сообщвиия обьединенноро инСтитута ядерных исследований дубна

E2-91-7

B.M.Barbashov, N.R.Shvetz*

GEOMETRICAL APPROACH TO THE DYNAMICS OF A RELATIVISTIC STRING IN THE D-DIMENSIONAL MINKOWSKI SPACE

[^0]
I. INTRODUCTION

The analysif of the relativistic string model with oint mosses at the onds is of great interest in hadron physios, for it gives an obvious demonstration of keeping quarks in indrons, in particular, in the nonrelativistic limit the string reduces to the rrowing linearly potential of the interaction between noint masser which are connected by the string $[1,2]$.
line $\begin{gathered}\text { athamics } \\ 0 \text { n } \\ \text { this model } \\ \text { is determined by the equations }\end{gathered}$ Of motion and nonlinear boundary conditions and just at the classical level there appear difficulties when solving thene boundary conditions. For the present, only a few particulnr solutions $[3,4]$ of boundinry equations are found.
iie hrove uned the differential geometrical approach doveloped in [4] wich allo:s one to find some solutions of the boundary value groblem in the three-dimensional Minkowski annce E_{2}^{1}. In the prosent paper this epproach is annlied to the str"nr with masses in a D-aimensional space $E_{D-1}^{1}(D \geqslant 4)$. The case $D=4\left(E \frac{1}{3}\right)$ is picked out.

The minimal surface swept by the messive string is restricted by two world trajectories of the point masses, these curves are determined by the first, second and third curratures K, x_{1} and x_{2} in the space E_{3}^{1}. It is shown that if one assumes $\mathscr{X}_{1}=$ const and $\mathscr{X}_{2}=$ const, the equations of the boundaries lead to $\mathfrak{X}_{2}=0$ for the world trajectories of point masses, and the solution of the problem in E_{3}^{1} will coincide with the solutiou in $E_{2}^{1}[4]$ and the atring world surface will be a helicoid.

This result turned out to be true in the space E_{D-1}^{1} provided the curvature vectors $\quad \nu_{\gamma_{011}}=0 \quad$ which means that
the syr stem of the boundary equations in the g-inmessinant ste ce zeinces to sumner $i=$ the space :Fth $\dot{D}=4$.
2. GEOMETRICAL APPROACH TO THE DYNAMICS
of THE RELATIVISTIC STRING WITH MASSES AT THE ENDS

 the string there are point masses and the world surface is of the string will be restricted by the world trajectories of these masses. ie will apply the reometrical athos not only to the surface S, but also to the restricting curves. Let $X^{\mu}, \mu=0,1 \ldots D-1 \quad$ be the coordinates in the lininKowski space nod $U^{1}=\tau, U^{2}=\sigma$ curvilinear coordiantes on the world surface B of the string which in an external of the functional? of notion:

$$
S=-\gamma \int_{\tau_{1}}^{\tau_{2}} \int_{\sigma_{1}(\tau)}^{\sigma_{2}(\tau)} d^{2} u \sqrt{\operatorname{det}\left\|g_{i j}\right\|}-\sum_{i=1}^{2} m_{i} \int_{\tau_{1}}^{\tau_{2}} d \tau \sqrt{\left(x_{, 4}^{\mu}\left(\tau, \sigma_{i}\right)\right)^{2}}
$$

where $X_{, i}=\frac{\partial x^{\mu}}{\partial U^{i}}$ and $g_{i j}=X_{i,}^{\mu} X_{\mu, j}$ are the components of the metric induced on the surface s. Constant X has the dimension of mass squared and determines the string tension.

On the surface S one can always introduce isothermal (conformal) coondin teas in terms of which the metric tensor Gif is diagonal and traceless $[5,6]$:

$$
\begin{aligned}
g_{11}=-g_{22} & =\left(x_{11}^{\mu}\right)^{2}=-\left(x_{, 2}^{\mu}\right)^{2}=g \\
g_{12} & =\left(x_{1}^{\mu} \cdot x_{, 2}^{\mu}\right)=0
\end{aligned}
$$

Tarintion o? the functional of nation (I) gives tie curation of motion (2'alembert equation)

$$
\begin{equation*}
X_{, 14}^{\mu}(\tau, \sigma)-X_{, 22}^{\mu}(\tau, \sigma)=0 \tag{3}
\end{equation*}
$$

sax nomlneav boundary conditions
$m_{i} \frac{d}{d \tau}\left\{\frac{X_{, 1}^{\mu}\left(\tau, \sigma_{i}\right)+X_{, 2}^{\mu}\left(\tau, \sigma_{i}\right) \cdot \sigma_{i, 1}}{\sqrt{\left(X_{, 1}^{\mu}\left(\tau, \sigma_{i}\right)\right)^{2} \cdot\left(1-\sigma_{i, 1}^{2}\right)}}\right\}=(-1)^{i+1} \gamma\left[X_{, 2}^{\mu}\left(\tau, \sigma_{i}\right)+X_{, 1}^{\mu} \cdot \sigma_{i, 1}\right]^{(4)}$ $(i-1,2)$.

The wort surface of the relativistic stanch may be described by the basis that is a set of orthogonal vectors at every point of tic surface $[0,7]$. Knowing the evolution of this basis one con restore all the surface. 'his basis can be mane up out of the vectors $X_{, 1}^{\mu}, X_{, 2}^{\mu}$ tangent to the surface ma nomads $\eta_{\alpha}^{\mu}, \alpha=3,4 \ldots$ i $[2]$ of this basis on tree sur iface S is described by derivative equations $[7,3]$:

$$
\begin{align*}
& X_{, 11}^{\mu}=-\frac{\varphi_{1}}{2} X_{i 1}^{\mu}-\frac{\varphi_{2}}{2} X_{, 2}^{\mu}-\sum_{\alpha=3}^{D} b_{\alpha \mid 11} \eta_{\alpha}^{\mu}, \\
& X_{, 12}^{\mu}=-\frac{\varphi_{2}}{2} X_{, 1}^{\mu}-\frac{\varphi_{1}}{2} X_{, 2}^{\mu}-\sum_{\alpha=3}^{D} b_{\alpha \mid 12} \eta_{\alpha}^{\mu}, \tag{y}\\
& \eta_{\alpha, i}=-b_{\alpha \mid i j} g^{j k} X_{, k}^{\mu}-\sum_{\beta=3}^{D} V_{\beta \alpha 1 i} \eta_{\beta}^{\mu} \\
& \quad(\alpha=3, \ldots D, i=1,2),
\end{align*}
$$

where $\cdot b_{\alpha l i j}=\eta_{\alpha}^{\mu} \cdot X_{\mu, i j} \quad$ are coefficients of the second quadratic form setting the external geometry of the world surface S and $V_{\beta \alpha \mid i}=-V_{\alpha \beta 1 i}$ are the curvature vectors. The

$$
\begin{array}{r}
\text { function } \varphi(\tau, \sigma) \text { is definer as } e^{-\varphi}=g(\tau, \sigma) . \\
\text { Projecting }(4) \text { on and normal } \eta_{\alpha}^{\mu} \text { one rets } \\
\left(1+\sigma_{i, 1}^{2}\right) \cdot b_{\alpha \mid 11}\left(\tau, \sigma_{i}\right)+2 b_{\alpha \mid 12}\left(\tau, \sigma_{i}\right) \cdot \sigma_{i, 1}=0 \tag{5}\\
(i=1,2) .
\end{array}
$$

Let choose the faure of a coordinate on the surface S so as $\sigma_{i, 1}=0$ and as the rance of definition Ω of parameters τ and σ the rectangle: $\left\{\tau_{1} \leq \tau \leq \tau_{2}, 0=\sigma_{1} \leq \sigma \leq \sigma_{2}=\pi\right\}$.

Below we will see that this would does not built any adadionel restriction on solving: the noble:. (3) (4). Indeed, if one compares the first equation in (5) at $\sigma=$ $=\sigma_{i}=$ constr and the boundary condition (4), equating expressions of the same basis vectors, well ret some relations at the boundaries:

$$
\begin{align*}
& G_{\alpha \mid 14}\left(\tau, \sigma_{i}\right)=0 \tag{7}\\
& -\frac{\varphi_{2}}{2}=(-1)^{i+1} \frac{\gamma}{m_{i}} e^{-\frac{\varphi\left(\tau, \sigma_{i}\right)}{2}} \tag{8}\\
& (i=1,2)
\end{align*}
$$

Equations (6) and (7) lead to conditions $\sigma_{i, 1}=0$ since in general $b_{\alpha / H 2}\left(\tau, \sigma_{i}\right) \neq 0$.

- The boundary condition (8) had been studied for the case $E_{2}^{1}[4]$. $\because 1$ th the help of solutions of these equations the world surface for some particular kinds of motion of the relativistic string with masses at the ends were found. as is generally known $[2,7]$ a minimal surface can be described in terms of its radius vector $X^{\mu}(\tau, \sigma)$ or a set of variables $g_{i j}(\tau, \sigma), b_{\alpha} l_{j}(\tau, \sigma), \sqrt{\alpha \beta}(\tau, \sigma)$ which satisfy the minimal surface conditions:
$b \times 1 i j \cdot g^{i j}=0$

Gauss equations

$$
\begin{align*}
& \qquad R_{i j k l}=-\sum_{\alpha=3}^{D}\left(b_{\alpha l i k} b_{\alpha}\left|j l-b_{\alpha l i l} b_{\alpha}\right| j k\right), \\
& \text { Peterson }-K_{o d a z z i} \text { equations } \\
& \nabla_{k} b_{\alpha l i j}-\nabla_{j} b_{\alpha l i k}=-\sum_{\beta=3}^{D}\left(V_{\beta \alpha i k} b_{\beta l i j}-V_{\beta \alpha l j} b_{\beta l i k}\right), \tag{11}
\end{align*}
$$

and Ricci equations

$$
\begin{align*}
& V_{\beta \alpha \mid j, k}-V_{\beta \alpha \mid k, j}-\sum_{\gamma=3}^{D}\left(V_{\gamma \beta \mid j} V_{\gamma \alpha i k}-V_{\gamma \beta \mid k} V_{\gamma \alpha \mid j}\right)+ \tag{12}\\
& +g^{l m}\left(b_{\beta \mid l j} b_{\alpha \mid m k}-b_{\beta \mid l} \mid k b_{\alpha \mid m j}\right)=0
\end{align*}
$$

Here $\Gamma_{i j}^{k}$ are the Christoffel symbols for $g_{i j}[7]$:

$$
\begin{equation*}
\Gamma_{i j}^{k}=g^{k \ell} \Gamma_{\ell, i j}=\frac{1}{2} g^{k \ell}\left(g_{l i, j}+g_{j i, i}-g_{i j, \ell}\right) \tag{14}
\end{equation*}
$$

and the Riemann curvature tensor Rift has only one essential component R_{1212}.

The minimum conditions (9) (or in other words, equality of the mean curvature in η_{α}^{μ}-direction to zero) follow from (3) and from the definition of the coefficients of the
second quadratic form Colic . Equations (IO)_(12) are conditions of int egration of the derivative formulae (5). This system will considerably get simplified, if we choose a new basis of vectors on the minimum surface so that the normal η_{3}^{μ} points into the direction $\nabla_{1} X_{, 2}^{\mu}$ and η_{4}^{μ} along $\nabla_{1} X_{1,1}^{\mu}$ [2]. This transition may be done through rotations from $S O(1,1) \times S O(D-2)_{\text {gro un which don't mix the tangent vectors }}$ $X_{, i}^{\mu}(1=1,2)$ and normals $\eta_{\alpha}^{\mu}(\alpha=3, \ldots D)$. Then from (5) we find

$$
\begin{aligned}
b_{4112}=b_{3111}=b_{3122} & =b_{\alpha 1 i j}=0 \\
& (\alpha=5, \ldots 0, i, j=1,2),
\end{aligned}
$$

and from Peterson - Kodazzi equations after simple transformatrons it follows that

$$
\begin{equation*}
\frac{\partial}{\partial u^{\mp}} \sum_{\alpha=3}^{D}\left(b_{\alpha} 111 \pm b_{\alpha} 112\right)^{2}=0 \tag{16}
\end{equation*}
$$

where isotropic coordinates $U^{ \pm}=U_{1} \pm U_{2}=\tau \pm \sigma$ are introduced. Integrating (16) we have

$$
\begin{equation*}
\sum_{\alpha=3}^{D}\left(b_{\alpha \mid 11} \pm b_{\alpha \mid 12}\right)^{2}=A_{ \pm}^{2}\left(u^{ \pm}\right) \tag{17}
\end{equation*}
$$

On the other hand, taking into account (5), we obtain

$$
\begin{equation*}
-\sum_{x=3}^{n}\left(b_{x / 1+1} \pm b_{\Delta x \mid 12}\right)^{2}=\left(\nabla_{1} x_{1}^{\mu} \pm \nabla_{1} x_{2}^{\mu}\right)^{2} . \tag{18}
\end{equation*}
$$

Our choice of the normals η_{3}^{μ} and η_{4}^{μ} leads to $\nabla_{1} X, 4, \nabla_{1}^{\mu} X, 2=0$ and, hence, $A_{-}^{\mu}=A_{+}^{2}=A^{2}$. Taking into consideration (15) we simplify equation (17):

$$
\begin{equation*}
b_{4111}^{2}+b_{3112}^{2}=A^{2} . \tag{10}
\end{equation*}
$$

تo saitsry thi" equation, it is neces.in iy to put down

$$
\begin{equation*}
b_{4111}=A \cos \frac{\theta}{2}, \quad b_{3112}=A \sin \frac{\theta}{2} \tag{20}
\end{equation*}
$$

Where the furction $\theta=\theta(\tau, \sigma)$ iefine a the curveture voctoens $\nu_{\alpha} \beta \mid i$. $I_{n i e n}$, Com equation (11) it follo:s that

$$
\begin{align*}
& \nu_{3411}=-\frac{\theta_{2}}{2}, \quad \nu_{3412}=-\frac{\theta_{1}}{2} \\
& \nu_{3 \alpha 11}=\nu_{4 \alpha 12} \cdot \operatorname{ctg} \frac{\theta}{2}, \nu_{3 \alpha 12}=\nu_{4 \alpha 11} \operatorname{ctg} \frac{\theta}{2},(\alpha=5 . \ldots \mathrm{D})
\end{align*}
$$

ald Gauss oquations become

$$
\begin{equation*}
\varphi_{, 11}-\varphi_{, 22}=2 A^{2} \cos \theta e^{\varphi} . \tag{22}
\end{equation*}
$$

 the fuantiari $\theta\left(\tau, \sigma_{i}\right)=\pi\left(2 n_{i}+1\right)$, winm n_{i} is anter;e. re onl: coefficient aifforne foom zeo , the recons Funimitc form is $b_{4112}=A$ sni tice cu viture vecto:s $\nu_{3 \alpha 11}=\nu_{3 \alpha / 2}=0(\alpha=5, \ldots D)$. Now zantises: (5) at the inuannues icco:sc :rome simple in tic ne:i notetinn $\xi_{1}^{\mu}=\frac{X_{1}^{\mu}\left(\tau, \sigma_{i}\right)}{\sqrt{g\left(\tau, \sigma_{i}\right)}}$;

$$
\begin{aligned}
& \xi_{2}^{\mu}=\frac{x_{2}^{\mu}\left(\tau, \sigma_{i}\right)}{\sqrt{g\left(\tau, \sigma_{i}\right)}} ; x_{1}=\frac{A}{\sqrt{g\left(\tau, \sigma_{i}\right)}} ; x_{2}=\frac{\theta_{2}}{\sqrt{g\left(\tau, \sigma_{i}\right)}} ; K_{i}=(-1)^{i+1} \frac{\gamma}{m i} ; \\
& \frac{d \xi_{1}^{\mu}}{d \xi}=K_{i} \xi_{2}^{\mu} ; \quad \frac{d \xi^{\mu}}{d s}=K_{i} \xi_{1}^{\mu}-x_{1} \eta_{3}^{\mu} ; \\
& \frac{d \eta_{3}^{\mu}}{d \xi}=x_{1} \xi_{2}-x_{2} \eta_{4}^{\mu} ; \frac{d \eta_{4}^{\mu}}{d \xi}=x_{2} \eta_{3}^{\mu}+\sum_{\beta=5}^{D} \frac{\sqrt{4 \beta} \beta 1}{\sqrt{g\left(\tau, \sigma_{i}\right)}} \eta_{\beta}^{\mu} ;
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d \eta^{\mu}}{d s}=\sum_{\beta=3}^{D} \frac{v_{\alpha \beta} \mu_{1}}{\sqrt{g\left(\tau, \sigma_{i}\right)}} \eta_{\beta}^{\mu}, \\
& (\alpha=5, \ldots D, i=1,2)
\end{aligned}
$$

where S is a natural parameter : $d S=\sqrt{g} d \tau \quad$. As could be seen from equations (23), the case $\dot{U}=4$ is certainly on a distinct status. Further we will notice that in a particular case when $\sqrt{4} \mid 4=0$, the system of equations (23) divides Into two independent systems, one of which has a form of the system (23) for $I=4$.
3. THE STHING WITH MASSES IN THE FOUR-DIMENSIONAL SPACE E_{3}^{1}

Consider the system of equations (23) when $D=4$. It is the system $i f$ Frenet equations for the curves in the space \mathbb{E}_{3}^{1} :

$$
\begin{aligned}
& \frac{d \xi_{3}^{\mu}}{d s}=k_{i} \xi_{2}^{\mu} \quad, \quad \frac{d \xi_{2}^{\mu}}{d s}=k_{i} \xi_{1}^{\mu}-x_{1} \eta_{\xi}^{\mu} ; \\
& \frac{d \eta_{s}^{\mu}}{d \xi}=x_{1} \xi_{2}^{\mu}-x_{2} \eta_{4}^{\mu} ; \frac{d \eta_{4}^{\mu}}{d s}=x_{2} \eta_{3}^{\mu} .
\end{aligned}
$$

- Now one can realize the geometrical meaning of the coefficients K_{i}, x_{1} and $x_{2}[9]$. These are respectively the first, second and third curvatures of world trajectories of point masses, Note that the first curvatures $K_{i}(1=1,2)$ are constant for all D then curvatures of the mass trajectories are constant and equal $\frac{\gamma}{m_{i}}$.

The search of the general solutions to equations (24) is very' complicated, that's why one can find only a few particular solutions. It is known that in the space E_{2}^{1} there is a solution for the case when the torsions x are constant [4].
4. The constant curvatures in the space $D=4$

When \mathscr{X}_{1} and \mathscr{C}_{2} are constant, the system (24) reduces to the linear equation for $\xi \mathcal{H}[9]$:

$$
\begin{equation*}
\left.\frac{d^{4} \zeta_{1}^{\mu}}{d s^{4}}+\left(x_{1}^{2}+x_{2}^{2}-K_{i}^{2}\right) \frac{d^{2} \zeta_{1}^{\mu}}{d s^{2}}-K_{i}^{2} x_{2}^{2}\right\}_{1}^{\mu}=0 \tag{25}
\end{equation*}
$$

that has the characteristic equation

$$
\begin{equation*}
\lambda^{4}+\left(x_{1}^{2}+x_{2}^{2}-K_{i}^{2}\right) \lambda^{2}-K_{i}^{2} x_{2}^{2}=0 \tag{26}
\end{equation*}
$$

with roots:

$$
\begin{equation*}
\lambda^{2}=-\frac{x_{1}^{2}+x_{2}^{2}-k_{i}^{2}}{2} \pm \frac{1}{2} \sqrt{\left(x_{1}^{2}+x_{2}^{2}-k_{i}^{2}\right)+4 k_{i}^{2} x_{2}^{2}} \tag{27}
\end{equation*}
$$

There are four kind s of solution of (25) depending on the sign of the radical and relations between K_{i}, \mathscr{L}_{1} and \mathscr{X}_{2}, though equalities $\left(\xi_{1}^{\mu}\right)^{2}=1,\left(\xi^{\mu}\right)^{2}=-1$ distinguish two solutions:

$$
\begin{equation*}
\xi_{1}^{\mu}=A^{\mu} \cos \alpha s+B^{\mu} \sin \alpha s+C^{\mu} s+D^{\mu}, \quad \alpha=\sqrt{x_{1}^{2}-K_{2}} \tag{28}
\end{equation*}
$$

when $x_{2}=0, \quad x_{1}^{2}>K_{i}^{2}$ and

$$
\begin{equation*}
\xi_{1}^{\mu}=A^{\mu} e^{-\bar{\alpha} s}+B^{\mu} e^{\bar{\alpha} s}+C^{\mu} \cos \bar{\alpha} s+D^{\mu} \sin \bar{\alpha} s \tag{29}
\end{equation*}
$$

x The first and second ourvatures are called the ourvature and the torsion in the space E_{2}^{1}.
when $\quad x_{1}^{2}+x_{2}^{2}=k_{i}^{2}, x_{2} \neq 0$. Here $A^{\mu}, B^{\mu}, D^{\mu}, C^{\mu}$ some constant vectors àeterminea oj normalization of vectors ξ_{1}^{μ} and ξ_{2}^{μ}.

These solutions concern the trajectories of the pent masses, but we are interested in the world surface of tie string. For this purpose use can be make of the solution of the equations for string (3) in terms of isotropic vectors.

On the plane tangent to the world surface of the st in : one can always transform the vectors $X, 1$, and $X_{, 2}^{\mu}$ into isotropic ones $\Psi_{ \pm}^{\prime \mu}\left(U^{ \pm}\right)$(the prime means the derivative of the function Ψ with respect to its argument). Further, we will use the general solution of the string equation (3):

$$
\begin{equation*}
X^{\mu}(\tau, \sigma)=\frac{\Psi_{+}^{\mu}\left(u^{+}\right)+\Psi_{-}^{\mu}\left(u^{-}\right)}{2} \tag{30}
\end{equation*}
$$

By definition of ξ_{1}^{μ} and ξ_{2}^{μ} it follows that

$$
\begin{equation*}
\Psi_{ \pm}^{\prime \mu}\left(u^{ \pm}\right)=\left(\xi_{1}^{\mu} \pm \xi_{2}^{\mu}\right) \sqrt{g},\left(\Psi_{ \pm}^{\prime \mu}\right)^{2}=0 . \tag{31}
\end{equation*}
$$

owns to

$$
\begin{equation*}
\xi_{2}^{\mu}=\frac{1}{K_{i}} \frac{d \xi_{1}^{\mu}}{d s} \tag{in}
\end{equation*}
$$

from equation (28) one finds $\Psi_{ \pm}^{\prime \mu}\left(\tau \pm \sigma_{i}\right)$; then by int er, raion $\Psi_{ \pm}^{\mu}(\tau \pm \sigma)$ and, hence, $X^{\mu}(\tau, \sigma)$. since two boundfries give two solutions, it is necessary t? make them consistent. i.e., to compare at $\sigma=\sigma_{i}(i=1,2)$. In this case the solutions are

$$
\begin{align*}
& x^{\mu}(\tau, \sigma)=\left(\frac{A_{i}^{\mu}}{\alpha} \sin \alpha \sqrt{g} \tau-\frac{B_{i}^{\mu}}{\alpha} \cos \alpha \sqrt{g} \tau\right) \times \\
& x\left(\cos \alpha \sqrt{g}\left(\sigma-\sigma_{i}\right)+\frac{\alpha}{K_{i}} \sin \alpha \sqrt{g}\left(\sigma-\sigma_{i}\right)\right)+ \\
& +g C_{i}^{\mu} \frac{\tau^{2}+\left(\sigma-\sigma_{i}\right)^{2}}{2}+\sqrt{g} \tau\left(D_{i}^{\mu}+\frac{C_{i}^{\mu}}{K_{i}}\right)+F_{i}, \tag{33}\\
& (i=1,2)
\end{align*}
$$

where $A_{i}^{\mu}, B_{i}^{\mu}, C_{i}^{\mu}, D_{i}^{\mu}, F_{i}^{\mu} \quad$ are some vectors. "without loss of gene rality we put $m_{i}=m$, i.e. $K_{i}=(-1)^{i+1} K,(i=1,2)$.
'Hen the consistency between solutions (33) is possible provided that

$$
\begin{equation*}
\operatorname{tg} \omega \pi=\frac{2 \omega K \sqrt{g}}{\omega^{2}-(K \sqrt{g})^{2}} \quad, \quad \omega=\alpha \sqrt{g} \tag{34}
\end{equation*}
$$

and also $A_{i}^{\mu}=A^{\mu}, B_{i}^{\mu}=B^{\mu}, C_{i}^{\mu}=0, D_{i}^{\mu}=D^{\mu}, F_{i}^{\mu}=F^{\mu},(i=1,2)$. The condition (34) holds when the coefficients of the same degrees of the parameter τ are compared, the conditions normalization $\xi_{1}^{2}=1$ and $\xi_{2}^{2}=-1$ lead to the follow ing conditions on the vectors:

$$
\begin{equation*}
A^{2}=B^{2}=-\frac{K^{2}}{2 \alpha^{2}}, \quad D^{2}=1+\frac{K^{2}}{2 \alpha^{2}}, D \cdot A=B \cdot A=D B=0 . \tag{35}
\end{equation*}
$$

So, the world surface of the relativistic string has the
form:

$$
\begin{align*}
& x^{\mu}(\tau, \sigma)=\left(\frac{A^{\mu}}{\alpha} \sin \alpha \sqrt{g} \tau-\frac{B^{\mu}}{\alpha} \cos \alpha \sqrt{g} \tau\right) \times \\
& \times\left(\cos \alpha \sqrt{g} \sigma-\frac{\alpha}{K} \cdot \sin \alpha \sqrt{g} \sigma\right)+\sqrt{g} \tau D^{\mu}+F^{\mu}, \tag{36}\\
& \alpha=\sqrt{x^{2}-K^{2}},
\end{align*}
$$

where F^{M} is an arbitrary constant vector.

The condition (34) coincides with the frequency equation derived in [I0] for string motions when the parameter τ is the proper time of massive points at the ends of the st wing. This means that

$$
\begin{equation*}
x_{, 1}^{2}(\tau, 0)=x_{, 2}^{2}(\tau, \pi)=g=m^{-2} \tag{37}
\end{equation*}
$$

In the gauge $t \sim \tau$ (t - proper time) for different choices of the vectors $A^{\mu}, B^{\mu}, C^{\mu}, F^{\mu}$ we get a set of two--dimensional surfaces which, after appropriate transformations of global coordinates, become helicoids embedded into the four--dimensional Minkowski space.

In the case (29) the solution satisfying one boundary contradicts the other. So, for constant ourvatures, there exists only one kind of solution (36), \mathscr{X}_{2} being zero. It means that $\theta_{2}\left(\tau, \sigma_{i}\right)=0$. As $\theta\left(\tau, \sigma_{i}\right)=$ const and using the Ricci equation (12) for $\alpha=3, \beta=4$

$$
\begin{equation*}
\theta, 41-\theta_{, 22}=2 A^{2} e^{\varphi} \sin \theta \tag{38}
\end{equation*}
$$

one can show that $\frac{\partial^{n} \theta\left(\tau, \sigma_{i}\right)}{\partial u_{i}^{m} \partial u_{j}^{n} n_{i}}$, where $i, j=1,2$ and n, m are arbitrary $(n>m)$. Indeed, from $\theta_{1}\left(\tau, \sigma_{i}\right)=0, \quad \theta\left(\tau, \sigma_{i}\right)=$ $=\pi \cdot\left(2 n_{i}+1\right)$ and (38) it follows that $\theta, 22\left(\tau, \sigma_{i}\right)=0$. Then by derivation of (38) at $\sigma=\sigma_{i}$ and by induction one proves the above statement. Under the assumption that the function $\theta(\tau, \sigma)$ is infinitely differentiable in the extended range $\Omega^{*}=\left\{\tau_{1} \leqslant \tau \leqslant \tau_{2},-\varepsilon \leqslant \sigma \leqslant \pi+\varepsilon, 0<\varepsilon<1\right\}$, we find that $\theta(\tau, \sigma)$ is constant and equals $\theta=\pi(2 n+1)$ in Ω^{*}, ie.
at both the boundaries it has the same values.
Equation (2:2) in this case coined ides with the Gauss equation for the world surface of the relativistic string in the
space $E_{2}^{1}[2,4]$. If the vectors $\Psi_{ \pm}^{\prime \mu}\left(U^{ \pm}\right)(30)-(31)$ are represented as an expansion over the constant basis $\left\{a^{M}\right.$, $\left.b_{1}^{\mu}, b_{2}^{\mu}, c^{\mu}\right\} \quad[2]$ made for $E_{2}^{1}[4]$:

$$
\begin{align*}
& \Psi_{+}^{\prime}\left(u^{+}\right)=\frac{A}{\sqrt{f_{1}^{\prime 2}+f_{2}^{\prime 2}}}\left(a^{\mu}+b_{1}^{\mu} f_{1}+b_{2}^{\mu} f_{2}+c^{\mu} \frac{f_{1}^{2}+f_{2}^{2}}{2}\right) \tag{39}\\
& \Psi_{-}^{\prime}\left(u^{-}\right)=\frac{A}{\sqrt{g_{1}^{\prime 2}+g_{2}^{\prime 2}}}\left(a^{\mu}+b_{1}^{\mu} f_{1}+b_{2}^{\mu} f_{2}+c^{\mu} \frac{f_{1}^{2}+f_{2}^{2}}{2}\right)
\end{align*}
$$

where $f_{1}\left(u^{+}\right), f_{2}\left(u^{+}\right), g_{1}\left(u^{-}\right), g\left(u^{-}\right)$are some functions and the basis $\left\{a^{\mu}, f_{1}^{\mu}, b_{2}^{\mu}, c^{\mu}\right\}$ is defined by equalities:

$$
\begin{array}{r}
a^{2}=c^{2}=0, \quad a \cdot c=1, \quad b_{k} \cdot b_{j}=-\delta_{k j}, \tag{40}\\
a \cdot b_{k}=c \cdot b_{k}=0,(k, j=1,2),
\end{array}
$$

then in terms of new variables we have

$$
\begin{equation*}
g(\tau, \sigma)=\frac{A^{2}}{4} \frac{\left(f_{1}-g_{1}\right)^{2}+\left(f_{2}-g_{2}\right)^{2}}{\sqrt{\left(f_{1}^{\prime 2}+f_{2}^{\prime 2}\right)\left(g_{1}^{\prime 2}+g_{2}^{\prime 2}\right)}} \tag{41}
\end{equation*}
$$

and (20) gives the expression for the function $\theta(\tau, \sigma)$:

$$
\begin{align*}
& \cos \theta=\frac{1}{\sqrt{\left(f_{1}^{\prime 2}+f_{2}^{\prime 2}\right)\left(g_{1}^{\prime 2}+g_{2}^{\prime 2}\right)}}\left(f_{1}^{\prime} g_{1}^{\prime}+f_{2}^{\prime} g_{2}^{\prime}-\right. \tag{42}\\
& \left.-2 \frac{\left[f_{1}^{\prime}\left(f_{1}-g_{1}\right)+f_{2}^{\prime}\left(f_{2}-g_{2}\right)\right] \cdot\left[g_{1}^{\prime}\left(f_{1}-g_{1}\right)+g_{2}^{\prime}\left(f_{2}-g_{2}\right)\right]}{\left(f_{1}-g_{1}\right)^{2}+\left(f_{2}-g_{2}\right)^{2}}\right)
\end{align*}
$$

The condition $\theta\left(\tau, \sigma_{i}\right)=\pi(2 n+1)$ can be realized when $f_{1}=g_{1}=0$ or $f_{2}=g_{2}=0$. This immediately leads to the three-dimensional case studied in detail in [4].

It is to be noticed that the condition $\theta_{, 2}\left(\tau, \sigma_{l}\right)=0$ in the space E_{D-1}^{1} is not so "artificial" as the condition $\nu_{40 \times 11}\left(\tau, \sigma_{i}\right)=0$. The Picot equation (12) at $\beta=4$ together with conditions (21) at $\sigma=\sigma_{i}$ result in the equalities

$$
\begin{equation*}
\theta_{2}\left(\tau, \sigma_{i}\right) \cdot \nu_{4 \alpha 12}\left(\tau, \sigma_{i}\right)=0,(\alpha=5, \ldots D) . \tag{43}
\end{equation*}
$$

5. Conclusion

I_{n} the given geometrical approach to solving the problem of a relativistic massive string the values of the curvatures $\mathscr{X}_{1}(\tau), \mathscr{X}_{2}(\tau)$ of the world trajectories of point masses are very important. The full analysis of the boundary equations (5) is complicated. In a particular case of constant \mathscr{X}_{1} and \mathscr{X}_{2} the solutions (3)-(4) are obtained.

The search for other configurations of the string world surface is undoubtedly of great importance.

References

1. Nambu Y. Phys. Rev., DIO, 4262 c (1974); Phys. Rep. 23, 250 (1976).
2. Barbashov B.M., Nesterenko V.V. Introduction to the Belativistio String Theory, Singapore: World Scientific, 1990.
3. Frampton P. H. Phys. Rev. D12, 538 (1975).
4. Barbashov B. M., Chervyakov A.M. Theor. Math. Phys. 74, N 3 430 (1988) (in Russion)
5. Norden A.P. The Theory of Surfaces. Moscow 1956 (in fussian).
6. Dubrovin B. A., Hovikov S.P., Fomenko A.T. Modern Geometry. Hoscow: Nauka, 1986 (in Russian).
7. Eisenhart L.P. Riemannian Geometry. Princeton: University Press, 1964.
8. Reshevski P.K. Riemannian Geometry and Tensor Analysis. Mowcow: Nauka, 1967 (in Russian).
9. fminov Xu. A. Differential Geometry and Topology of Curves. Hos cow: Nauka (in Russian).

IO. Berbashov B.M., Nesterento V.V. Theor. Path. Phys. 31, No. 3 291 (1977).

> Received by Publishing Lepartment on January $8,199 I$.

[^0]: *

 Moscow Phys.Techn.Institute

