal to zero regzardless of the fulfilrent
of the CRLE.

TV. CCiCrLucIo!.

In the nrerent paver the poggitilities nre considere” for
obtairire enerry-morentum tersors for theories in spaces with
affine connectinn and metric. Ly means of the MIGT the s.c. re-
neralized covariant Tiarcni tyne identities arce forrd, Cn the
~rommé of these iderntities, the correcti:ns betwecn the onercy-
~-romertum ter:ors (cunonical, symmetric ard v-rintioral) are
irvestimated ard rogsibilities for the existerce of the syrmetric
erergy-rorertun tersor as a local conserved ouantity cnn be easily

founa,

14



REFERENCES

1. Schmutzer E,, Relativistische Phyeik. B.G. Teubner Verlagsge-
gellschaft, Leipzig 1968, S. 52, 179, 229-236,
240-264, 505-506, 511-512; Symmetrien und Erhaltungs-
gitze der Physik. WTB Bd, 75, Akademie-Verlag, Berlin
1972; Grundlagen der theoretischen Physik. Teil II.

Wiseenschafteverlag Nannheim, Wien/Ziirich 1983,

S. 154C-154

2, Forrnonw A0, Toersvaninyan L., CesoiTwrcve cul 20 LA _TATOTE-

ite nTe liyia, . 100, c. 10-49

3. Rosenfeld L., Acad.Royale de Belg. #ém. Classe d. Sciences.
Deux. 5. iVIII, DBruxelles 1938

4. Lovelock D., Rund 4., Tensors, differential forms,and varia-
tional principalg. John Wiley & Sors, lew York 1975,
ro. 298-326

5, Manoff S., Freprint IC/79/68, ICTP Trieste 1979, pp. 1-39;
Comm. JIFR E2-17-679, Dubna 1987, pp. 1-16; 12th Conf.
Gen. Rel. and Grav., Abstrrcts of Contr. Fapers. Boul-

der, Colorado 1989

6. Moeuto Fa, Bivonrs Ho, Conpong pans Ve, S2IMGY0L0UAA YEOOUA

SOHMI, AT, 1 6C.LUBCLONO Y=TCTR, .. 1iui, cebl=,

1.0-101

7. '‘navesro ., Cowmanars np ¥,

e e HavioBd ty ko,
¥ues 1950, c. 145H=185

8. Thorne K.S., Lie D.L., Lightman, Phys. Rev. D7(1973)12, 3563-
3578

9, von der deide P., Lett. Nuovo Cim. 14(1975)7, 259

10. Fporerry H,1., CHANUOORAC GOl D QUG TGO OTHOCINTC.TBHOCTH.,

Aromiamar, ¥. 1269, c. 21-<2, 040=110

11. ¥gller C., Kat. Fys. Medd. Dan. Vid. Selsk. 35(1966)3, 1-14;
ToonnE ovucrreannoni, Avoo rer, T, 1

15

Ty Ce DRALITE




14.
15.

16.

17.

18.
19.

Tomen M., OTHOCHTCTLHOSTD, W

Loyve, Lo 1.74, c. 570=77

coryuos AL, JSeurcon L., lawece AJA., Lectnrowiomean Lol
sonoe key Lluloo, Dmorerue Gld 11-0117, 1. 1072

Davis %.R., Moes K.K., Luovo Cim. 27(1963)6,1492-1496

Davis W.k,, Woee ¥.K., Jork (jr.) J.¥., Kuovo Cim. 65B(197C)1,
19-32

Fock V.A,, Rev. Mod. Phys. 29(1957)3, 325-333; Theorie der
Raum-Zeit und Gravitation. Akademie-Verlag, REerlin

1960
Komar A,, Phys. Rev. 113(1959)3, 934; 127(1962)4, 14371-1418;
129(1963)4, 1873-1876
Manoff S., Kaleva St., Bulg. J. Phys., 4(1977)3, 223-235
Trautman A,, Bull. Acad. Polon. Sci., Classe III, 5(1957),721;

Lectures on General Relativity. Vel.i., Prentice

Hall, Kew Jersey 1964, pp. 164-176

Received by Publishing Department
on February 7, 1991.

e

eg T



