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: Hany attempts were . made to solve the problem of loca11zation of;d"
the gravxtational energy by introducing the nondynamicai (background) :
obj'ect/1 2/ ‘Usually it was a background metric (b1metr1c theories) . f
and. the gravitation: was . considered as a conventional matter f1e1d«f S|
“ alongside with other fields /3/ The .theory" remained generally COVarL“ '
ant but the dynamical invariance under the diffeomorphism group was v1{,.
olated. In the' general case, when the background object is arb1trary, :7
the" invariance ‘is completely violated. 1. e.. any residuai symmetry is. 0§
fabsent. However._if the background object permits the group of motions,‘;?
: " the: theory is invariant .under, this .group.’ Usually,
ject “is 'a‘ metric permitting a Poincare group,
‘mmomentum problem seems to be’. solved.i : i

the background ob-: 0 -
andfthusfthe‘energy—,4~‘

‘In: the present paper it is shown that- if we want to use the Ein—
;'stein equations.then,despite the action functional invariance being vi—;;'“
olated with respect to the diffeomorphism group by the background “ob-
ject a new. infinite parameter invariance appears. i e. .the actiong
',‘invariance can: be extended from the group of motions of the backgroundﬂ
'”pobject to any 1nf1n1te —vparameter group. S .rM”'xe' )

i For. introducing the energy - : momentum density it is enough to con—k.,

(sider the affine connection f as a background object /4 5/ (see also"‘ o

~;/6/) .“The difference between f “ and. the Christoffel's symbois F is'fvf
the’ affine - deformation tensor P f' - F .1_"" o
A We start with the Lagrangian e :

YR (o

: o : \f—g'"(P :n‘—\Pa SR
'where the metric tensor g, describes .the grav1tation field and f '1s'; . i
\the nondynamical background affine connection without torsion, B{eingm;g : o
varied with respect to g the action ~];Q Lf.;‘i7 EE S T 7f1»'
U A =T La*%’ vgfw}‘~“' H @)y
leads to the. variational derivative e SN 0 T R |
LR =‘2,g§ V““ g“‘ "”(ﬁ R ﬁ ‘~'ﬁ g g ~.2G ;), ‘*2(53; i :
S a8 A ; . PR
: ~where'G ‘ia,R;b —,E?R.g ~is the Einsteln‘tensor"§ . ﬁp ‘ is the-
‘.Rxcc1 tensor, ﬁf‘k é,a . -9, f’ o 17 f'lﬁ f’ I, is the Riemann”;m. "ffl
tensor for: the background connection._ As_'v is clear from (3), ir !
/ﬁka)-o then the equations B R o o : o ' l"; -
; : i Cgmao (ay
"'coincide with'the Einstein equationsﬂ" : ','3.[
L : o G}; =0.: i yl(synqt’ “
By V we denote the covarlant derivative with respect to fk Let»lj A
the following terms be defined as, . o o
. T g 1‘2 B i / & . :
! g

i

l

do these terms mean see

f rary vector f1e1d €

. ke = . o 6
- o i, 39, Va%an T La. SV D ( )
2 gk 8L Tk ik
Ua = o9 (g-a an + gna §%); (7)

where comma before an index ‘means the part1a1 derivatxve.

A11 1ntroduced terms are the tensor den51ties of weight one.’.
/6/ ¢ /7/ - . . i

The action S is 1nvariant under the Lie var1at10ns w1th an arbit-ﬁ

Whatw

NS

(8)-

e TR BXJ"eej
f;sf“;-:—(vv(eewﬁ" es).' (9)
7,,~‘5“g;"'-'=’_(g Y,(e€ + g, V(es)+eng D L(10)

Here € is an 1nf1n1te51ma1 parameter. This 1nvar1ance 1s a consequence,

f of ‘the general covariance. But 1t 1s not the dynamic 1nvar1ance because‘

a

(9) is the transformation of the nondynamic obJect. va ~f e e

Let the background connectxon perm1t the: r- - parameter group of
motlon G and 1et €(A) A = 1, : generate th1s group, ‘i'ie.;the
equatwns L : e e Sy

: & g2 S 11
s el i v v E(A) ﬁamnE().) . 0.5 : R (11)
..-are- satisfied. Then 1nfin1tes1ma1 transformations of G are ' o n
TR ' ; liﬂ BRI {A) OO : g Y
e, SRV : 6x €{A) : ’ A(??)
ST {A) (X {A) AN
6gmn =" (g vn(c E().)) + g v (C €{A)) + C {l)vagmn 7 (13)
According to the first Noetheritheorem the following 1dent1t1es take.
place /§ 8/ e R P "“ : x‘“.‘.f’j e e i
o ‘ S J oy ogEn (1a)
RE _ Qj .aJJ{A) “xmn{ﬁ);iﬂ"'-ﬁ R "_ );
5 Lot 0 L ik T w
! j : jk _‘ RIS R N 15
RS g J(A) V €{A) f t E(A) ‘ )
i are Noether currents and- ,»‘s, i CE R
; i L S S (16)
. Ny ”“xgxnn{A) P {A)v g g V E{M R (,')
. are generators.rkJ;,~ S SR L o ;
VIt s -easy to see - that o L AR
; N : mne - !‘,,~v.%a‘ 17
e ,~nxnn{A) w; E{M a (W €{A) e T (an
rwhere V 1s the covariant der1vative w1th respect to F
Since we want to use the Einstein equations, then
G : vl [N , ~__ v (18)
* Co €{M a) J o o . e
due to the Bianchi 1dent1t1es. As'a’ result,’ (14) turns 1nto‘~‘ -
, PRI gl ) = ’ L '(19)
% /Q?J(J{A) v, e(A)) o, - s
i.e., J{A is improper It is c1ear that this property of J(A) is

closely connected w1th (18) i
. Expression (18) means dhab:thﬁiﬁ W nt1t1es among the equa—

‘ ;f;.::; HX Bé‘-.uuonm
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tions Q" = 0 These 1dent1t1es can be symbollcally wr1tten down as

REPR - mn . _ . Lt A o
R . SR 4 "(x") AmnrA)(x x) a*x’ = U. B ‘ (20)’
qhere A_n(l)lare generators . ‘ . » G ;T:
g : Amnrh)(x X)) = - g{a)(m(x) v a(x.—,x) , , (21)

- ) ;
Here E(A)- ;g_ak G{A), Y 6(x - X) 1s ‘a covar1ant der1vat1ve of “the
tfour - dimens1ona1 8 — function with respect to x". , f
V Let us consider the infin1tes1ma1 transformat1ons ] N o
809,00 = [ A o (6x) sv'Mxy a'x’, . (a2)

¥

y}' = . mn(A)
where 6v(h)

~(21) 1nto (22) and perform ‘the 1ntegrat10n. Then. we obtain
. A (@ V)

S Agmnz’— 2 (gma n(av e(A)) + 9, V (sv e(A))) T, "(23)
;Now we shall find the action var1at1on T R TRt
I " 3,8 =,,~|‘ = \1( 8,9, d%. oL s T (24)
If | we subst1tute (22) 1nto (24), then we get . . - RS U
(A) gun a. B
1 858 = I avf (x ) atx’ f (x) A {A)(x X ) d X =40,

It; means that the action is 1nvar1ant w1th respect ‘to the group‘genera—
ted by (22) But’ generators (21) are -not’ independent and not all,of

“the - parameters 6v(lz,are essentlal For,generators;to.be,independent;’v
the system of equat1ons e e o TS

: T, ) av‘“’(x ) a'x’ =0 ‘, L e
must have a s1ng1e solution 3y, A),_ 0 for arb1trary g, . ’ :

'If we subst1tute the def1n1t1on (21) into (25) and perform 1nteg—
rat1on, ‘we: obtain .’ S T P e : ;\""‘
e r,.(Enu,,.;B ”“) =o. . (2e)
It is clear , that the left .- hand.side of (26) up to a factor co1nc1—
des with the right - hand s1de of (23) COnsequently.'the condltlon
fthat all parameters in (23) are essent1a1 coinc1des w1th the condltxon

are arbitrary 1nf1n1te51mal functions’ of coordinates vanx—f"
shing at the boundary of the range of 1ntegratlon. ‘Let us substltute .

iConsequently, the dimension of the 11near envelope £

i o

form the ‘Lie algebra. Let us prove that 1n any nexghborhood of the po—y
1nt M they form a set of. basis fields of the orbit Q.. . s .
Indeed accord1ng to the Froben1ous theorem /10 the 1ntegral cur-
ves of ‘the f1elds 5 compose a fam11y of the submanxfolds of the ini-
tial manlfold, because they form the Lie algebra. Each of the points of

the’ 1n1t1al manifold belongs to one of these, submanifolds which, are ‘or-.

bits of these p01nts. A‘llnear envelope spanned over £ "at the .point

(A)

M is a tangent space for the’ Q, Let 1t be denoted by T . Since-

e(p)|'= 0, then T coincides w1th the 11near envelope of 5(7)|”: Then,

Qg is. homogeneous under actlon of the. G by deflnxtxon. Therefore, Q”
Lo is 1somorph1c to G /H wh1ch is a factor space of the group of motxonj

“to the group of 1sotropy.;Hence, d1m Q = dim G f— dim H ;‘r ~-m =.p.
I

(7) » 1s equal to.

the ‘number ' of - the vectors 5 (7 therefore, these vectors 1n M form a“

basis set of T . : , ;
Vector f1e1ds 5{7) are assumed to be d1fferent1ab1e.'therefore
there is any ne1ghborhood U of the poxnt M in whxch these fxelds re-

,maln 11nearly 1ndependent and because thexr 1ntegra1 curves completely'
L belong to’ Q B then in U the vector f1elds 5

form a basxs set of Q

(7) ;
~‘Let us cons1der a vector f1eld n =I£(7)6v(7). In U an arb1trary
vector field: tangent to Q ‘can; “be decomposed over the f1elds 13 thh

(¥ .
any variable coeff1c1ents. COnsequently, in a’ nexghborhood of M any al

prlorl given tangent to Q vector f1eld can be. obtaxned from n by a
su1table ch01ce of &7, It means, the generator of ‘an arbxtrary d1f—
feomorphlsm of Q at the polnt M has ‘the form g p ¥

- Now we return to (26). It has been shown that in the nelghborhood‘
of M an arb1trary, tangent to Q ,lvector field can be decomposed over’
‘the: f1elds 5(7) ‘The f1eld Q(A) (A) for. arb1trary Bv A)~:1s tangent to

,vQ” s1nce all’ E are tangent to. Q Therefore. ‘for ‘any GU(A) 65(7)f

§that the solution 6v(l) = 0 of the system (26) ‘is s1ngle

- v ji 4+ can’ i be p1cked ut " such ° that in - some "nexghborhood of; M,

7 Let us conslder an arb1trary p01nt M within the range’ of 1ntegra- = 2 : €(A,5 (A _ 5(7) -(1)_ Then (26) transforms to the form: Vo .
tion. Let the orbit ‘of the point M, 1 e., the. multltude of: “the p01nts of .Y ) (& -r7)) = 0. " i ) o(27)
the area wh1ch can be transferred to the p01nt M by the transformat1ons {" (7) o N i

\”‘But (27) is’ the "K1lling equatxon for the - .covector ' field
of the group G » 'be ‘derioted by the term Q Let among the vector f1elds - € 7 as an arb1trary metric tensor has no-Killing vectors.k

E(A) there be exactly m f1e1ds whlch .are, zero fields in H. .It -can be i** then thg)only solution of (27) is H=o0, and ‘since 5
assumed wlthout loss of genera11ty that the Zero. f1elds are 3 1ndependent we obta1n sp(v) 0.

P =,1. e It means that 5 (p form the Lie algebra of the stab111—)'

ty SUbgroup of the point M. In d1fferent1a1 geometry the stab111ty Sub-.
group is more often called the group of 1sotropy of M. Let us denote
this group by.the symbol H ,_';:J“ ,:‘ : PTITN o 3

"SQ. the vector f1elds 5(7) ¥ —'m+1'f.Q.'}r. are not equal to

zero*inﬁh wlt.shouldébe‘remarked“th t these flelds do . not generally =

(7)m are llnearly_,
(p)’: .
Summarlzlng we conclude that the group ‘generated by the 1nf1n1te-,
- simal transformations- (23) has® p ; ‘dim G e d1m H“'essential parame—
ters depending on coordlnates. It 1s the group of ‘the metric trans-.
format1ons correspondlng to arb1trary d1ffeomorph1sms .of the orbits.
The dxffeomorphlsm of the orbxts is such.a diffeomorphism of the whole

1. -manifold - that lntegral curves .of the. generating vector flelds do ‘not -’
';;"‘ leave the orblts N Cgo

Y

i i A,




; The author is very grateful to Prof. N.A.Cherﬁikov{for his perma- =
nent attentlon."/~. g D c e N N
S : . " v N -

1]
a1
a1

’r,t%l
(6]
17

_ts]
191

REFERENCES = =, 7 .

TR o ST B

N Rosen, Phys Rev.,57, 147, 150 (1940)
N.Rosen, Found. Phys. 15, 997 (1985) . o ; EETREE :
L P. Grlshchuk, A.N. Petrov, A.D.Popova, Comm.'" Math. 3Phy§f94,j3793
'N.A. Chernlkov,, Commuﬁiéaiiohf jiNR1;P2}87?683,,’ ;Duﬁﬁé;‘i§87,‘ in-'
Ru551an., 8 . o : ,v.'l' ,,f L : : ,}f ‘f,i 'i;::‘
“N.A. Chernlkov, Preprlnt JINR P2 88—778 Dubna,1988 in- Ru551an
M. N Tentyukov, Acta Phys. Poli 'B20, No 11, p. 911 (1939) e i
‘M. N Tentyukov, Communlcatloh JINR Pz -88~- 182, Dubna, 1988;' in
' Russian. K B ;’ i ~ i R T e
M.N. Tentyukov, Preprlnt JINR E2-91- 319 Dubna 1991., N
B. M Barbashov, V.V, Nesterenko, Fortsh.: Phys., 31 1o, p 535 (1983)

j:[10] B F. Shutz. Geometrlcal Methods -of. Mathematlcal Phy51cs, Cambrldgei

o

Un1ver51ty Press, 1982 A




