

объединенный институт
 ядерных исследований
 дубна

E2-91-580
M.N.Tentyukov

ABOUT SYMMETRY OF THE GRAVITATIONAL

 ACTIONSubmitted to "Physics Letters A"

Many attempts were made to solve the problem of localization of the gravitational energy by introducing the nondynamical (background) object $/ 1,2 /$. Usually it was a background metric (bimetric theories) and the gravitation was considered as a conventional matter field. alongside with other fields /3/. The theory remained generally covariant but the dynamical invariance under the diffeomorphism group was violated. In the general case, when the background object is arbitrary, the invariance is completely violated. i.e.. any residual symmetry is absent. However, if the background object permits the group of motions, the theory is Invariant under this group. Usually, the background obJect is a metric permitting a Poincare group, and thus the energymomentum problem seems to be solved.

In the present paper it is shown that if we want to use the Einstein equations, then, despite the action functional invariance belng violated with respect to the diffeomorphism group by the background obJect, a new infinite- parameter invariance appears, 1.e., the action invariance can be extended from the group of motions of the background object to any infinite - parameter group.

For introducing the energy - momentum density it is enough to consider the affine connection r^{2} as a background object $/ 4 ; 5 /$ (see also $/ 6 /$). The difference between in and the Christoffel's symbols Γ^{k}. is the affine - deformation tensor $P_{m n}^{k}=Y_{m,}^{k}-\Gamma_{n}^{k}$.

We start with the Lagrangian

$$
\begin{equation*}
L=\sqrt{-g^{\prime}} g^{m}\left(P_{m b}^{d} P_{a n}^{b}-P_{b a} P_{m n}^{b}\right), \tag{1}
\end{equation*}
$$

where the metric tensor g_{1}, describes the gravitation field and $r_{k m}^{l}$ is the nondynamical background affine connection without torsion. Being varied with respect to $g_{1 k}$. the action

$$
\begin{equation*}
S=\int L d^{4} x \tag{2}
\end{equation*}
$$

leads to the variational derivative

$$
\begin{equation*}
\Psi^{m n}=2 \frac{\delta S}{\delta g_{m n}}=\sqrt{-g} g^{m a} g^{n b}\left({ }^{\prime} a_{b}+R_{b a}-\hat{R}_{1},^{\prime} \mathcal{I}_{g b}-2 G_{b b}\right), \tag{3}
\end{equation*}
$$

where $G, A_{b}=R_{a b}-\frac{1}{2} R_{a b} g_{a}$ the Einstein tensor: $R_{1 k}=R_{p / k}$ is, the
 tensor for the background connection. As is clear from (3), if $\mathrm{R}_{(1, k)}=0$, then the equations
coincide with the Einstein equations

$$
\begin{equation*}
G_{1 k}=0 . \tag{5}
\end{equation*}
$$

By v. we denote the covariant derivative with respect to ym. Let the following terms be defined as

$$
\begin{align*}
& t_{a}^{k}=\frac{\partial L}{\partial g_{m n, k}} V_{a} g_{m n}-L \delta_{a^{\prime}}^{k} \tag{6}\\
& \sigma_{a}^{\prime k}=\frac{\partial L}{\partial g_{m n, j}}\left(g_{m a} \delta_{n}^{k}+g_{n a} \delta_{m}^{k}\right) \tag{7}
\end{align*}
$$

where comma before an index means the partial derivative.
A11 introduced terms are the tensor densities of weight one. What do these terms mean see $/ 6 /$ or $/ 7 /$

The action S is invariant under the Lie variations with an arbitrary vector field ξ^{\prime} :

$$
\begin{align*}
& \delta x^{\prime}=\varepsilon \xi^{\prime}, \tag{8}\\
& \delta Y_{m n}^{k}=-\left(V_{m}^{V_{n}}\left(\varepsilon \xi^{k}\right)+K_{a m n}^{k} \varepsilon \xi^{a}\right), \tag{9}\\
& \delta g_{m n}=-\left(g_{m a} \forall_{n}\left(\varepsilon \xi^{a}\right)+g_{n a} \forall_{m}\left(\varepsilon \xi^{a}\right)+\varepsilon \xi^{a} V_{a} g_{m n}\right) \text {. } \tag{10}
\end{align*}
$$

Here ε is an infinitesimal parameter. This invariance is a consequence of the general covariance. But it is not the dynamic invariance because (9) is the transformation of the nondynamic object.

Let the background connection permit the r - parameter group of motion G_{r}, and let $\xi_{(\lambda)}^{\prime}, \lambda=1, \ldots, r^{\prime}$, generate this group, i, e., the equations

$$
\begin{equation*}
\dot{\forall}_{m} \forall_{n} \xi_{(\lambda)}^{k}+\mathcal{K}_{a m n}^{k} \xi_{(\lambda)}^{a}=0 \tag{11}
\end{equation*}
$$

are satisfied. Then infinitesimal transformations of G_{r} are

$$
\begin{equation*}
\delta x^{\prime}=\varepsilon^{(\lambda)} \xi_{(\lambda)}^{\prime} \cdot \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
\left.\left.\delta g_{m n}=-\left(g_{m a} \nu_{n}\left(\varepsilon^{(\lambda)} \xi_{(\lambda)}^{a}\right)+g_{n} v_{m}\left(\varepsilon^{(\lambda)} \xi^{\prime} \lambda^{\prime}\right)\right)+\varepsilon^{(\lambda)} \xi^{\mathrm{a}} \lambda_{\lambda}\right\rangle^{\prime} g_{m n}\right) \tag{13}
\end{equation*}
$$

According to the first Noether theorem the following identities take place $/ 6,8 /$:

$$
\begin{equation*}
\partial^{\prime} J^{\prime}(\lambda)=X_{m n}(\lambda), \Psi^{m n}, \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
J^{J}(\lambda)=\sigma_{a}^{J} \dot{V}_{k} \xi_{(\lambda)}^{a}+t^{\prime} \xi_{(\lambda)}^{a}, \tag{15}
\end{equation*}
$$

are Noether currents and

$$
\begin{equation*}
X_{m n}(\lambda)=-\frac{1}{2} \xi_{(\lambda)}^{a} \dot{X}_{a} g_{m n}-g_{m a} \dot{V}_{n} \xi_{(\lambda)}^{a} \tag{16}
\end{equation*}
$$

are generators.
It is easy to see that

$$
\begin{equation*}
X_{m n(\lambda)} \Psi^{m n}=\xi_{(\lambda)}^{j} \nabla_{a} \Psi_{j}^{a}-O_{z}\left(\Psi_{a}^{k} \xi_{(\lambda)}^{a}\right) \tag{17}
\end{equation*}
$$

Where $\nabla_{\text {d }}$ is the covariant derivative with respect to $\Gamma_{m n}^{k}$. Since we want to use the Einstein equations, then

$$
\begin{equation*}
\xi_{(\lambda)}^{\prime} \nabla^{\Psi^{a}}=0 \tag{18}
\end{equation*}
$$

due to the Bianchi identities. As a result, (14) turns into

$$
{ }_{a}{ }_{j}\left(J^{J}(\lambda)-\Psi_{a}^{J} \xi_{(\lambda)}^{a}\right)=0
$$

i.e., $J^{\prime}(\lambda)$ is improper $19 /^{\prime}$. It is clear that this property of $J^{\prime}(\lambda)$ is closely connected with (18).

Expression (18) meansthtiatitafm hentifentities among the equatyenax quenemant
tions $\Psi^{m n}=0$. These identities can be symbolically written down as

$$
\begin{equation*}
\int \Psi^{m n}\left(x^{\prime}\right) \Lambda_{m n(\lambda)}\left(x^{\prime} x\right) d^{4} x^{\prime}=0 \tag{20}
\end{equation*}
$$

where $\Lambda_{m n}(\lambda)$ are generators

$$
\begin{equation*}
\Lambda_{m n}(\lambda)\left(X^{\prime}, x\right)=-\xi_{(\lambda)(m}(x) \nabla_{n}, \delta\left(x^{\prime}-x\right) . \tag{21}
\end{equation*}
$$

Here $\xi_{(\lambda) m}=g_{m a} \xi_{(\lambda)}^{a} \nabla_{n} \delta\left(x^{\prime}-x\right)$ is a covariant derivative of the four-dimensional δ - function with respect to x^{\prime}.

Let us consider the infinitesimal transformations

$$
\begin{equation*}
\delta_{\Lambda} g_{\operatorname{mn}}(x)=\int \Lambda_{m n}(\lambda)\left(x, x^{\prime}\right) \delta \nu^{(\lambda)}\left(x^{\prime}\right) d^{4} x^{\prime}, \tag{22}
\end{equation*}
$$

where $\delta \nu^{(\lambda)}$ are arbitrary infinitesimal functions of coordinates vanishing at the boundary of the range of integration. Let us substitute (21) into (22) and perform the integration. Then we obtain

Now we shall find the action variation

$$
\delta_{\Lambda} S=\int \frac{1}{2} \psi^{m n} \delta_{A} g_{m n} d^{4} x .
$$

If we substitute (22) into (24), then we get

$$
\begin{equation*}
\delta_{\Delta} S=\int \delta \nu^{(\lambda)}\left(\dot{x}^{\prime}\right) d^{4} x^{\prime} \int \frac{1}{2} \psi^{m n}(x) \Delta_{m n(\lambda)}\left(x, x^{\prime}\right) d^{4} x=0 . \tag{24}
\end{equation*}
$$

It means that the action is invariant with respect to the group generated by (22). But generators (21) are not independent, and not all of the parameters $\delta \nu^{\prime}(\lambda)$ are essential. For generators to be independent, the system of equations

$$
\begin{equation*}
\int \Lambda_{m n}\left(\lambda,\left(x, x^{\prime}\right) \delta \nu^{\prime}(\lambda)\left(x^{\prime}\right) a^{4} x^{\prime}=0\right. \tag{25}
\end{equation*}
$$

must have a single solution $\delta \nu^{(\lambda)}=0$ for arbitrary $g_{m n}$.
If we substitute the definition (21) into (25) and perform'integration, we obtain

$$
\begin{equation*}
\nabla_{(n}\left(\xi_{(\lambda) m} \delta \nu^{(\lambda)}\right)=0 . \tag{26}
\end{equation*}
$$

It is clear, that the left - hand side of (26) up to a factor coincides with the right - hand side of (23). Consequent1y, the condition that all parameters in (23) are essential coincides with the condition that the solution $\delta \nu^{(\lambda)}=0$ of the system (26) is single.

Let us consider an arbitrary point M within the range of integration. Let the orbit of the point M, i.e., the multitude of the points of the area which can be transferred to the point M by the transformations of the group G_{r}, be denoted by the term Q_{x}. Let among the vector fields $\xi_{(\lambda)}$ there be exactly m fields which are zero fields in M. It can be assumed without loss of generality that the zero fields are $\xi_{(\rho)}$, $\rho=1, \cdots, m$. It means that $\xi_{\text {f }}$, form the lie algebra of the stability subgroup of the point M. In differential geometry the stability subgroup is more often called the group of isotropy of M. Let us denote this group by the symbol H_{x}.!

So, the vector fields $\xi_{(\gamma)}, \quad \gamma=m+1, \ldots$. r, are not equal to zero in M. It should be remarked that these fields do not generally antrab
form the Lie algebra. Let us prove that in any neighborhood of the point M they form a set of basis fields of the orbit Q.

Indeed, according to the Frobenious theorem $/ 10 \%$ the integral curves of the fields $\xi_{(\lambda)}$, compose a family of the submanifolds of the initial manifold, because they form the Lie algebra. Each of the points of the initial manifold belongs to one of these submanifolds which are orbits of these points. A linear envelope spanned over ξ, λ) at the point M is a tangent space for the Q_{H}. Let it be denoted by T_{H}. since $\xi_{(\rho)} I_{H} 0$, then T_{M} coincides with the linear envelope of $\left.\xi_{(\gamma)}\right|_{A^{\prime}}$ Then, Q_{H} is homogeneous under action of the G_{r} by definition. Therefore, Q_{H} is isomorphic to G_{r} / H_{M} which is a factor space of the group of motion to the group of isotropy. Hence, $\operatorname{dim} Q_{M}=\operatorname{dim} G_{r}-\operatorname{dim} H_{M}=r-m \equiv p$. Consequently, the dimension of the linear envelope $\xi_{,}, \|_{\beta}$ is equal to the number of the vectors $\xi_{(\gamma)}$, therefore, these vectors in M form a basis set of \mathbf{T}_{M}.

Vector fields $\xi_{(\gamma)}$ are assumed to be differentiable, therefore there is any neighborhood U_{M} of the point M in which these fields remain linearly independent, and because their integral curves completely belong to Q_{H}, then in U_{A} the vector fields $\xi_{(\gamma)}$ form a basis set of Q_{H}.

Let us consider a vector field $\eta^{m}=\xi_{(\gamma)}^{m} \delta \nu^{(\gamma)}$. In U_{m} an arbitrary vector field tangent to Q_{μ} can be decomposed over the fields $\xi_{(\gamma)}$ with any variable coefficients. Consequently, in a neighborhood of M any a priori given tangent to Q_{H} vector field can be obtained from η^{m} by a suitable choice of $\delta \nu^{(\gamma)}$. It means, the generator of an arbitrary diffeomorphism of Q_{n} at the point M has the form $\xi_{(\gamma,} \delta \nu^{(\gamma)}$

Now we return to (26). It has been shown that in the neighborhood of M an arbitrary, tangent to $Q_{H^{\prime}}$ vector field can be decomposed over the fields $\xi_{(\gamma)}$ The field $\xi_{(\lambda)} \delta \nu^{(\lambda)}$ for arbitrary $\delta \nu(\lambda)$ is tangent to Q_{H} since all $\xi_{(\lambda)}$ are tangent to Q_{M}. Therefore, for any $\delta \nu(\lambda) ; \delta \nu^{(\gamma)}$ can be picked out such that in some neighborhood of M, $\xi_{(\lambda)} \delta \nu(\lambda)=\xi_{(\gamma)} \delta \ddot{\nu}^{(\gamma)}$. Then (26) transforms to the form $\nabla_{(n}\left(\xi_{(\gamma), n} \delta \bar{\nu}^{(\gamma)}\right)=0$.
(27) But (27) is the killing equation for the covector field $\boldsymbol{\eta}_{m}=\xi_{(\gamma)} \delta \nu^{(\gamma)}$. As an arbitrary metric tensor has no killing vectors, then the only solution of (27) is $\boldsymbol{\eta}=0$, and since $\xi_{(\gamma) m}$ are linearly independent, we obtain $\delta \dot{\nu}^{(\gamma)}=0$.

Summarizing we conclude that the group generated by the infinitesimal transformations (23) has $p=d i m, G_{r}-$ dim ${ }_{H}$ essential parameters depending on coordinates. It is the group of the metric transformations corresponding to arbitrary diffeomorphisms of the orbits. The diffeomorphism of the orbits is such a diffeomorphism of the whole manifold that integral curves of the generating vector flelds do not leave the orbits.

The author is very grateful to prof. N. A. Chernikov for his permanent attention.

REFERENCES

[1] N. Rosen, Phys.Rev. 57, 147, 150 (1940).
[2] N. Rosen, Found. Phys. 15, 997 (1985).
[3] L.P.Grishchuk, A.N.Petrov, A.D. Popova, Comm. Math. Phys 94,379 (1984).
[4] N. A.Chernikov, Communication, JINR, P2-87-683, Dubna, 1987, in Russian.
[5] N.A. Chernikov, Preprint JINR P2-88-778, Dubna, 1988, in Russian.
[6] M.N.Tentyukov, Acta Phys. Pol. B20, No 11, p. 911. (1989).
[7] M.N.Tentyukov, Communication JINR P2-88-182, Dubna, 1988, in Russian.
[8] M.N. Tentyukov, Preprint JINR E2-91-319, Dubna, 1991.
[9] B.M.Barbashov, V.V.Nesterenko, Fortsh. Phys., 31, 10, p. 535 (1983).
[10] B.F.Shutz, Geometrical. Methods of Mathematical Physics, Cambridge University Press, 1982.

