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I. INTRODUCTION 

The r.nalysiT of the relativistic string model with 
point r..ir,r,es at the ends is of great interest in hadron physics, 
for it ,-ives an obvious demonstration of keeping quarks in 
hadror.s, in particular, in the nonrelatlvistic limit the string 
reduce:; to the growing linearly potential of the interaction 
between point masses which are connected by the string Ll,2J. 

The dynamics of th:''s model is determined by the equations 
of motion and nonlinear boundary conditions and just at the 
classical level there appear difficulties when solving 
those boundary conditions. For the present,only a few particu
lar solutions |_3>4J of boundary equations a-̂ e found. 

'•Ve h-ve used the differential geometrical approach 
developed in L'+J which allows one to find some solutions of 
the boundary value problem in the three-dimensional Minkowski 
space t;), • -n the present paper this approach is applied to 
the str'ng with masses in a D-dimensional space Ь|)-^ (Р^-4/. 
The case E=4 ( E j ) is picked out. 

The minimal surface swept by the massive string is 
restricted by two world trajectories of the point masses, these 
curves are determined by the first, second and third curvatures 

К ~i£\ and ~X-2. in the space C 3 . It is shown that if 
one assumes 3£-i = const and ~S£-L- const, the equations of 
the boundaries lead to X t = 0 for the world trajectories of 
point masses, and the solution of the problem in h 3 will 
coincide with the solution in L 2. L̂ J and the string world 
surface will be a helicoid. 

This result turned out to be true in the space C.f)jf 

provided the curvature vectors Уя*н ~ ® which means that 
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the systen of the boundary equations in thr; rj—dî ensio.-ial зпр ее 
reduces to пул ten in the space \7ith B=4. 

2. GEOMETRICAL APPROACH TO THE DYNAMICS 
OF THE RELATIVISTIC STRING WITH MASSES AT THE ENDS 

Consider the motion of the relativistic strin,; ir. t'-.c 

D-diir.ension?.l pseudo-Suclidean space Ь D-1 • •'•t the ouZr of 
the string there are point masses and the world surface S 
of the string will be restricted by the world trajectories 
of these masses. '.<'e will apply the geometrical methods not 
only to the surface S, but also to the restricting curves. 
Let X M = G,1... D-1 be the coordinates in the Min
kowski space and U =t , (Лг = 6" curvilinear coordinates on 
the world surface a of the string which is an external of 
the functional, of action: 

«here У , ^ = =^-7- and О.Ц = X,£ XJA.L are the components cf 
the metric induced on the surface S. Constant V has the 
dimension of :r»ss squared and determines the string tension. 

0;: the surface i> one can al'.vays introduce isotherr.ial 
(confo:-:iial) coordinates in terras of whicn the metric tensor 

uij. is diagonal and traceless L5>6J : 

9* = - g « = (y-Hf = - (х ,г) г = % > ^ 
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7irlr.tl.on о" the functional of action (l) gives the 
equation of notion (D'Alerabert equation) 

•;na nonlinear boundary conditions 

The world surface of the relativlstic string Bay be described 
by the basis that is a set of orthogonal vectors at every 

point of the surface (_G,7J . Knowing the evolution of this ba
sin one can restore all the surface. 'J-'his basis can be 
w>ae up out of the vectors, A,i X,a tangent to the surface 
and normal я T?£ , Ot =3,4... ^ |_2 J of this basis on the sur
face S is described by derivative equations [7,3j: 

(*=3,...D, ^ A 
'.vhcre * -fê ii? — tfj( ' Xu i i are coe f f i c i en t s of the second 

quadrat ic form s e t t i n g the external geometry of the world s u r 

face S and *Л,о(|£ = — ^ f e l i a re the curvature v e c t o r s . The 
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-f 'unction 4>(t,<o) is defined as £ =^("C, S')-
Projecting (4) on any normal W£ one ,r;ets 

(* + &&>Ъ*ли(ъ&) + 2. W<№)-S i ,< =0 , (5) 
(1 = 1,2). 

Let choose the sauf~e of a coordinate on the surface S 
so as 6"л=0 and as the ran,r,e of definition 06 of para
meters t and 5* the rectangle: ftri4T6t2.;0=6"1<6"i-6j=£)r]. 

Below we will see that this would does not brin-; 
any additional restriction on solving the p.-oble:.: (з)-(-+). 

Indeed, if one compares the first equation in (5) at в"= 
-Si = const and the boundary condition (4-), equating expressions 
of the sane basis vectors, we'll ,<:et some relations at the 
boundaries: 

4сж (t}e-£) = 0 , (7) 

Equations (б) and (7) lead to conditions St,i = 0 

since in general tfckl.(к,<51) Ф 0. 

The boundary condition (S) had been studied for the case 
EnuH' '''''itn t 5 i e help of solutions of these equations the 
world surface for some particular kinds of motion of the 
relativistic string with masses at the ends were found. As is 
generally known |_2,7J a minimal surface can be described in 
terms of its radius vector )( (tfb) or a set of variables 
<^j(r/^,4ly(t^)>%|i(^> h l 0 h satisfy the minimal surface 
conditions' 



&*\ij-C^t=0 , (9) 

*auns eauations 

RUM = - £ (L\ik Ui - l*\it 4c»*o, < I 0 > 

Peterson - Kodazzi equations 

and Ricci equations 

vp*ij,i - у^|Ц - £ 5 ( % i j ^ - v ^ f y i j ) + ci2) 

where \ /^ i s a oovariant derivative with respect to the 

Г7.уГ _ ч/Г. _ Г * х £ (13) 

metric tensor fl£j 

м 

Here |J,L are the Christoffel symbols for fly, L?J • 

(14) 

and the Rlemann curvature tensor Ktjil i & s o n l y o n e 

essential component K.12.-12.. 
The minimum conditions (9) (or in other words» equality 

of the mean curvature in 1?£ -direction to zero) follow 
from (з) and from the definition of the coefficients of the 
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second quadra t ic form <teiLL . equations are 

condi t ions of i n t e g r a t i o n of the de r iva t i ve formulae ( 5 ) . This 

system wi l l considerably get s impl i f i ed , i f we choose a nev/ 

bas i s of vec to r s on the minimum surface so t ha t the normal У?Г 

po in t s into the d i r e c t i o n ViX,2. and fy a lo n G ^ 1 ">S 1 

[2 j . '^his t r a n s i t i o n may he done through r o t a t i o n s from 

group which don ' t mix the tanget vec tors 

X^c ( i=l>2) and normals Y)£ (ot = 3 , . . D) . Then from (5) 

we find 

and from Peterson - Kodaazi equat ions a f t e r simple t ransforma

t i o n s i t follov/s that 

| -Д(4и*±4игГ^ ( 1 6 ) 

where i s o t r o p i c coordinates U~ = 1Л± — U t = t ± 0 

are int roduced. I n t e g r a t i n g (16) wo have 

«*=3 

On the o ther hand, taking into account ( 5 ) , '«e obta in 

- t (C± wr=(w,r±v*x£r ( l s ) 

Our choice of the normals V)^ and V?L l eads to 

V l X ^ ' ЧАУ&^О and, hence, A , l = А Д = A* . Talcing i n t o 

cons idera t ion (15) we simplify equation (17)'• 
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ЩШ + ^5112. = А . C l9 ) 

I'o s a t i s f y t h i " e q u a t i o n , i t in neces. ' . i ry t o pu t dov.-n 

&w = Acos f , ^ , № = A s i n | . ^o) 

where the function 0 = G(t,&) defines the curvature 
vectors VSb|i. . Indeed, from equation (ll) it follov-s that 

V3«M = v^izctcj-f , V j ^ ^ ^ H c t ^ l ,(ot=s...D; 
and Sr.ur.r- e q u a t i o n s become 

Frn::i ( n O ) tfuc t o ( 7 ) i t fo l low- , t h - t - t t h e bounda ry (<5~=S"/) 

t h e f u n o t i M в(Г^) = Т(2.Ы + 1) , . . h o c H i ir. .u: i n t e - e - - . 

'Jhe or.l.v c o e f f i c i e n t a .'.f f orer . t f:-o,~ ^c-i'c j " t h e secon;'; 

-; u -id г л t i с f o r n i s *tyK2. = A ~nd ti.e c u r v r t u r e v e c t o r s 

V&XH = V3oU2. = C ( c < = 5 ; . . . D ) . -*ov: oqur.ti?.:-.:. ( : ) .it t h e ' .^und.-.rie:; 

I/COOMC wore s i m p l e i n the no-v n o t a t i o n ?•( = *r±: ', , 
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P ' (*.ff,...D,i4,0 

where £ is a natural parameter : <|$=£c£«(<t 
be seen from equations (23), the case JJ=4 is certainly on a 
distinct statu». Further we will notice that in a particular 
case when V5»iH « 0 » t h e system of equations (23) divides 
into two independent systems, one of which has a form of the 
•/stem (23) for b=4. 

3. THE STH1NG WITH MASSES IN THE FOUR'-DIMENSIONAL 
SPACE E^ 

Consider the system of equations (23) when D=4. It is 
F "3 P"1 • 

the system cf Fren«t equations for the curves in the space C , -

~ Now one can realize the geometrical meaning of the 
coefficients Hi je^ and SC^I^J . These are respectively 
the first, second and third curvatures of world trajectories 
of point masses. Note that the first curvatures Ki (1=1,?-) 
are constant for all D then curvatures of the mass trajectories 
are constant and equal д _ 
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The search of the genera l so lu t ions to equat ions (24) i s 

very complicated, t h a t ' s why one can find only a few p a r t i c u -

l a r s o l u t i o n s . I t i s known t h a t in the space t . j _ the re i s 

a so lu t i on for '.he case when the t o r s i o n s x a re constant jVj. 

4. THE CONSTANT CURVATURES IN THE SPACE D = k 

When 26i and 26<i. are cons tant , the system (24) reduces 
to the l i n e a r equation for Xj\ [?}'• 

tha t has the c h a r a c t e r i s t i c equation 

X* + (*}+*>£-\il) \ z - \£*l -o ( 26) 

with r o o t s ; 

(27) 
X1 = - .**+**-# ± L Tiw+xl-W+wi 

There are four kinds of so lu t i on of (25) depending on the s ign 

of the r a d i c a l and r e l a t i o n s between l i t , 36-1 and 

though e q u a l i t i e s (vf*) —4 , (\г) ~ ~^ d i s t i n g u i s h two 

s o l u t i o n s ! 

>/*= A'cosas + Basinets + C*s +D1 , < 2 8 ) 

when 32». = С , X< > Ui and 

(29) 

x The f i r s t and second ourTatures are cal led the ourvature 
and the tors ion in the spaoe Ej_ . 

9 



when ге?" + уг.1 = RL 7 ~я.2.Фо. 
Here some constant vectors determined bv 
normalization of vectors Yj and \j_ . 

These solutions concern the trajectories of the point 
masses, but ive are interested in the world r,urf".ec of i'.:e 

string. For this purpose use can Ъе made of the solution of 
the equations for string (з) in terms of isotropic vectors. 

On the plane tangent to the world surface of the st 'In-
one can always transform the vectors У.,< °-nd ^ , 2 . into 
isotropic ones S^Cut; (the prime means the derivative oi 

the function T with respect to its argument). Further, 
we will use the general solution of the string equation (3): 

By definition of Yf a n d ^L it follows that 

Ovunr. to 

o^ 

(n: 

Сз,-?) 

from equation (28) one finds T ± ( t ± 6 c ) . then by I n t e g r a -

t i o n H^t ( t + 'o") and, hence, X ^ ( t , ^ ) . Since f.vo bounda

r i e s give tv.ro s o l u t i o n s , i t i s necessary t ? make them cons is tent , 

i . e . , t o compare a t 6"= <5"jr ( i = l , ? . ) . In t h i s case the so lu t ions 
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«here A^B^Cr.Df.F/ are some vectors, "ithout loss of 
generality >ve put W ; = W , i.e. Ki « f ^ - К . ( ^ I O . 
'J-hen the consistency between solutions (33) is possihle provided 
that 

. - . . . . < ^ K r , b ? - 6 r ' , Cf-e , Df=D'*,F;''=Ff', (>),!). 
The condition (34) holds when the coefficients of the same 
degrees of the parameter T are compared, the conditions norma
lization ^ 1 = 1 and ^ = -f lead to the following conditions 
on the vectors s 

So, the world surface of the relativistic string has the 
form: 

* (cos**a* - Й- -smocks') -*• Цх№ + P**, ( 3 6 ) 

where P " is an arbitrary constant vector. 
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The condition (34) coincides with the frequency equation 
derived in [10] for string motions when the parameter *t is the 
proper time of massive points at the ends of the string. This 
means that 

**j (t,0) = Y,*(r,T) = g = m~z . (37) 

In the gauge t «*••> f ( t — proper time) for different 
choices of the vectors we get a set of two-
-dimensional surfaces which, after appropriate transformations 
ot global coordinates, become hellcolds embedded into the four-
-dimensional Minkowski space. 

In the case (29) the solution satisfying one boundary 
contradicts the other. So, for constant curvatures, there exists 
only one kind of solution (Зб), ^8j. being zero. It means that 

Q)Z (t^i) —0 .As GC'C^i)" const and using the Ricci 
equation (12) for 0( -3, £ =4 

0,« - 0,« = L A V S . * Q , <38) 

one can show that " у S 4 ^ ^ , where i , j = 1 , 2 and n,m 

are arbitrary Cn>m ) . Indeed, from 0^ (xty) = 0 > ®С^&) " 

= T-(2.Hi + 1 ) and (38) i t follows that Э,г1 (?,G~L) = 0. 

Then by derivation of (38) at S"=S"i; and by induction one proves 

the above statement. Under the assumption that the function 

BCtfi) i s inf initely differentiable in the extended range 

Л * - { Ti & t ^ T,. f - £ £ 6-4- T+f. , 0 < £ ^ ] , we find that 

Q(tf5) i s constant and equals # = <ЗГ(гИ + '1) in i 6 , i . e . 

at both the boundaries i t has the same values. 

Bquatlon (22) in this case coincides with the Gauss 

equation for the world surface of the relat ivist ic string in the 
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space E ^ L 2 i 4 l • I f the vectors H i " (U*) O0)-Ol) are 

represented as an expansion over the constant basis \ Я' . 

V, №,&] Ы made for £ { W • 

4 +ft 

L l . I * 

^-'^= dK ( ^ + tfb + tit*+ c " ^ ) ' 
where |i (U +j ; Jt(K+J , QA(W~) Q(U~) а г е s o m e functions 
and the basis J (tf ? 4)<f, If C^ ] i s defined by equalities: 

then in terms of new variables we have 

and (2°) gives the expression for the function p(t^a").' 

cosG = , < ( Ы + ft'ei -

(f«-# + (f^fr) 

(42) 
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The condition can he realized when 
Tt = $1 = 0 or "fz- $tb-0 - Т*11*1 immediately leads to the 

three-dimensional case studied in deta i l in j.4 J. 
I t i s to he noticed that the condition 9,1 (t, <3l) = 0 

in the space С и is not so "a r t i f i c ia l " as the condition 
V̂ tKM (YjSi) = 0. The Ricoi equation (12) at E> = 4 together 

with conditions (21) at <o~=̂ ~<; result in the equalities 

e ' ! ^ r«^^ = P>.., . . .D). ( 4 3 ) 

It means that we choose the asymptotic coordinate system [,7j. 

5. Conclusion 

In the given geometrical approach to solving the problem 
of a relativistic massive string the values of the curvatures 

36i(t) e^tCwof the world trajectories of point masses are 
very important. The full analysis of the boundary equations (5) 
is complicated. In a particular case of constant 2€-t and <£?. 
the solutions (3)-(4) are obtained. 

The search for other configurations of the string world 
surface is undoubtedly of great importance. 
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