91-578



Объединенный институт ядерных исследований дубна

E2-91-578

L.G.Afanasyev

INTERACTION OF THE COULOMB BOUND STATE OF TWO ELEMENTARY PARTICLES WITH ATOMS

Submitted to "Zeitschrift für Physik D"

1991

### 1. Introduction

Study of atom-atom interactions at high velocities has a long history. An interest to theoretical study of this problem resumes after publishing the papers where production of Coulomb bound states of elementary particles (elementary atoms) is predicted for decays  $\pi^* \rightarrow A_{2e} + \gamma$  [1],  $K_{L}^* \rightarrow A_{\pi\mu} + \nu$  [2] and for inclusive processes  $p + p \rightarrow A_{ab} + X$  [3]. Here  $A_{2e}$  denotes a positronium atom,  $A_{\pi\mu}$  denotes an atom consisting of  $\pi$  and  $\mu$  mesons (with the opposite sign),  $A_{ab}$  denotes dimeson atoms consisting of meson pairs  $\pi^+\pi^-$ ,  $\pi K$ ,  $K^+K^-$ . The relativistic atoms  $A_{2e}$  [4-6] and  $A_{\pi\mu}$  [7-9] have already been observed.

Knowledge of cross sections is very important for observation of dimeson atoms because of a method of its recording based on ionization (breaking up) while passing through a target. So it is necessary to calculate a total ionization probability in subsequent acts of interaction. Therefore one must know total, ionization and excitation cross sections for different initial states of elementary atoms.

A detailed analysis of previous cross section calculations for atom-atom interaction can be found in Ref.[10-13]. So I briefly recount the main results obtained in the recent papers [10-13]. In these papers the total and excitation cross sections were calculated in the first Born approximation for the ground state of elementary atoms.

In Ref.[10-12] formulas for the cross sections of elementary atoms with arbitrary masses of particles were given. For description of target atoms the Thomas-Fermi-Molier parameterization [14] was used. The authors allowed for only elastic interactions of target atoms (coherent scattering of projectile atoms).

The more accurate parameterization of target atom form factors based on the self-consistent field method of Hartree-Fock [15] (H.F.) was applied in Ref.[13]. Moreover the cross sections involving inelastic interaction of target atoms (incoherent cross sections) were calculated.

The relativistic corrections to a cross section of elementary atoms were obtained in Ref.[11-12]. These values are equal to or less than 1%.

In the paper [16] the eikonal approximation was applied to cross section calculations instead of the Born one. This approach gives a possibility of considering the contribution of all multi-photon exchanges

for an atom-atom interaction. The accuracy of this approximation for heavy atoms is about 0.2%, compared with 10% for the Born one. The total, elastic and inelastic coherent cross sections were obtained for the interaction of  $A_{2\pi}$  with Ta (Z=73).

In the present paper the total, excitation and ionization cross sections are calculated in first Born approximation with the most possible accuracy.

2. Formulas

The well-known formulas of the first Born approximation were used for cross section calculations (see Ref.[13,17]). These formulas were changed to consider elementary atoms with arbitrary masses of components according to Ref.[10]. Then the cross section of atom-atom interaction is given by

 $\sigma_{i}^{f,k} = 8\pi \frac{\alpha^{2}}{\beta^{2}} \int |F_{i}^{f}(\eta \vec{q}) - F_{i}^{f}(\xi \vec{q})|^{2} \cdot |F_{k}(\vec{q})|^{2} \frac{dq}{q^{3}}.$  (1)

Here i and f are the initial and final state of the elementary atom, k is the final state of the target atom (initially target atoms are in the ground state), q is the transfer momentum,  $\alpha$  is the fine structure constant,  $\beta$  is the velocity of a projectile elementary atom. The first factor under integral describes an elementary atom and the second one relates to a target atom.

The form factor of the elementary atom  $F_{i}^{f}(\vec{q})$  is expressed as

 $F_{i}^{f}(q) = \langle f | exp(i \vec{q} \vec{r}) | i \rangle.$ <sup>(2)</sup>

The variables  $\xi$  and  $\eta$  depend on the masses of elementary atom components:

 $\xi = m_1 / (m_1 + m_2), \quad \eta = -m_2 / (m_1 + m_2).$ 

The target atom form factor  $F_{k}(\vec{q})$  is written as

 $F_{k}(q) = \langle k | Z - \sum_{i=1}^{n} exp(i \vec{q} \vec{r}_{i}) | 0 > exp(i \vec{q} \vec{$ 

Here summation is done over all atom electrons. If  $k \neq 0$ , the term Z has no



contribution because of orthogonality of wave functions. If k=0, the expression of the elastic form factor  $F_0(q)$  in terms of the atomic form factor F(q,Z) is obtained

$$F_{0}(q) = Z - < 0 \left| \sum_{l=1}^{Z} exp(i\vec{q}\vec{r}_{l}) \right| 0 > = Z - F(q,Z)$$

At high velocity of a projectile atom the limits of integration in Eq.(1) approach their bound values [10,17]:  $q_{min} \rightarrow 0, q_{max} \rightarrow \infty$ .

After summation of Eq.(1) over all excited states of the target atom  $k \neq 0$  the incoherent cross section (inc) is

$$\sigma_{i}^{f,inc} = 8\pi \frac{\alpha^{2}}{\beta^{2}} \int |F_{i}^{f}(\eta \vec{q}) - F_{i}^{f}(\xi \vec{q})|^{2} \cdot S_{inc}(q) \frac{dq}{q^{3}}.$$
 (3)

Here  $S_{inc}(q)$  is the incoherent scattering function

$$S_{inc}(q) = \sum_{k \neq 0} |F_k(q)|^2$$

The coherent cross section (elastic for a target atom) is

$$\sigma_{i}^{f,coh} = B\pi \frac{\alpha^{2}}{\beta^{2}} \int_{0}^{\infty} |F_{i}^{f}(\eta \vec{q}) - F_{i}^{f}(\xi \vec{q})|^{2} \cdot |F_{0}(q)|^{2} \frac{dq}{q^{3}}.$$
 (4)

To obtain the total cross section the sum rule for a complete set of elementary atom final states is used in the form [10]

$$\sum_{i} |F_{i}^{f}(\eta \vec{q}) - F_{i}^{f}(\xi \vec{q})|^{2} = 2 - 2 \cdot F_{i}^{i}(\vec{q}) .$$

Here  $F_i^{l}(\vec{q})$  is the atomic form factor of the initial state. So after summation of Eqs.(3) and (4) over all f the total cross section is written as

$$\sigma_{tot} = 16\pi \frac{\alpha^2}{\beta^2} \int \left(1 - F_i^i(\vec{q})\right) \cdot \left(\left|F_0(q)\right|^2 + S_{inc}(q)\right) \frac{dq}{q^3}.$$
 (5)

Therefore the  $\sigma_{tot}$  and other cross sections discussed below consist of two parts: the coherent cross section  $\sigma_{coh}$  and the incoherent one  $\sigma_{inc}$ .

In this approach the cross sections of elastic scattering of elementary atoms  $(\sigma_{e_i})$  are calculated as any transition (excitation)

tanian**4** Na Juwa Mangkarentani a cross sections. Inelastic cross sections  $(\sigma_{inel})$  and ionization ones  $(\sigma_{ion})$  are calculated by subtracting the  $\sigma_{el}$  and the sum of excitation cross sections  $(\sigma_{ex})$  from the correspondent total one [13,18].

$$\sigma_{inel} = \sigma_{tot} - \sigma_{el}$$
(6)  
$$\sigma_{ion} = \sigma_{tot} - \sigma_{el} - \sigma_{ex}$$

يېلىسىمۇ بېياڭىغ بېرى د دەسىر بەر بولىرى ئۇ دېيىرىيەر بەر تارىخا يەرىكى ئەۋىرى يېچىغىدىد تارى ت

Direct calculation of the  $\sigma_{ion}$  is difficult because the exact Coulomb wave functions of continuum are expressed through infinite series.

In the Born approximation all cross sections depend on a projectile atom velocity as  $1/\beta^2$ . In this paper the asymptotic cross sections at  $\beta=1$  are calculated.

### 3. Form factors of elementary atoms

ATTAC BART ON TO THE THE

Exact wave functions of elementary (hydrogen-like) atoms are well known. Nevertheless form factors of these atoms for various initial and final states are not available (for the author). Therefore the exact analytic calculations of the form factors of interest were done using the algebraic programming system REDUCE (see Ref.[19]).

The form factor of the elementary atom Eq.(2) may be written

$$F_i^f(\vec{q}) = \int d\vec{r} \, \exp(i\vec{q}\vec{r}) \, \varphi_f(\vec{r}) \, \varphi_i(\vec{r}) \, .$$

Here  $\varphi_i(\vec{r})$  and  $\varphi_j(\vec{r})$  are the wave functions. Choosing the quantization axis along the transfer momentum and denoting the initial and final states by the sets of quantum numbers (n, l, m) and  $(n^*, l^*, m^*)$  respectively one has

$$F_{nlm}^{n'l'm'}(\vec{q}) = \int dr r^2 \int d\theta \sin\theta \exp(i\vec{q}\vec{r}) \int d\phi \varphi_{n'l'm}^*(\vec{r}) \varphi_{nlm}(\vec{r})$$
(7)

The integration over  $\phi$  leads to the selection rule of permitted transfers in the first Born approximation  $m - m^* = 0$ . The integration over  $\theta$  reduces to integrals of functions Sin and Cos in integer powers. The improper integral over r is evaluated using the formula (see, e.g., Ref.[20])

$$\int_{0}^{\infty} x^{n} e^{-ax} \cdot \left\{ \begin{cases} \sin(bx) \\ \cos(bx) \end{cases} \right\} dx = n! \left[ \frac{a^{2}}{a^{2} + b^{2}} \right]^{n+1} \sum_{k=0}^{\left[ (n+1-\delta)/2 \right]} \left( \frac{b}{a^{k}} \right)^{2k+\delta} \cdot \left( \frac{b}{a} \right)^{2k+\delta}$$

Here  $\delta = \begin{cases} 1\\ 0 \end{cases}$  corresponds to  $\begin{cases} Sin(bx)\\ Cos(bx) \end{cases}$ . This integration was done with the help of substitution rules.

In this way the exact analytic expressions of elementary atom form factors for any discrete-discrete transition from initial s-states were obtained. This method can be easy applied to an arbitrary initial state. Some of the form factors are given in the Appendix.

4. Form factors and incoherent scattering functions of target atoms.

The hydrogen atom is described by exact formulas as elementary atom. For other atoms parameterization of H\_F. was applied. There are tables of F(q,Z) and  $S_{inc}(q,Z)$  [15] obtained in this way practically for all chemical elements.

The transfer momentum q in Ref.[15] is expressed in terms of frequently used parameter  $x: q=4\pi \times [Å^{-1}]$ . To compute the cross section the interpolation of the F(x,Z) and  $S_{inc}(x,Z)$  tables over x was done. In the range 0<x<0.005 Å<sup>-1</sup> the square interpolation was applied. In the range x>10 Å<sup>-1</sup> the asymptotic Bethe-Levinger formula for F(x,Z) was used as in Ref.[15]. The  $S_{inc}(x,Z)$  also has the asymptotic value (Z) when the value of x is higher than Z Å<sup>-1</sup>. In the interval of x from 0.005 Å<sup>-1</sup> to the corresponding asymptotic boundary the F(x,Z) and  $S_{inc}(x,Z)$  tables were interpolated using the log-log cubic spline. Additional requirement for spline was smoothness of the first derivatives at the edges of the interpolation intervals taking into account the function behavior outside.

5. Numerical calculations and discussion

Numerical integration of Eqs.(3)-(5) gives coherent and incoherent parts of excitation and total cross sections. The accuracy of the computation was  $10^{-4}$ . The finite upper limit of integration  $q_{max}$  was used, for atoms containing mesons it was  $2 \cdot 10^4$  Å<sup>-1</sup> ( $\approx 39$ MeV/c) and  $1.5 \cdot 10^3$ Å<sup>-1</sup>( $\approx 3$ MeV/c) for A<sub>2e</sub>. This value defines the range of the transfer momenta significant for the interaction. Table 1. Cross sections of  $A_{2e}$  in the 1s state. Explanations are given in

| the              | text.                                                 |                                                       |                                                                                             |                                                                                             |                                                                                             |  |  |
|------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|--|
|                  | 1999 <b>1 H</b>                                       | 6 C                                                   |                                                                                             | 18 Ar                                                                                       | -93.2 73 Ta                                                                                 |  |  |
| tot              | 8.01-20                                               | 5.91-19                                               | 6.59-19                                                                                     | 2.36-18                                                                                     | 1.57-17                                                                                     |  |  |
| f                | cob inc                                               | coh inc                                               | coh inc inc                                                                                 | cob 50. inc. inc.                                                                           | cohinc                                                                                      |  |  |
| tot<br>ex<br>ion | 2.15-01 7.85-01<br>2.57-02 2.61-01<br>1.89-01 5.24-01 | 6.43-01 3.57-01<br>7.51-02 1.08-01<br>5.68-01 2.49-01 | 6.56-01         3.44-01           6.23-02         9.99-02           5.94-01         2.44-01 | 8.23-01 1.77-01<br>7.55-02 5.08-02<br>7.48-01 1.26-01                                       | 9.37-01 6.32-02<br>6.98-02 2.03-02<br>8.67-01 4.29-02                                       |  |  |
| 2p<br>3p<br>4p   | 1.66-02 1.82-01<br>4.46-03 4.06-02<br>1.82-03 1.57-02 | 4.85-02 7.49-02<br>1.31-02 1.69-02<br>5.33-03 6.51-03 | 4.00-02         6.92-02           1.09-02         1.57-02           4.48-03         6.06-03 | 4.85-02         3.53-02           1.32-02         7.96-03           5.42-03         3.08-03 | 4.53-02         1.43-02           1.21-02         3.11-03           4.90-03         1.19-03 |  |  |

Table 2. Cross sections of A<sub>20</sub> in the 2s state

|                  |                                                       | 6 C                                                   | 7 1                                                                                         | 18 År                                                 | 73 Ta                                                 |  |
|------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--|
| tot              | 1.80-19                                               | 9.67-19                                               | 1.03-18                                                                                     | 3.23-18                                               | 1.97-17                                               |  |
| f                | coh inc                                               | coh inc                                               | coh inc                                                                                     | coh inc                                               | coh inc                                               |  |
| tot<br>ex<br>ion | 1.18-01 8.82-01<br>1.23-02 4.73-01<br>1.06-01 4.08-01 | 4.84-01 5.16-01<br>4.91-02 2.64-01<br>4.35-01 2.53-01 | 4.98-01         5.02-01           3.94-02         2.48-01           4.58-01         2.54-01 | 7.06-01 2.94-01<br>5.41-02 1.46-01<br>6.52-01 1.48-01 | 8.66-01 1.34-01<br>6.80-02 7.67-02<br>7.98-01 5.75-02 |  |
| 2p<br>3p<br>4p   | 9.17-03 3.68-01<br>8.83-04 4.41-02<br>3.12-04 1.32-02 | 3.66-02 2.05-01<br>3.52-03 2.46-02<br>1.25-03 7.39-03 | 2.92-02 1.93-01<br>2.91-03 2.29-02<br>1.03-03 6.91-03                                       | 4.01-02 1.13-01<br>3.97-03 1.35-02<br>1.41-03 4.07-03 | 5.11-02 5.97-02<br>4.77-03 7.41-03<br>1.67-03 2.20-03 |  |
| 4f.              | 4.89-04 1.15-02                                       | 1.95-03 6.43-03                                       | 1.56-03 6.12-03                                                                             | 2.14-03 3.58-03                                       | 2.65-03 1.74-03                                       |  |

Table 3. Cross sections of A<sub>20</sub> in the 3s state

|                  | and the second sec | 20                                                    | e esta della d | 2 TEN LUMBER DURING STRUMPTING OF MEMORY              |                                                                                             |  |  |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------|--|--|
|                  | 1 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 C                                                   | 7 B                                                                                                            | 18 År                                                 | 73 Ta                                                                                       |  |  |
| tot              | 2.41-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.16-18                                               | 1.21-18                                                                                                        | 3.60-18                                               |                                                                                             |  |  |
| " <b>f</b> "     | coh inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | coh inc                                               | coh inc                                                                                                        | coh inc                                               | coh inc                                                                                     |  |  |
| tot<br>ex<br>ion | 9.01-02 9.10-01<br>5.22-03 5.11-01<br>8.48-02 3.99-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.11-01 5.89-01<br>2.32-02 3.14-01<br>3.88-01 2.75-01 | 4.29-01 5.71-01<br>1.90-02 2.93-01<br>4.10-01 2.78-01                                                          | 6.44-01 3.56-01<br>2.72-02 1.84-01<br>6.17-01 1.72-01 | 8.20-01 1.80-01<br>3.88-02 1.08-01<br>7.81-01 7.24-02                                       |  |  |
| 2p<br>3p<br>4p   | 9.80-04 1.54-02<br>1.61-03 3.29-01<br>2.27-04 3.78-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.36-03 9.66-03<br>7.13-03 2.06-01<br>1.01-03 1.84-02 | 3.62-03 9.41-03<br>6.04-03 1.91-01<br>8.70-04 1.67-02                                                          | 5.29-03 5.81-03<br>8.25-03 1.21-01<br>1.19-03 1.06-02 | 6.37-03         2.74-03           1.33-02         7.24-02           1.80-03         6.29-03 |  |  |
| 4f<br>5f         | 1.33-03 7.95-02<br>3.66-04 1.34-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.93-03 4.92-02<br>1.63-03 8.30-03                    | 4.69-03 4.70-02<br>1.30-03 7.98-03                                                                             | 6.84-03 2.93-02<br>1.89-03 4.96-03                    | 9.75-03 1.65-02<br>2.59-03 2.65-03                                                          |  |  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                                                                                |                                                       |                                                                                             |  |  |

Table 4. Cross sections of  $A_{\pi\mu}$  in the 1s state

|                                | 2 1 <b>1 1 1 1 1 1 1 1</b>                                                                  | 6 C                                                                                         | 7 B                                                                                         | 18 Ar                                                                                       | 73 Ta<br>4.47-20                                                                            |  |
|--------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|
| tot                            | 2.72-23                                                                                     | 4.57-22                                                                                     | 5.98-22                                                                                     | 3.28-21                                                                                     |                                                                                             |  |
| f                              | coh inc                                                                                     |  |
| tot<br>el<br>inel<br>ex<br>ion | 4.58-01 5.42-01<br>7.59-04 7.59-04<br>4.58-01 5.41-01<br>2.98-01 3.58-01<br>1.60-01 1.83-01 | 8.33-01 1.67-01<br>1.62-03 2.70-04<br>8.31-01 1.67-01<br>5.32-01 1.09-01<br>2.99-01 5.80-02 | 8.53-01 1.47-01<br>1.69-03 2.41-04<br>8.51-01 1.47-01<br>5.43-01 9.58-02<br>3.08-01 5.12-02 | 9.38-01 6.23-02<br>2.02-03 1.13-04<br>9.36-01 6.22-02<br>5.97-01 4.01-02<br>3.39-01 2.21-02 | 9.85-01 1.52-02<br>2.40-03 3.33-05<br>9.82-01 1.52-02<br>6.09-01 9.56-03<br>3.73-01 5.61-03 |  |
| 2p<br>3p<br>4p<br>5p           | 2.27-01 2.73-01<br>3.87-02 4.60-02<br>1.37-02 1.63-02<br>6.49-03 7.69-03                    | 4.03-01 8.29-02<br>6.95-02 1.41-02<br>2.47-02 5.00-03<br>1.17-02 2.37-03                    | 4.11-01, 7.28-02<br>7.11-02, 1.24-02<br>2.53-02, 4.40-03<br>1.20-02, 2.08-03                | 4.46-01 3.04-02<br>8.10-02 5.23-03<br>2.89-02 1.86-03<br>1.37-02 8.80-04                    | 4.59-01 7.22-03<br>8.08-02 1.26-03<br>2.89-02 4.49-04<br>1.37-02 2.13-04                    |  |

Table 5. Cross sections of  $A_{\pi\mu}$  in the 2s state

| and<br>Sectors                 | 19 ja                                                                                       | 6 C                                                                                          | 7 N 4.                                                                                      | 18 Ar                                                                                       | 73 Ta<br>3.93-19                                                                            |  |
|--------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|
| tot                            | 2.90-22                                                                                     | 4.51-21                                                                                      | 5.85-21                                                                                     | - 3.08-20                                                                                   |                                                                                             |  |
| f                              | coh inc                                                                                     | coh inc                                                                                      | coh inc                                                                                     | coh inc                                                                                     | coh ine                                                                                     |  |
| tot<br>el<br>inel<br>ex<br>ion | 4.46-01 5.54-01<br>1.28-03 1.29-03<br>4.44-01 5.53-01<br>4.05-01 5.07-01<br>3.98-02 4.61-02 | 8.23-01, 1.77-01<br>2.92-03 4.94-04<br>8.20-01 1.77-01<br>7.40-01 1.61-01<br>7.96-02 1.56-02 | 8.44-01 1.56-01<br>3.05-03 4.44-04<br>8.41-01 1.56-01<br>7.58-01 1.42-01<br>8.24-02 1.39-02 | 9.33-01 6.67-02<br>3.73-03 2.14-04<br>9.30-01 6.65-02<br>8.70-01 6.03-02<br>5.99-02 6.22-03 | 9.84-01 1.61-02<br>4.57-03 6.43-05<br>9.79-01 1.60-02<br>8.70-01 1.44-02<br>1.09-01 1.66-03 |  |
| 2p<br>3p<br>4p<br>5p           | 2.86-01 3.56-01<br>8.22-02 1.07-01<br>1.62-02 2.04-02<br>6.14-03 7.70-03                    | 5.28-01 1.14-01<br>1.44-01 3.29-02<br>2.93-02 6.45-03<br>1.12-02 2.45-03                     | 5.41-01 1.00-01<br>1.47-01 2.89-02<br>2.99-02 5.68-03<br>1.15-02 2.16-03                    | 6.34-01 4.28-02<br>1.58-01 1.20-02<br>3.27-02 2.40-03<br>1.26-02 9.15-04                    | 6.29-01 1.03-02<br>1.58-01 2.72-03<br>3.37-02 5.62-04<br>1.31-02 2.17-04                    |  |

S 98 963

| labl                           | e 6. Cross sec                                                                              | tions of $A_{\pi\mu}$                                                                       | in the 3s stat                                                                              | e                                                                                           |                                                                                             |  |
|--------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|
| 1254° (m. A                    | 1 B                                                                                         | 6. C                                                                                        | ······································                                                      | 18 Ar                                                                                       | 73 Ta<br>1.27-18                                                                            |  |
| tot                            | 1.14-21 •                                                                                   | 1.64-20                                                                                     | 2.11-20                                                                                     | 1.06-19                                                                                     |                                                                                             |  |
| f                              | coh inc                                                                                     |  |
| tot<br>el<br>inel<br>ex<br>ion | 4.32-01 5.68-01<br>1.71-03 1.71-03<br>4.30-01 5.66-01<br>4.11-01 5.44-01<br>1.96-02 2.24-02 | 8.12-01 1.88-01<br>4.00-03 7.05-04<br>8.08-01 1.88-01<br>7.65-01 1.79-01<br>4.29-02 8.29-03 | 8.34-01 1.66-01<br>4.17-03 6.36-04<br>8.29-01 1.66-01<br>7.84-01 1.58-01<br>4.49-02 7.45-03 | 9.28-01 7.17-02<br>5.18-03 3.12-04<br>9.23-01 7.14-02<br>8.69-01 6.82-02<br>5.45-02 3.16-03 | 9.83-01 1.72-02<br>6.45-03 9.24-05<br>9.76-01 1.71-02<br>9.17-01 1.62-02<br>5.93-02 8.95-04 |  |
| 2p<br>3p<br>4p<br>5p           | 1.95-03 2.53-03<br>3.32-01 4.38-01<br>4.70-02 6.65-02<br>9.93-03 1.33-02                    | 3.74-03 8.48-04<br>6.19-01 1.45-01<br>8.10-02 2.08-02<br>1.82-02 4.34-03                    | 3.85-03 7.51-04<br>6.34-01 1.28-01<br>8.25-02 1.83-02<br>1.86-02 3.83-03                    | 4.37-03 3.27-04<br>7.03-01 5.48-02<br>8.70-02 7.89-03<br>2.04-02 1.61-03                    | 4.76-03 8.12-05<br>7.36-01 1.30-02<br>9.09-02 1.76-03<br>2.07-02 3.79-04                    |  |
| 4f                             | 6.80-03 6.80-03                                                                             | 1.69-02 2.84-03                                                                             | 1.78-02 2.57-03                                                                             | 2.25-02 1.30-03                                                                             | 2.95-02 4.16-04                                                                             |  |

Table 7. Cross sections of  $A_{2\pi}$  in the 1s state to have a section of

Ľ

|                              |                                                                                                                                                                                                     | D C                                                                                                                                                                                                                                                                                                                  | 78                                                                                                                                                                                                  | 18 Ar                                                                                                                                                                               | 73 Ta                                                                                                                                                                                                                                                                               |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| tot                          | 2.08-23                                                                                                                                                                                             | 3.52-22                                                                                                                                                                                                                                                                                                              | 4.60-22                                                                                                                                                                                             | 2.54-21                                                                                                                                                                             | 3.48-20                                                                                                                                                                                                                                                                             |
| f                            | coh inc                                                                                                                                                                                             | coh inc'-                                                                                                                                                                                                                                                                                                            | coh inc                                                                                                                                                                                             | coh inc                                                                                                                                                                             | coh inc                                                                                                                                                                                                                                                                             |
| tot<br>ex<br>ion             | 4.60-01 5.40-01<br>3.01-01 3.59-01<br>1.59-01 1.82-01                                                                                                                                               | 8.34-01 1.66-01<br>5.37-01 1.09-01<br>2.97-01 5.73-02                                                                                                                                                                                                                                                                | 8.54-01 1.46-01<br>5.48-01 9.58-02<br>3.05-01 5.05-02                                                                                                                                               | 9.38-01 6.19-02<br>6.22-01 4.02-02<br>3.16-01 2.18-02                                                                                                                               | 9.85-01 1.51-0<br>6.16-01 9.61-0<br>3.69-01 5.52-0                                                                                                                                                                                                                                  |
| 2p<br>3p<br>4p<br>5p         | 2.29-01 2.74-01<br>3.90-02 - 4.62-02<br>1.38-02 1.63-02<br>6.54-03 7.71-03                                                                                                                          | 4.07-01         8.31-02           7.01-02         1.41-02           2.49-02         5.00-03           1.18-02         2.37-03                                                                                                                                                                                        | 4.16-01 7.30-02<br>7.17-02 1.24-02<br>2.55-02 4.40-03<br>1.21-02 2.08-03                                                                                                                            | 4.72-01 3.05-02<br>8.16-02 5.23-03<br>2.90-02 1.85-03<br>1.38-02 8.79-04                                                                                                            | 4.65-01 7.27-03<br>8.15-02 1.27-03<br>2.91-02 4.51-04<br>1.39-02 2.14-04                                                                                                                                                                                                            |
| 'ab]                         | le 8. Cross se                                                                                                                                                                                      | ctions of A <sub>Or</sub>                                                                                                                                                                                                                                                                                            | in the 2s state                                                                                                                                                                                     | 8                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                     |
|                              |                                                                                                                                                                                                     | 6 C                                                                                                                                                                                                                                                                                                                  | Y N                                                                                                                                                                                                 | антария (18 Аг учала)<br>Спорто 18 Аг учала                                                                                                                                         | 73 Ta                                                                                                                                                                                                                                                                               |
| tot                          | 2.24-22                                                                                                                                                                                             | 3.52-21                                                                                                                                                                                                                                                                                                              | 4.58-21                                                                                                                                                                                             | 2.42-20                                                                                                                                                                             | 3.13-19                                                                                                                                                                                                                                                                             |
| f                            | coh inc                                                                                                                                                                                             | coh inc                                                                                                                                                                                                                                                                                                              | coh inc                                                                                                                                                                                             | coh inc                                                                                                                                                                             | coh inc                                                                                                                                                                                                                                                                             |
| tot<br>ex<br>lon             | 4.48-01 5.52-01<br>4.08-01 5.07-01<br>3.93-02 4.54-02                                                                                                                                               | 8.24-01 1.76-01<br>7.46-01 1.60-01<br>7.80-02 1.53-02                                                                                                                                                                                                                                                                | 8.45-01 1.55-01<br>7.64-01 1.41-01<br>8.08-02 1.35-02                                                                                                                                               | 9.34-01 6.60-02<br>8.41-01 6.00-02<br>9.27-02 6.03-03                                                                                                                               | 9.84-01 1.59-02<br>8.78-01 1.43-02<br>1.06-01 1.60-03                                                                                                                                                                                                                               |
| 2p<br>3p                     | 2.89-01 3.56-01<br>8.40-02 1.07-01<br>1.64-02 2.05-02                                                                                                                                               | 5.33-01 1.13-01<br>1.48-01 3.31-02<br>2.98-02 6.46-03                                                                                                                                                                                                                                                                | 5.46-01 1.00-01<br>1.51-01 2.91-02<br>3.05-02 5.69-03                                                                                                                                               | 6.03-01 4.26-02<br>1.63-01 1.21-02<br>3.33-02 2.40-03                                                                                                                               | 6.35-01 1.03-02<br>1.63-01 2.77-03<br>3.44-02 5.65-04                                                                                                                                                                                                                               |
| 5p                           | 6.23-03 7.73-03                                                                                                                                                                                     | 1.14-02 2.45-03                                                                                                                                                                                                                                                                                                      | 1.17-02 2.16-03                                                                                                                                                                                     | 1.36-02 9.16-04                                                                                                                                                                     | 1.34-02 2.18-04                                                                                                                                                                                                                                                                     |
| abl                          | 6.23-03 7.73-03<br>е 9. Стовв вес                                                                                                                                                                   | 1.14-02 2.45-03<br>tions of $A_{2\pi}$ i                                                                                                                                                                                                                                                                             | 1.17-02 2.16-03<br>n the 3s state                                                                                                                                                                   | 1.36-02 9.16-04                                                                                                                                                                     | 1.34-02 2.18-04                                                                                                                                                                                                                                                                     |
| abl                          | 6.23-03 7.73-03<br>е 9. Стовв вес<br>1 Н                                                                                                                                                            | 1.14-02 2.45-03<br>tions of A <sub>2π</sub> i<br>6 C.                                                                                                                                                                                                                                                                | 1.17-02 2.16-03<br>n the 3s state<br>7 N                                                                                                                                                            | 1.36-02 9.16-04                                                                                                                                                                     | 1.34-02 2.18-04                                                                                                                                                                                                                                                                     |
| abl<br>ot                    | 6.23-03 7.73-03<br>е 9. Стовв вес<br>1 H<br>8.89-22                                                                                                                                                 | 1.14-02 2.45-03<br>tions of A <sub>2π</sub> i<br>6 C<br>1.30-20                                                                                                                                                                                                                                                      | 1.17-02 2.16-03<br>n the 3s state<br>7 N<br>1.68-20                                                                                                                                                 | 1.36-02 9.16-04<br>18 Ar<br>8.53-20                                                                                                                                                 | 1.34-02 2.18-04                                                                                                                                                                                                                                                                     |
| p<br>abl<br>ot<br>f          | 6.23-03 7.73-03<br>е 9. Стовв вес<br>1 H<br>8.89-22<br>coh inc                                                                                                                                      | 1.14-02 2.45-03<br>tions of A <sub>2π</sub> i<br>6 C.<br>1.30-20<br>coh inc                                                                                                                                                                                                                                          | 1.17-02 2.16-03<br>n the 3s state<br>7 M<br>1.68-20<br>coh inc                                                                                                                                      | 1.36-02 9.16-04<br>18 Ar<br>8.53-20<br>coh inc                                                                                                                                      | 1.34-02 2.18-04<br>73 Ta<br>1.03-18<br>coh inc                                                                                                                                                                                                                                      |
| able<br>ot<br>f<br>Dt<br>r   | 6.23-03 7.73-03<br>e 9. Стовв вес<br>1 H<br>8.89-22<br>coh inc<br>4.35-01 5.65-01<br>4.18-01 5.45-01<br>1.70-02 1.97-02                                                                             | 1.14-02 2.45-03<br>tions of A <sub>2π</sub> i<br>6 C<br><u>1.30-20</u><br>coh inc<br>8.14-01 1.86-01<br>7.78-01 1.79-01<br>3.62-02 7.15-03                                                                                                                                                                           | 1.17-02 2.16-03<br>n the 3s state<br>7 N<br>1.68-20<br>coh inc<br>8.36-01 1.64-01<br>7.98-01 1.58-01<br>3.79-02 6.36-03                                                                             | 1.36-02 9.16-04<br>18 Ar<br>8.53-20<br>coh inc<br>9.29-01 7.05-02<br>8.84-01 6.75-02<br>4.55-02 3.02-03                                                                             | 73 Ta<br>73 Ta<br>1.03-18<br>coh inc<br>9.83-01 - 1.70-02<br>9.33-01 1.62-02<br>4.97-02 8.37-04                                                                                                                                                                                     |
| ot<br>f<br>ot<br>p<br>p<br>p | 6.23-03 7.73-03<br>e 9. Сговв вес<br>1 H<br>8.89-22<br>coh inc<br>4.35-01 5.65-01<br>4.18-01 5.45-01<br>1.70-02 1.97-02<br>2.00-03 2.55-03<br>3.37-01 4.38-01<br>5.05-02 6.92-02<br>1.02-02 1.34-02 | 1.14-02       2.45-03         tions of A2π       1         6 C       1.30-20         coh       inc         8.14-01       1.86-01         7.78-01       1.79-01         3.62-02       7.15-03         3.82-03       8.50-04         6.27-01       1.44-01         8.89-02       2.18-02         1.87-02       4.35-03 | 1.17-02 2.16-03<br>n the 3s state<br>7 N<br>1.68-20<br>coh inc<br>8.36-01 1.64-01<br>7.98-01 1.58-01<br>3.79-02 6.36-03<br>3.93-03 7.52-04<br>6.43-01 1.27-01<br>9.07-02 1.92-02<br>1.91-02 3.84-03 | 1.36-02 9.16-04<br>18 Ar<br>8.53-20<br>coh inc<br>9.29-01 7.05-02<br>8.84-01 6.75-02<br>4.55-02 3.02-03<br>4.46-03 3.27-04<br>7.13-01 5.44-02<br>9.71-02 7.93-03<br>2.10-02 1.63-03 | 73 Ta           73 Ta           1.03-18           coh           inc           9.83-01 - 1.70-02           9.33-01           1.62-02           4.97-02           8.37-04           4.89-03           8.19-05           7.53-01           1.30-02           9.64-02           9.85-04 |

9

|                                | and the <b>1 H</b> of the second se | 5,5,5,5,5, <b>6,€</b><br>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                    | <sup>3</sup> <sup>1</sup> 7 N                                                               | 18 Ar                                                                                                                         | 73 Ta                                                                                       |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| tot                            | 9.28-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.60-22                                                                                                                       | 2.10-22                                                                                     | 1.17-21                                                                                                                       | 1.63-20                                                                                     |
| f                              | icoh (inc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | coh inc                                                                                                                       | coh e e inc                                                                                 | coh inc                                                                                                                       | coh inc                                                                                     |
| tot<br>el<br>inel<br>ex<br>ion | 4.63-01 5.37-01<br>1.03-02 1.03-02<br>4.53-01 5.27-01<br>2.92-01 3.45-01<br>1.61-01 1.82-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.36-01 1.64-01<br>2.15-02 3.58-03<br>8.14-01 1.61-01<br>5.16-01 1.04-01<br>2.98-01 5.68-02                                   | 8.56-01 1.44-01<br>2.23-02 3.18-03<br>8.33-01 1.41-01<br>5.27-01 9.11-02<br>3.06-01 5.00-02 | 9.39-01 6.10-02<br>2.64-02 1.47-03<br>9.13-01 5.95-02<br>5.94-01 3.80-02<br>3.18-01 2.15-02                                   | 9.85-01 1.50-02<br>3.10-02 4.27-04<br>9.54-01 1.45-02<br>5.87-01 9.08-03<br>3.67-01 5.45-03 |
| 2p<br>3p<br>4p<br>5p           | 2.20-01 2.61-01<br>3.72-02 4.38-02<br>1.32-02 1.55-02<br>6.23-03 7.31-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.86-01 7.82-02<br>6.61-02 1.32-02<br>2.35-02 4.68-03<br>1.11-02 2.21-03                                                      | 3.94-01 6.86-02<br>6.76-02 1.16-02<br>2.40-02 4.11-03<br>1.14-02 1.94-03                    | 4.44-01         2.85-02           7.63-02         4.86-03           2.71-02         1.72-03           1.28-02         8.15-04 | 4.35-01 6.76-03<br>7.58-02 1.17-03<br>2.70-02 4.16-04<br>1.28-02 1.37-04                    |
| abl                            | e 11. Cross se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ections of $A_{\pi K}$                                                                                                        | in the 2s stat                                                                              |                                                                                                                               |                                                                                             |
|                                | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6 C                                                                                                                           | 7X                                                                                          |                                                                                                                               | 73 Ta                                                                                       |
| tot                            | 1.02-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.66-21                                                                                                                       | 2.17-21                                                                                     | 1.17-20                                                                                                                       | 1.55-19                                                                                     |
| f                              | coh inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | coh inc                                                                                                                       | coh inc                                                                                     | coh inc                                                                                                                       | coh inc                                                                                     |
| tot<br>el<br>inel<br>ex<br>ion | 4.53-01         5.47-01           1.64-02         1.64-02           4.36-01         5.31-01           3.97-01         4.86-01           3.96-02         4.51-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.28-01 1.72-01<br>3.61-02 6.04-03<br>7.92-01 1.66-01<br>7.15-01 1.51-01<br>7.72-02 1.49-02                                   | 8.49-01 1.51-01<br>3.76-02 5.41-03<br>8.11-01 1.46-01<br>7.31-01 1.33-01<br>7.99-02 1.31-02 | 9.36-01 6.42-02<br>4.56-02 2.57-03<br>8.90-01 6.16-02<br>8.09-01 5.58-02<br>8.15-02 5.81-03                                   | 9.84-01 1.56-02<br>5.48-02 7.66-04<br>9.30-01 1.48-02<br>8.28-01 1.33-02<br>1.02-01 1.53-03 |
| 2p<br>3p<br>4p<br>5p           | 2.72-01 3.33-01<br>7.89-02 1.00-01<br>1.53-02 1.90-02<br>5.78-03 7.12-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.91-01         1.03-01           1.36-01         3.01-02           2.71-02         5.82-03           1.03-02         2.20-03 | 5.02-01 9.09-02<br>1.39-01 2.64-02<br>2.76-02 5.11-03<br>1.05-02 1.93-03                    | 5.48-01 3.83-02<br>1.58-01 1.09-02<br>2.98-02 2.13-03<br>1.14-02 8.08-04                                                      | 5,69-01 9.11-03<br>1.47-01 2.45-03<br>3.03-02 4.94-04<br>1.17-02 1.89-04                    |
| 3d                             | 7.93-03 7.94-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.73-02 2.92-03                                                                                                               | 1.80-02 2.61-03                                                                             | 2.15-02 1.23-03                                                                                                               | 2.55-02 3.58-04                                                                             |
| abl                            | е 12. Сговв ве                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ections of $A_{\pi K}$                                                                                                        | in the 3s stat                                                                              | te viela                                                                                                                      |                                                                                             |
|                                | 1 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6 C                                                                                                                           | 7 N                                                                                         | 18 Ar                                                                                                                         | 73 Ta                                                                                       |
| tot                            | 4.16-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.38-21                                                                                                                       | 8.27-21                                                                                     | 4.31-20                                                                                                                       | 5.43-19                                                                                     |
| f                              | coh 12 inc 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | coh inc                                                                                                                       | coh inc                                                                                     | coh inc                                                                                                                       | coh inc                                                                                     |
| tot<br>el<br>inel<br>ex<br>ion | 4.43-01         5.57-01           2.08-02         2.08-02           4.22-01         5.36-01           4.04-01         5.15-01           1.87-02         2.11-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.21-01 1.79-01<br>4.76-02 8.11-03<br>7.73-01 1.71-01<br>7.34-01 1.64-01<br>3.92-02 7.45-03                                   | 8.42-01 1.58-01<br>4.96-02 7.29-03<br>7.92-01 1.51-01<br>7.51-01 1.44-01<br>4.08-02 6.65-03 | 9.32-01 6.77-02<br>6.08-02 3.53-03<br>8.71-01 6.41-02<br>8.23-01 6.10-02<br>4.83-02 3.10-03                                   | 9.84-01 1.63-02<br>7.48-02 1.05-03<br>9.09-01 1.52-02<br>8.51-01 1.44-02<br>5.82-02 8.43-04 |
| 2p<br>3p<br>4p                 | 1.68-03 2.17-03<br>3.14-01 4.03-01<br>4.66-02 6.30-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.04-03 6.85-04<br>5.66-01 1.27-01<br>7.93-02 1.92-02                                                                         | 3.10-03         6.03-04           5.79-01         1.12-01           8.07-02         1.68-02 | 3.39-03 2.54-04<br>6.32-01 4.73-02<br>8.49-02 6.82-03                                                                         | 3.48-03 5.93-05<br>6.48-01 1.10-02<br>8.09-02 1.51-03                                       |
| 3d<br>4d                       | 5.80-03 5.81-03<br>5.66-03 5.68-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.32-02 2.26-03<br>1.25-02 2.20-03                                                                                            | 1.37-02 2.03-03<br>1.30-02 1.97-03                                                          | 1.67-02 9.78-04<br>1.56-02 9.35-04                                                                                            | 2.04-02 2.88-04<br>1.86-02 2.65-04                                                          |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                               |                                                                                             |                                                                                                                               |                                                                                             |

Table 13. Coefficients of atomic form factors given in Eq.(8).

Initial state is 1s, f is the final state

|   | f                                                                                                                                                                | 18                                                                       | 2в                             |                                                                                                         | 38                              | n tana sa<br>Kabupatén Kabupatén<br>Kabupatén Kabupatén                                                                                                                            | 45              |                                                                                                                                                                                                               | 5s≜≙                          |                                                                                                                                                                    | 6в                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | С                                                                                                                                                                | 2 <sup>4</sup>                                                           | 2 <sup>1/2</sup>               | 2 <sup>8</sup>                                                                                          | 3 <sup>1/2</sup>                | 2 <sup>4</sup> 3 <sup>3</sup>                                                                                                                                                      | 2 <sup>13</sup> |                                                                                                                                                                                                               | 5 <sup>1/2</sup>              | 2 <sup>4</sup> 5 <sup>4</sup>                                                                                                                                      | 6 <sup>1/2</sup> 2 <sup>8</sup> 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $37^{1/2}2^{4}7^{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | j                                                                                                                                                                | 0                                                                        | 2                              |                                                                                                         | 2                               | -                                                                                                                                                                                  | 2               |                                                                                                                                                                                                               | 2                             | .1. jy                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | d <sub>0</sub>                                                                                                                                                   | ·2 <sup>2</sup>                                                          | 3 <sup>2</sup>                 |                                                                                                         | 2 <sup>4</sup>                  |                                                                                                                                                                                    | 5 <sup>2</sup>  | YÊ.                                                                                                                                                                                                           | 2 <sup>2</sup> 3              | 2                                                                                                                                                                  | 7 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 <sup>6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | d                                                                                                                                                                | 1                                                                        | 2 <sup>2</sup>                 |                                                                                                         | 3 <sup>2</sup>                  |                                                                                                                                                                                    | 2 <sup>4</sup>  |                                                                                                                                                                                                               | 5 <sup>2</sup>                |                                                                                                                                                                    | 2 <sup>2</sup> 3 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | k                                                                                                                                                                | 2                                                                        | 3                              | 5.5                                                                                                     | 4                               |                                                                                                                                                                                    | 5               |                                                                                                                                                                                                               | 6                             |                                                                                                                                                                    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | <sup>ь</sup> о                                                                                                                                                   | 1                                                                        | 1                              |                                                                                                         | 2 <sup>4</sup>                  | N.C. p.                                                                                                                                                                            | 5 <sup>3</sup>  |                                                                                                                                                                                                               | 2 <sup>8</sup> 3              | 3                                                                                                                                                                  | 5 <sup>3</sup> 7 <sup>5</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 222 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | <sup>b</sup> 1                                                                                                                                                   |                                                                          | ta yasal<br>Marina             |                                                                                                         | 3 <sup>3</sup>                  |                                                                                                                                                                                    | 2 <sup>5</sup>  | 11                                                                                                                                                                                                            | 2 <sup>4</sup> 3 <sup>2</sup> | 5 · 37                                                                                                                                                             | 2 <sup>4</sup> 3 <sup>4</sup> 7 <sup>3</sup> 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 2 <sup>16</sup> 3 <sup>2</sup> 7 <sup>2</sup> 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | ь <sub>2</sub>                                                                                                                                                   | 5                                                                        |                                |                                                                                                         |                                 | · . 2*                                                                                                                                                                             | 2 <sup>8</sup>  |                                                                                                                                                                                                               | 2 <sup>3</sup> 5              | 4 7                                                                                                                                                                | 2 <sup>5</sup> 3 <sup>7</sup> 271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $2^{10}7^{3}11 \cdot 409$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | b <sub>3</sub>                                                                                                                                                   | sa fi                                                                    |                                |                                                                                                         |                                 |                                                                                                                                                                                    |                 |                                                                                                                                                                                                               | 5 <sup>6</sup>                | :<br>1                                                                                                                                                             | $2^{8}3^{6}5 \cdot 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 24 76 1009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | <sup>b</sup> 4                                                                                                                                                   |                                                                          |                                |                                                                                                         |                                 |                                                                                                                                                                                    |                 |                                                                                                                                                                                                               |                               |                                                                                                                                                                    | 2 <sup>8</sup> 3 <sup>9</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $2^{3} 5^{2} 7^{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | ь <sub>5</sub>                                                                                                                                                   | n<br>An an Banna<br>A                                                    |                                |                                                                                                         |                                 |                                                                                                                                                                                    |                 |                                                                                                                                                                                                               |                               |                                                                                                                                                                    | a de la companya de | 7 <sup>10</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| L |                                                                                                                                                                  |                                                                          | •                              |                                                                                                         | <b></b>                         |                                                                                                                                                                                    | •               |                                                                                                                                                                                                               | •                             |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | r                                                                                                                                                                |                                                                          | 1.41 14 44 14 14               |                                                                                                         |                                 |                                                                                                                                                                                    |                 |                                                                                                                                                                                                               |                               |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | f                                                                                                                                                                | 2p                                                                       | f                              | Зр                                                                                                      | ng na g<br>An triag             | $4_{\rm P}$                                                                                                                                                                        |                 | 5p                                                                                                                                                                                                            |                               | 61                                                                                                                                                                 | <b>p</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | f<br>C                                                                                                                                                           | 2p<br>2 <sup>1/</sup>                                                    | ′2 <sub>2</sub> 7 <sub>3</sub> | 3p<br>2 <sup>1/</sup>                                                                                   | 2 <sub>2</sub> 5 <sub>3</sub> 3 | 4p<br>5 <sup>1/2</sup> 2                                                                                                                                                           | 11 <sub>3</sub> | 5p<br>10 <sup>1/2</sup>                                                                                                                                                                                       | 2 <sup>5</sup> 3.             | 6 <u>1</u><br>5 <sup>3</sup> 7(                                                                                                                                    | 0 <sup>1/2</sup> 2 <sup>7</sup> 3 <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{7p}{7^{1/2}2^{6}3\cdot 7^{3}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | f<br>C<br>j                                                                                                                                                      | 2p<br>2 <sup>1/</sup><br>1                                               | ′2 <sub>2</sub> 7 <sub>3</sub> | 3p<br>2 <sup>1/</sup><br>1                                                                              | 22533                           | 4p<br>5 <sup>1/2</sup> 2<br>1                                                                                                                                                      | 11 <sub>3</sub> | 5p<br>10 <sup>1/2</sup><br>1                                                                                                                                                                                  | 2 <sup>5</sup> 3 · !          | 61<br>5 <sup>3</sup> 70<br>1                                                                                                                                       | ><br>) <sup>1/2</sup> 2 <sup>7</sup> 3 <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $7p \\ 7^{1/2}2^{6}3 \cdot 7^{3} \\ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | f<br>C<br>j<br>d <sub>0</sub>                                                                                                                                    | 2p<br>2 <sup>1/</sup><br>1<br>3 <sup>2</sup>                             | <sup>'2</sup> 2 <sup>7</sup> 3 | 3p<br>2 <sup>1/</sup><br>1<br>2 <sup>4</sup>                                                            | 22533                           | 4p<br>5 <sup>1/2</sup> 2<br>1<br>5 <sup>2</sup>                                                                                                                                    | 11 <sub>3</sub> | 5p<br>10 <sup>1/2</sup><br>1<br>2 <sup>2</sup> 3 <sup>2</sup>                                                                                                                                                 | 2 <sup>5</sup> 3 · !          | 61<br>5 <sup>3</sup> 70<br>1<br>7 <sup>4</sup>                                                                                                                     | ><br>) <sup>1/2</sup> 2 <sup>7</sup> 3 <sup>3</sup><br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $     7_{p} \\     7^{1/2} 2^{6} 3 \cdot 7^{3} \\     1 \\     2^{6}   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | f<br>C<br>j<br>d <sub>0</sub><br>d <sub>1</sub>                                                                                                                  | 2p<br>2 <sup>1/</sup><br>1<br>3 <sup>2</sup><br>2 <sup>2</sup>           | <sup>'2</sup> 2 <sup>7</sup> 3 | 3p<br>2 <sup>1/</sup><br>1<br>2 <sup>4</sup><br>3 <sup>2</sup>                                          | 22533                           | 4p<br>5 <sup>1/2</sup> 2<br>1<br>5 <sup>2</sup><br>2 <sup>4</sup>                                                                                                                  | 113             | 5p<br>10 <sup>1/2</sup><br>1<br>2 <sup>2</sup> 3 <sup>2</sup><br>5 <sup>2</sup>                                                                                                                               | 2 <sup>5</sup> 3• !           | 61<br>5 <sup>3</sup> 7(<br>1<br>7 <sup>4</sup><br>2 <sup>4</sup>                                                                                                   | 2<br>2<br>2<br>2<br>2<br>3<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $   \begin{array}{c}     7_{P} \\     7^{1/2} 2^{6} 3 \cdot 7^{3} \\     1 \\     2^{6} \\     7^{2}   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | f<br>C<br>j<br>d <sub>0</sub><br>d <sub>1</sub><br>k                                                                                                             | 2p<br>2 <sup>1/</sup><br>1<br>3 <sup>2</sup><br>2 <sup>2</sup><br>3      | 2273                           | 3p<br>2 <sup>1/</sup><br>1<br>2 <sup>4</sup><br>3 <sup>2</sup><br>4                                     | 22533                           | $     \frac{4p}{5^{1/2}2}     1     5^2     2^4     5     5   $                                                                                                                    | 113<br>         | $     5p      10^{1/2}      1      2^2 3^2      5^2      6   $                                                                                                                                                | 2 <sup>5</sup> 3 · I          | 61<br>5 <sup>3</sup> 70<br>1<br>7 <sup>4</sup><br>2 <sup>4</sup><br>7                                                                                              | )<br>) <sup>1/2</sup> 2 <sup>7</sup> 3 <sup>3</sup><br>2<br>2<br>2 <sub>3</sub> 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $   \begin{array}{r}     7p \\     7^{1/2} 2^{6} 3 \cdot 7^{3} \\     1 \\     2^{6} \\     7^{2} \\     8   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | f<br>C<br>j<br>d <sub>0</sub><br>d <sub>1</sub><br>k<br>b <sub>0</sub>                                                                                           | 2p<br>2 <sup>1/</sup><br>1<br>3 <sup>2</sup><br>2 <sup>2</sup><br>3<br>1 | 2273                           | $\frac{3p}{2^{1/2}}$<br>1<br>$2^{4}$<br>$3^{2}$<br>4<br>$2^{4}$                                         | 22533                           | $     \frac{4p}{5^{1/2}2}     1     5^2     2^4     5     5^3     \cdot $                                                                                                          | 113             | 5p      101/2      1      2232      52      6      2833                                                                                                                                                       | 2 <sup>5</sup> 3.1            | 6 <u>1</u><br>5 <sup>3</sup> 70<br>1<br>7 <sup>4</sup><br>2 <sup>2</sup><br>7<br>5                                                                                 | 2<br>2<br>2<br>2<br>3<br>7<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $   \begin{array}{c}     7_{P} \\     7^{1/2} 2^{6} 3 \cdot 7^{3} \\     1 \\     2^{6} \\     7^{2} \\     8 \\     2^{22} 3^{3}   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | f<br>C<br>j<br>d <sub>0</sub><br>d <sub>1</sub><br>k<br>b <sub>0</sub><br>b <sub>1</sub>                                                                         | 2p<br>2 <sup>1/</sup><br>1<br>3 <sup>2</sup><br>2 <sup>2</sup><br>3<br>1 | 2273                           | $     \frac{3p}{2^{1/2}} $ 1 2 4 3 4 2 4 3 3                                                            | 22 <sup>5</sup> 33              | $     \begin{array}{r}       4_{P} \\       5^{1/2} \\       1 \\       5^{2} \\       2^{4} \\       5 \\       5^{3} \\       2^{5} \\       11     \end{array} $                | 113             | 5p<br>10 <sup>1/2</sup><br>1<br>2 <sup>2</sup> 3 <sup>2</sup><br>5 <sup>2</sup><br>6<br>2 <sup>8</sup> 3 <sup>3</sup><br>2 <sup>4</sup> 3 <sup>2</sup> 5                                                      | 2 <sup>5</sup> 3·!            | 6 <u>1</u><br>5 <sup>3</sup> 7(0<br>1<br>7 <sup>4</sup><br>2 <sup>2</sup><br>7<br>5 <sup>5</sup><br>2 <sup>4</sup>                                                 | 2<br>2<br>2<br>2<br>3<br>7<br>5<br>4<br>3<br>4<br>7<br><sup>3</sup> 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $   \begin{array}{r}     7_{P} \\     7^{1/2} 2^{6} 3 \cdot 7^{3} \\     1 \\     2^{6} \\     7^{2} \\     8 \\     2^{22} 3^{3} \\     2^{16} 3^{2} 7^{2} 23   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | f<br>C<br>j<br>d <sub>0</sub><br>d <sub>1</sub><br>k<br>b <sub>0</sub><br>b <sub>1</sub><br>b <sub>2</sub>                                                       | 2p<br>2 <sup>1/</sup><br>1<br>3 <sup>2</sup><br>2 <sup>2</sup><br>3<br>1 | 2273                           | $     3p     2^{1/}     1     2^4     3^2     4     2^4     3^3     3^3 $                               | 22533<br>2253                   | $     \begin{array}{r}       4_{P} \\       5^{1/2} \\       1 \\       5^{2} \\       2^{4} \\       5 \\       5^{3} \\       2^{5} \\       11 \\       2^{8}     \end{array} $ | 113             | 5p<br>10 <sup>1/2</sup><br>1<br>2 <sup>2</sup> 3 <sup>2</sup><br>5 <sup>2</sup><br>6<br>2 <sup>8</sup> 3 <sup>3</sup><br>2 <sup>4</sup> 3 <sup>2</sup> 5<br>2 <sup>3</sup> 5 <sup>4</sup> 7                   | 2 <sup>5</sup> 3.             | 61<br>5 <sup>3</sup> 70<br>1<br>7 <sup>2</sup><br>2 <sup>2</sup><br>7<br>5<br>5<br>2 <sup>4</sup><br>2 <sup>4</sup>                                                | 2<br>2<br>2<br>2<br>3<br>7<br>5<br>3<br>7<br>5<br>3<br>7<br>2<br>2<br>2<br>3<br>7<br>5<br>3<br>7<br>2<br>7<br>3<br>7<br>5<br>3<br>7<br>2<br>7<br>3<br>3<br>7<br>5<br>3<br>7<br>2<br>7<br>3<br>3<br>7<br>5<br>3<br>7<br>5<br>3<br>7<br>2<br>7<br>3<br>3<br>7<br>3<br>3<br>7<br>3<br>3<br>7<br>3<br>3<br>7<br>3<br>7<br>3<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $7p \\ 7^{1/2}2^{6}3 \cdot 7^{3} \\ 1 \\ 2^{6} \\ 7^{2} \\ 8 \\ 2^{22}3^{3} \\ 2^{16}3^{2}7^{2}23 \\ 2^{10}7^{3}11 \cdot 409 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | f<br>C<br>j<br>d <sub>0</sub><br>d <sub>1</sub><br>k<br>b <sub>0</sub><br>b <sub>1</sub><br>b <sub>2</sub><br>b <sub>3</sub>                                     | 2p<br>2 <sup>1/</sup><br>1<br>3 <sup>2</sup><br>2 <sup>2</sup><br>3      | 2273                           | 3p<br>2 <sup>1/</sup><br>1<br>2 <sup>4</sup><br>3 <sup>2</sup><br>4<br>2 <sup>4</sup><br>3 <sup>3</sup> | 22533<br>2                      | $     \frac{4p}{5^{1/2}2}     1     5^2     2^4     5     5^3     2^511     2^8 $                                                                                                  | 113             | 5p  101/2  1  2232  52  6  2833  24325  23547  56                                                                                                                                                             | 2 <sup>5</sup> 3-1            | 61<br>5 <sup>3</sup> 70<br>1<br>7 <sup>2</sup><br>2 <sup>2</sup><br>7<br>5<br>5<br>2 <sup>4</sup><br>2 <sup>4</sup><br>2 <sup>4</sup>                              | $\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{3}$ $\frac{3}{7}^{5}$ $\frac{4}{3}^{4}7^{3}23$ $\frac{5}{3}7271$ $\frac{1}{8}3^{6}5 \cdot 17$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $7p \\ 7^{1/2}2^{6}3 \cdot 7^{3} \\ 1 \\ 2^{6} \\ 7^{2} \\ 8 \\ 2^{22}3^{3} \\ 2^{16}3^{2}7^{2}23 \\ 2^{10}7^{3}11 \cdot 409 \\ 2^{4}7^{6}1009 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | f<br>C<br>j<br>d <sub>0</sub><br>d <sub>1</sub><br>k<br>b <sub>0</sub><br>b <sub>1</sub><br>b <sub>2</sub><br>b <sub>3</sub><br>b <sub>4</sub>                   | 2p<br>2 <sup>1/</sup> 1<br>3 <sup>2</sup> 2 <sup>2</sup> 3               | 2273                           | 3p<br>2 <sup>1/</sup><br>1<br>2 <sup>4</sup><br>3 <sup>2</sup><br>4<br>2 <sup>4</sup><br>3 <sup>3</sup> | 22 <sup>5</sup> 33              | $     \frac{4p}{5^{1/2}2}     1     5^2     2^4     5     5^3     2^511     2^8   $                                                                                                | 111.3           | 5p<br>10 <sup>1/2</sup><br>1<br>2 <sup>2</sup> 3 <sup>2</sup><br>5 <sup>2</sup><br>6<br>2 <sup>8</sup> 3 <sup>3</sup><br>2 <sup>4</sup> 3 <sup>2</sup> 5<br>2 <sup>3</sup> 5 <sup>4</sup> 7<br>5 <sup>6</sup> | 2 <sup>5</sup> 3-1            | 6 <u>1</u><br>5 <sup>3</sup> 7(<br>1<br>2 <sup>4</sup><br>2 <sup>5</sup><br>2 <sup>5</sup><br>2 <sup>4</sup><br>2 <sup>1</sup><br>2 <sup>1</sup><br>2 <sup>1</sup> | 2<br>2<br>2<br>3<br>7<br>5<br>3<br>7<br>5<br>3<br>7<br>5<br>3<br>7<br>2<br>7<br>3<br>7<br>5<br>3<br>7<br>2<br>7<br>3<br>7<br>5<br>3<br>7<br>2<br>7<br>3<br>7<br>5<br>3<br>7<br>2<br>7<br>3<br>7<br>5<br>3<br>7<br>5<br>3<br>7<br>2<br>7<br>3<br>3<br>7<br>5<br>4<br>3<br>4<br>7<br>3<br>3<br>7<br>5<br>4<br>3<br>7<br>3<br>3<br>7<br>5<br>7<br>3<br>3<br>7<br>5<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $7p \\ 7^{1/2}2^{6}3 \cdot 7^{3} \\ 1 \\ 2^{6} \\ 7^{2} \\ 8 \\ 2^{22}3^{3} \\ 2^{16}3^{2}7^{2}23 \\ 2^{10}7^{3}11 \cdot 409 \\ 2^{4}7^{6}1009 \\ 2^{3}5^{2}7^{8} \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | f<br>C<br>j<br>d <sub>0</sub><br>d <sub>1</sub><br>k<br>b <sub>0</sub><br>b <sub>1</sub><br>b <sub>2</sub><br>b <sub>3</sub><br>b <sub>4</sub><br>b <sub>5</sub> | 2p<br>2 <sup>1/</sup><br>1<br>3 <sup>2</sup><br>2 <sup>2</sup><br>3      | 2273                           | 3p<br>2 <sup>1/</sup><br>1<br>2 <sup>4</sup><br>3 <sup>2</sup><br>4<br>2 <sup>4</sup><br>3 <sup>3</sup> | 22533<br>2                      | $     \frac{4p}{5^{1/2}2}     1     5^2     2^4     5     5^3     2^511     2^8   $                                                                                                | 113             | 5p<br>10 <sup>1/2</sup><br>1<br>2 <sup>2</sup> 3 <sup>2</sup><br>5 <sup>2</sup><br>6<br>2 <sup>8</sup> 3 <sup>3</sup><br>2 <sup>4</sup> 3 <sup>2</sup> 5<br>2 <sup>3</sup> 5 <sup>4</sup> 7<br>5 <sup>6</sup> | 2 <sup>5</sup> 3-1            | 6 <u>1</u><br>5 <sup>3</sup> 7(<br>2 <sup>4</sup><br>2 <sup>5</sup><br>2 <sup>5</sup><br>2 <sup>4</sup><br>2 <sup>5</sup><br>2 <sup>4</sup><br>2 <sup>1</sup>      | 2<br>2<br>2<br>3<br>7<br>5<br>3<br>7<br>5<br>3<br>7<br>5<br>3<br>7<br>2<br>7<br>3<br>7<br>5<br>3<br>7<br>2<br>7<br>3<br>7<br>5<br>3<br>7<br>2<br>7<br>3<br>7<br>5<br>3<br>7<br>2<br>7<br>3<br>7<br>5<br>3<br>7<br>5<br>3<br>7<br>2<br>7<br>3<br>3<br>7<br>5<br>4<br>3<br>4<br>7<br>3<br>3<br>7<br>5<br>4<br>3<br>7<br>5<br>4<br>3<br>7<br>5<br>4<br>3<br>7<br>5<br>4<br>3<br>7<br>5<br>4<br>5<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $7p \\ 7^{1/2}2^{6}3 \cdot 7^{3} \\ 1 \\ 2^{6} \\ 7^{2} \\ 8 \\ 2^{22}3^{3} \\ 2^{16}3^{2}7^{2}23 \\ 2^{10}7^{3}11 \cdot 409 \\ 2^{4}7^{6}1009 \\ 2^{3}5^{2}7^{8} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ 7^{10} \\ $ |

10

- 11

## Table 14. Coefficients of atomic form factors given in Eq.(8).

Initial state is 1s, f is the final state

| f                           | 3d               |                                            | 4d              | 5d                                                |                         | 6d                                             |                                        | 7d 🖂                                        |                                               |
|-----------------------------|------------------|--------------------------------------------|-----------------|---------------------------------------------------|-------------------------|------------------------------------------------|----------------------------------------|---------------------------------------------|-----------------------------------------------|
| C                           | 6 <sup>1/2</sup> | <sup>2</sup> 2 <sup>8</sup> 3 <sup>3</sup> | 2 <sup>16</sup> | 14 <sup>1/2</sup> 2 <sup>8</sup> 5 <sup>4</sup> 7 | -1                      | 211/221                                        | 3 <sub>3</sub> 3 <sub>7</sub> -1       | 211/2                                       | 2 <sup>9</sup> 3 <sup>-1</sup> 7 <sup>4</sup> |
| j                           | 2                | с.<br>24                                   | 2               | 2                                                 |                         | 2                                              |                                        | 2                                           |                                               |
| d <sub>0</sub>              | 2 <sup>4</sup>   | - 13                                       | 5 <sup>2</sup>  | 2 <sup>2</sup> 3 <sup>2</sup>                     |                         | 7 <sup>2</sup>                                 | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | 2 <sup>6</sup>                              |                                               |
| d <sub>1</sub> .            | 3 <sup>2</sup>   |                                            | 2 <sup>4</sup>  | 5 <sup>2</sup>                                    |                         | 2 <sup>2</sup> 3 <sup>2</sup>                  |                                        | 7 <sup>2</sup>                              |                                               |
| k ·                         | 4                | -<br>                                      | 5               | 6                                                 | <i>₩</i> <sup>3</sup> . | 7                                              |                                        | 8                                           |                                               |
| ъ                           | 1                |                                            | 5 <sup>2</sup>  | 2 <sup>4</sup> 3 <sup>3</sup> 7                   |                         | 5 <sup>2</sup> 7 <sup>5</sup>                  |                                        | 2 <sup>17</sup> 3 <sup>4</sup>              |                                               |
| <sup>b</sup> 1              |                  |                                            | 2 <sup>5</sup>  | 2 <sup>5</sup> 3 <sup>2</sup> 5 <sup>2</sup>      |                         | 2 <sup>6</sup> 3 <sup>3</sup> 7 <sup>2</sup> 1 | 7                                      | 2 <sup>12</sup> 3 <sup>3</sup>              | 7.61                                          |
| <sup>b</sup> 2              | . v              |                                            |                 | 5 <sup>4</sup> 7                                  |                         | 2 <sup>4</sup> 3 <sup>6</sup> 11 · :           | 13                                     | 2 <sup>5</sup> 5 · 7                        | <sup>3</sup> 1451                             |
| <sup>а</sup> Ъ <sub>3</sub> |                  | :                                          |                 |                                                   |                         | 2 <sup>7</sup> 3 <sup>6</sup> 7                | •                                      | 2 <sup>2</sup> 3·7                          | <sup>5</sup> 13·23                            |
| <sup>b</sup> 4              |                  | · · · ·                                    |                 | •                                                 |                         | - 4<br>- 4                                     |                                        | 3∙7 <sup>8</sup>                            |                                               |
|                             |                  |                                            | -<br>-<br>-     |                                                   |                         | n da anti-                                     |                                        | iloi a                                      |                                               |
|                             |                  |                                            |                 |                                                   | 1                       | 1                                              |                                        |                                             | 1                                             |
|                             | +                | 41                                         | ·               | 5f                                                | 61                      | £                                              | 7f                                     |                                             |                                               |
|                             | C                | 51/                                        | <sup>2218</sup> | $10^{1/2} 2^{9} 5^{4}$                            | 5                       | $1/22^{14}3^{6}$                               | $6^{1/2}2$                             | <sup>9</sup> 3 <sup>-1</sup> 7 <sup>5</sup> |                                               |
| <br>                        | t                | 3                                          |                 | 3                                                 | 3                       |                                                | 3                                      | ŝ                                           |                                               |
| 4                           | d                | 0 <sup>5<sup>2</sup></sup>                 |                 | 2 <sup>2</sup> 3 <sup>2</sup>                     | 72                      | 2                                              | 2 <sup>6</sup>                         |                                             |                                               |
| • • • • • • •               | d                | 1 2 <sup>4</sup>                           |                 | 5 <sup>2</sup>                                    | 22                      | 2 <sub>3</sub> 2                               | 7 <sup>2</sup>                         |                                             |                                               |
|                             | k                | 5                                          |                 | 6                                                 | 7                       |                                                | 8                                      |                                             |                                               |
|                             | Ъ                | 01                                         |                 | 2 <sup>2</sup> 3 <sup>3</sup>                     | з.                      | 7 <sup>3</sup>                                 | 2 <sup>14</sup> 3 <sup>4</sup>         |                                             |                                               |
|                             | b                | 1                                          |                 | 5 <mark>3</mark>                                  | 23                      | <sup>3</sup> 7·41                              | 2 <sup>9</sup> 7 <sup>2</sup> 17       | 73                                          |                                               |
|                             | b                | 2                                          |                 |                                                   | 24                      | 3 <sup>4</sup>                                 | 2 <sup>2</sup> 7 <sup>5</sup> 71       | L                                           |                                               |
|                             | b                | 3                                          |                 |                                                   |                         | 2<br>2<br>2                                    | 3·5·7 <sup>6</sup>                     | 3                                           |                                               |

Table 15. Coefficients of atomic form factors given in Eq.(8).

Initial state is 2s, f is the final state

|          |                  | ~ •  | <ul> <li>Constraints</li> </ul>   |                                  | Charles and a set                                                                                                                   | والمعرية بالمراجع المراجع         | 412 à 1 12 7                                            |
|----------|------------------|------|-----------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------|
|          | f                | 28   | Зв                                | 48                               | 5s                                                                                                                                  | 6s                                | 78                                                      |
|          | C                | 1    | $6^{1/2}2^83^3$                   | $2^{1/2}2^{11}$                  | $10^{1/2}2^{8}5^{4}$                                                                                                                | 3 <sup>1/2</sup> 3 <sup>3</sup>   | 14 <sup>1/2</sup> 2 <sup>8</sup> 7 <sup>4</sup>         |
|          | j                | 0    | 2                                 | 2                                | 2                                                                                                                                   | 2                                 | 2                                                       |
|          | d <sub>0</sub>   | 1    | 5 <sup>2</sup>                    | 3 <sup>2</sup>                   | 7 <sup>2</sup>                                                                                                                      | 2 <sup>2</sup>                    | 3 <sup>4</sup>                                          |
|          | d_1              | 1    | 2 <sup>2</sup> 3 <sup>2</sup>     | 2 <sup>4</sup>                   | 2 <sup>2</sup> 5 <sup>2</sup>                                                                                                       | 3 <sup>2</sup>                    | 2 <sup>2</sup> 7 <sup>2</sup>                           |
|          | k                | 4    | 5                                 | 6                                | 7                                                                                                                                   | 8                                 | 9                                                       |
|          | b <sub>0</sub>   | 1    | 5 <sup>3</sup> 23                 | 3 <sup>3</sup> 11                | 7 <sup>5</sup> 71                                                                                                                   | 2 <sup>6</sup> 13                 | $3^{13}5^{3}11 \cdot 3$                                 |
| 1.<br>1. | <sup>b</sup> 1   | -3   | -2 <sup>3</sup> 3 <sup>2</sup> 97 | 2 <sup>4</sup> 3 <sup>2</sup> 19 | 2 <sup>4</sup> 5 · 7 <sup>3</sup> 631                                                                                               | 2 <sup>4</sup> 3 <sup>2</sup> 109 | $2^{3}3^{10}7^{2}17 \cdot 1663$                         |
|          | <sup>. b</sup> 2 | 2    | 2 <sup>4</sup> 3 <sup>5</sup>     | -2 <sup>8</sup> 29               | 2 <sup>5</sup> 5 <sup>3</sup> 11239                                                                                                 | 2 <sup>2</sup> 3 <sup>6</sup> 31  | 2 <sup>4</sup> 3 <sup>6</sup> 7 <sup>3</sup> 59 · 23027 |
|          | b <sub>3</sub>   | •    |                                   | 2 <sup>12</sup>                  | -2 <sup>8</sup> 5 <sup>6</sup> 43                                                                                                   | 3 <sup>6</sup> 83                 | 2 <sup>8</sup> 7 <sup>5</sup> 3833087                   |
|          | <sup>b</sup> 4   |      |                                   |                                  | 2 <sup>8</sup> 5 <sup>8</sup>                                                                                                       | -3 <sup>8</sup> 5 · 17            | -2 <sup>8</sup> 3·7 <sup>8</sup> 1571                   |
|          | b <sub>5</sub>   |      |                                   |                                  |                                                                                                                                     | $2 \cdot 3^{11}$                  | $-2^{11}7^{10}137$                                      |
| ,        | Ъ <sub>6</sub>   | 1.14 | ы. н. т. <sup>5</sup> т.          |                                  | n in generation.<br>An generation de la companya de la c |                                   | 2 <sup>12</sup> 7 <sup>12</sup>                         |
|          |                  |      |                                   |                                  |                                                                                                                                     | 10                                |                                                         |

|   | f              | 2p       | 3р .                                    | 4p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5p                                                     | 6р                                    | 7p                                                         |
|---|----------------|----------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------|------------------------------------------------------------|
|   | C<br>j         | 3<br>1   | 2 <sup>10</sup> 3 <sup>3</sup>          | 10 <sup>1/2</sup> 2 <sup>9</sup> 3<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 <sup>1/2</sup> 2 <sup>10</sup> 3·5 <sup>3</sup><br>1 | 35 <sup>1/2</sup> 3 <sup>3</sup><br>1 | $14^{1/2}2^{10}3 \cdot 7^3$                                |
|   | d              | 1        | 5 <sup>2</sup>                          | 3 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 <sup>2</sup>                                         | 2 <sup>2</sup>                        | 3 <sup>4</sup>                                             |
|   | d1             | 1        | 2 <sup>2</sup> 3 <sup>2</sup>           | 2 <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 <sup>2</sup> 5 <sup>2</sup>                          | 3 <sup>2</sup>                        | 2 <sup>2</sup> 7 <sup>2</sup>                              |
|   | k              | 4        | 5 <sup>6</sup> 2                        | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7                                                      | 8                                     | 9                                                          |
|   | Ъ <sub>0</sub> | 1        | 5 <sup>4</sup>                          | 3 <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3·7 <sup>6</sup>                                       | 2 <sup>7</sup>                        | 3 <sup>15</sup> 5 <sup>4</sup>                             |
|   | <sup>b</sup> 1 | 1        | -2 <sup>4</sup> 3 <sup>2</sup> 5 · 7    | 2 <sup>4</sup> 3 <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $2^{3}5 \cdot 7^{4}41$                                 | 2 <sup>5</sup> 3 <sup>2</sup> 7       | 2 <sup>5</sup> 3 <sup>12</sup> 5·7 <sup>2</sup> 43         |
|   | Ъ <sub>2</sub> | 7        | 2 <sup>4</sup> 3 <sup>5</sup>           | -2 <sup>8</sup> 3·7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $-2^{6}3^{2}5^{3}7 \cdot 11$                           | 2 <sup>3</sup> 3 <sup>6</sup>         | 2 <sup>4</sup> 3 <sup>8</sup> 7 <sup>3</sup> 67 · 439      |
|   | <sup>b</sup> 3 | <b>*</b> |                                         | 2 <sup>12</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2 <sup>7</sup> 5 <sup>6</sup> 61                      | -2·3 <sup>6</sup> 31                  | -2 <sup>9</sup> 3 <sup>2</sup> 7 <sup>5</sup> 11 · 13 · 73 |
|   | <sup>b</sup> 4 |          |                                         | ing the second sec | 2 <sup>8</sup> 5 <sup>8</sup>                          | -3 <sup>8</sup> 29                    | -2 <sup>8</sup> 7 <sup>8</sup> 17551                       |
|   | Ъ <sub>5</sub> |          |                                         | х<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        | 3 <sup>11</sup>                       | $-2^{14}7^{10}11$                                          |
| · | <sup>b</sup> 6 | 5.00.00  | A., , , , , , , , , , , , , , , , , , , |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                       | 2 <sup>12</sup> 7 <sup>12</sup>                            |

13

# Table 16. Coefficients of atomic form factors given in Eq.(8).

Initial state is 2s, f is the final state

|                |                                                                                                                |                                  |                                   | · · · · · · · · · · · · · · · · ·                               |                                                   |
|----------------|----------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------|-----------------------------------------------------------------|---------------------------------------------------|
| f              | 3d -                                                                                                           | 4d                               | 5d                                | 6d                                                              | 7d                                                |
| C              | 3 <sup>1/2</sup> 2 <sup>16</sup> 3 <sup>3</sup>                                                                | 2 <sup>1/2</sup> 2 <sup>14</sup> | 7-1/221654                        | 42 <sup>1/2</sup> 2 <sup>1</sup> 3 <sup>3</sup> 7 <sup>-1</sup> | 421/22163-174                                     |
| j              | 2                                                                                                              | 2                                | 2                                 | 2                                                               | 2                                                 |
| do             | 5 <sup>2</sup>                                                                                                 | 3 <sup>2</sup>                   | 7 <sup>2</sup>                    | 2 <sup>2</sup>                                                  | 3 <sup>4</sup>                                    |
| d <sub>1</sub> | 2 <sup>2</sup> 3 <sup>2</sup>                                                                                  | 2 <sup>4</sup>                   | 2 <sup>2</sup> 5 <sup>2</sup>     | 3 <sup>2</sup>                                                  | 2 <sup>2</sup> 7 <sup>2</sup>                     |
| k              | 5                                                                                                              | 6                                | 7                                 | 8                                                               | 9 ( <sup>2</sup> )                                |
| Ъ <sub>0</sub> | -5 <sup>2</sup>                                                                                                | -3 <sup>3</sup>                  | -7 <sup>5</sup>                   | -2 <sup>5</sup> 7                                               | _3 <sup>13</sup> 5 <sup>2</sup>                   |
| <sup>b</sup> 1 | $2\cdot 3^2$                                                                                                   | -2 <sup>4</sup> 3 <sup>2</sup> 5 | $-2 \cdot 5^2 7^2 317$            | $-2^{7}3^{2}13$                                                 | -2·3 <sup>10</sup> 7·61·71                        |
| <sup>b</sup> 2 |                                                                                                                | 2 <sup>9</sup>                   | -2 <sup>6</sup> 5 <sup>5</sup> 23 | -2·3 <sup>5</sup> 7·47                                          | $-2^{6}3^{5}7^{4}1427$                            |
| b <sub>3</sub> |                                                                                                                |                                  | 2 <sup>5</sup> 5 <sup>6</sup> 7   | -3 <sup>6</sup> 19 · 31                                         | -2 <sup>6</sup> 7 <sup>5</sup> 263597             |
| <sup>b</sup> 4 |                                                                                                                |                                  |                                   | 2 <sup>3</sup> 3 <sup>8</sup> 7                                 | -2 <sup>8</sup> 3 <sup>2</sup> 7 <sup>7</sup> 227 |
| <sup>b</sup> 5 |                                                                                                                |                                  | 1.<br>-                           |                                                                 | 2 <sup>9</sup> 3·7 <sup>10</sup>                  |
|                | the second s |                                  |                                   |                                                                 |                                                   |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | e di 👘 😿                                       |                                                 |                                                 | and the first of the second |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| nor in the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | f              | 4f                                             | 5f                                              | 6f                                              | 7f                                                                                                              |
| · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | С              | 10 <sup>1/2</sup> 2 <sup>16</sup>              | 5 <sup>1/2</sup> 2 <sup>18</sup> 5 <sup>4</sup> | 10 <sup>1/2</sup> 2 <sup>1</sup> 3 <sup>6</sup> | 3 <sup>1/2</sup> 2 <sup>18</sup> 3 <sup>-1</sup> 7 <sup>5</sup>                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | j              | 3                                              | 3                                               | 3                                               | 3                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d <sub>0</sub> | 3 <sup>2</sup>                                 | 7 <sup>2</sup>                                  | 2 <sup>2</sup>                                  | 3 <sup>4</sup>                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d              | 2 <sup>4</sup>                                 | 2 <sup>2</sup> 5 <sup>2</sup>                   | 3 <sup>2</sup>                                  | $2^{2}7^{2}$                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | k              | 6                                              | 7                                               | 8                                               | 9                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ь <sub>0</sub> | -3 <sup>3</sup>                                | -7 <sup>3</sup> 29                              | -2 <sup>4</sup> 3                               | -3 <sup>12</sup> 5 · 53                                                                                         |
| $f_{D} \sim \frac{1}{2} e^{-\frac{1}{2} \frac{1}{2} $ | <sup>b</sup> 1 | 2 <sup>4</sup>                                 | -2 <sup>3</sup> 3·5 <sup>2</sup> 7·19           | -2 <sup>3</sup> 83                              | -2 <sup>4</sup> 3 <sup>6</sup> 7 <sup>3</sup> 659                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ь <sub>2</sub> | an daga sa | 2 <sup>4</sup> 5 <sup>5</sup>                   | -3 <sup>2</sup> 5·47                            | -2 <sup>5</sup> 3 <sup>3</sup> 7 <sup>4</sup> 11 · 19 · 37                                                      |
| 1369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | b <sub>3</sub> |                                                |                                                 | 2·3 <sup>6</sup>                                | -2 <sup>8</sup> 7 <sup>6</sup> 937                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <sup>b</sup> 4 |                                                |                                                 |                                                 | 2 <sup>8</sup> 3·5·7 <sup>8</sup>                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | <b>_</b>                                       |                                                 |                                                 | J                                                                                                               |

Table 17. Coefficients of atomic form factors given in Eq.(8). Initial state is 3s, f is the final state:

1.1

|   |                | f                   | 3ε             | <b>1</b>         | <b>4</b> 8       |                                   | 5s               |                                                 | 6в               |                                  |                      |
|---|----------------|---------------------|----------------|------------------|------------------|-----------------------------------|------------------|-------------------------------------------------|------------------|----------------------------------|----------------------|
|   |                | C                   | 24             |                  | 31/              | <sup>2</sup> 21333                | 15 <sup>1</sup>  | /2243354                                        | 21'              | 1/23-11                          |                      |
|   |                | j                   | 0              |                  | 2                |                                   | 2                |                                                 | 2                | 94.1 <sup>1</sup> 2.             | daurine e            |
|   |                | d <sub>0</sub>      | 22             | 2                | 72               |                                   | 2 <sup>6</sup>   |                                                 | 1                | a da se                          |                      |
|   |                | d <sub>1</sub>      | 32             | 2                | 2 <sup>4</sup> : | 32                                | 3 <sup>2</sup> 5 | 2                                               | 2 <sup>2</sup>   |                                  |                      |
|   | 1              | k                   | 6              |                  | <b>7</b> :       |                                   | 8                |                                                 | 9                |                                  |                      |
|   |                | b <sub>0</sub>      | 2 <sup>£</sup> |                  | 7 <sup>5</sup> 2 | 2161                              | $2^{22}$         | 17 · 23                                         | 3.8              | 523                              |                      |
|   |                | <sup>b</sup> 1      | -2             | 83.7             | -28              | 3 <sup>3</sup> 7 <sup>3</sup> 235 | $2^{16}$         | $3^2 5 \cdot 14519$                             | 2 <sup>3</sup> : | 3 <sup>2</sup> 5 <sup>3</sup> 7  |                      |
|   |                | -<br>b <sub>2</sub> | 2              | ′3 <sup>5</sup>  | 2 <sup>9</sup> 3 | <sup>5</sup> 20117                | -2 <sup>1</sup>  | <sup>0</sup> 3 <sup>6</sup> 5 <sup>3</sup> 8603 | 2 <sup>4</sup> 3 | 3 <sup>2</sup> 17 · 71           |                      |
|   | -              | b <sub>3</sub>      | -2             | 6 <sub>3</sub> 6 | -2 <sup>1</sup>  | <sup>5</sup> 3 <sup>6</sup> 139   | 2 <sup>4</sup> 3 | <sup>6</sup> 5 <sup>5</sup> 97289               | -2 <sup>8</sup>  | <sup>3</sup> 43387               | an<br>Angel<br>Angel |
|   |                | b <sub>4</sub>      | з <sup>с</sup> | le ş             | 216              | <sup>3</sup> 3 <sup>9</sup>       | -2 <sup>3</sup>  | 3 <sup>8</sup> 5 <sup>8</sup> 223               | 2 <sup>8</sup>   | 3 <sup>4</sup> 43 · 61           |                      |
|   |                | b <sub>5</sub>      |                | , v              | 1                | •                                 | 3 <sup>11</sup>  | 5 <sup>10</sup>                                 | -2 <sup>1</sup>  | <sup>11</sup> 3 <sup>5</sup> 143 |                      |
|   |                | b <sub>6</sub>      |                |                  |                  |                                   |                  |                                                 | 2 <sup>12</sup>  | <sup>2</sup> 3 <sup>8</sup>      |                      |
|   | -              |                     | ;              |                  |                  |                                   |                  |                                                 |                  | to to era                        | <b>L</b> (           |
| _ | 2p             |                     | . † *          | 3р               |                  | 4p                                |                  | 5p 50                                           | 57               | 6 <u>p</u>                       |                      |
|   | $6^1$          | /227                | 3 <sup>3</sup> | 6 <sup>1/2</sup> | 2 <sup>5</sup> 3 | $15^{1/2}2^{1}$                   | 1 <sub>3</sub> 3 | 30 <sup>1/2</sup> 2 <sup>5</sup> 3 <sup>3</sup> | 5 <sup>3</sup>   | 210 <sup>1/2</sup>               | 273                  |
|   | 1              |                     |                | 1 ,              |                  | 1                                 |                  | 1                                               | 5                | 1.,                              | 1                    |
|   | <sub>5</sub> 2 | 4                   |                | 22               |                  | <sub>7</sub> 2                    |                  | <b>2</b> 6                                      |                  | 1                                |                      |

| f              | 2p 31                                                                                                      | Зр                                                                                                                                                                                                                                                        | 4p                                                   | 5p 2000 #                                             | 6 <b>p</b> - 1 1 1 1 1 1 1                            |
|----------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| C              | 6 <sup>1/2</sup> 2 <sup>7</sup> 3 <sup>3</sup>                                                             | $6^{1/2}2^{5}3$                                                                                                                                                                                                                                           | $15^{1/2}2^{11}3^3$                                  | $30^{1/2}2^{5}3^{3}5^{3}$                             | $210^{1/2}2^{7}3^{-11}$                               |
| j              | 1                                                                                                          | 1                                                                                                                                                                                                                                                         | 1                                                    | 1                                                     | 1                                                     |
| d <sub>0</sub> | 5 <sup>2</sup>                                                                                             | 2 <sup>2</sup>                                                                                                                                                                                                                                            | 7 <sup>2</sup>                                       | 2 <sup>6</sup>                                        | 1                                                     |
| d <sub>1</sub> | 2 <sup>2</sup> 3 <sup>2</sup>                                                                              | 3 <sup>2</sup>                                                                                                                                                                                                                                            | 2 <sup>4</sup> 3 <sup>2</sup>                        | 3 <sup>2</sup> 5 <sup>2</sup>                         | 2 <sup>2</sup>                                        |
| k              | 5.                                                                                                         | 6                                                                                                                                                                                                                                                         | <b>7</b> **                                          | 8                                                     | 9                                                     |
| Ъ <sub>О</sub> | 5 <sup>4</sup> 11                                                                                          | -2 <sup>7</sup>                                                                                                                                                                                                                                           | 5·7 <sup>6</sup> 17                                  | 2 <sup>24</sup> 37                                    | 3·5 <sup>2</sup>                                      |
| <b>b</b> 1     | -2 <sup>3</sup> 3 <sup>3</sup> 65                                                                          | 2 <sup>4</sup> 3 · 29                                                                                                                                                                                                                                     | -2 <sup>8</sup> 3 <sup>2</sup> 7 <sup>4</sup> 85     | 2 <sup>18</sup> 3 <sup>4</sup> 5 37                   | 2 <sup>3</sup> 3 <sup>2</sup> 5 <sup>2</sup>          |
| <sup>b</sup> 2 | 2 <sup>4</sup> 3 <sup>6</sup>                                                                              | -2 <sup>4</sup> 3 <sup>5</sup>                                                                                                                                                                                                                            | 2 <sup>9</sup> 3 <sup>4</sup> 84443                  | $-2^{12}3^{5}5^{3}5563$                               | $-2^{4}3^{2}17 \cdot 19$                              |
| b3             |                                                                                                            | 3 <sup>7</sup>                                                                                                                                                                                                                                            | -2 <sup>15</sup> 3 <sup>7</sup> 107                  | 2 <sup>6</sup> 3 <sup>6</sup> 5 <sup>5</sup> 35123    | -2 <sup>8</sup> 61 <sup>2</sup>                       |
| Ъ <sub>4</sub> | भिनेती जन्म<br>इ.स.                                                                                        | e Giere                                                                                                                                                                                                                                                   | 2 <sup>16</sup> 3 <sup>10</sup>                      | -2 <sup>3</sup> 3 <sup>9</sup> 5 <sup>8</sup> 173     | 2 <sup>8</sup> 3 · 5 · 2251                           |
| ь <sub>5</sub> |                                                                                                            |                                                                                                                                                                                                                                                           |                                                      | 3 <sup>12</sup> 5 <sup>10</sup>                       | -2 <sup>11</sup> 3 <sup>5</sup> 37                    |
| Ъ <sub>6</sub> |                                                                                                            |                                                                                                                                                                                                                                                           |                                                      |                                                       | 2 <sup>12</sup> 3 <sup>7</sup>                        |
|                | f<br>C<br>J<br>d<br>0<br>d<br>1<br>k<br>b<br>0<br>b<br>1<br>b<br>2<br>b<br>3<br>b<br>4<br>b<br>5<br>b<br>6 | $\begin{array}{cccc} f & 2p \\ \hline C & 6^{1/2} 2^7 3^3 \\ j & 1 \\ \hline d_0 & 5^2 \\ d_1 & 2^2 3^2 \\ d_1 & 5 \\ \hline b_0 & 5^4 \\ b_1 & -2^3 3^3 65 \\ b_2 & 2^4 3^6 \\ b_3 & 2^4 3^6 \\ b_3 & 5 \\ b_3 & 5 \\ b_4 & 5 \\ b_6 & 5 \\ \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

15

Table 18. Coefficients of atomic form factors given in Eq.(8).

| f              | 3d                                             | 4d                                               | 5d                                                | 6d                                                 | 7d                                                               |
|----------------|------------------------------------------------|--------------------------------------------------|---------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------|
| С              | 2 <sup>1/2</sup> 2 <sup>8</sup> 3 <sup>1</sup> | 3 <sup>1/2</sup> 2 <sup>16</sup> 3 <sup>5</sup>  | $42^{1/2}2^{8}3^{5}5^{4}7^{-1}$                   | 7 <sup>-1/2</sup> 2 <sup>13</sup> 3 <sup>-11</sup> | 7 <sup>1/2</sup> 2 <sup>9</sup> 3 <sup>6</sup> 7 <sup>4</sup>    |
| j              | 2                                              | 2                                                | 2                                                 | 2                                                  | 2                                                                |
| d <sub>0</sub> | 2 <sup>2</sup>                                 | 7 <sup>2</sup>                                   | 2 <sup>6</sup>                                    | 1                                                  | 2 <sup>2</sup> 5 <sup>2</sup>                                    |
| d <sub>1</sub> | 3 <sup>2</sup>                                 | 2 <sup>4</sup> 3 <sup>2</sup>                    | 3 <sup>2</sup> 5 <sup>2</sup>                     | 2 <sup>2</sup>                                     | 3 <sup>2</sup> 7 <sup>2</sup>                                    |
| k              | 6                                              | 7                                                | 8                                                 | 9                                                  | 10                                                               |
| <sup>b</sup> 0 | 2 <sup>4</sup> 5                               | -7 <sup>5</sup> 43                               | -2 <sup>19</sup> 7·13                             | -3·7 <sup>2</sup>                                  | -2 <sup>13</sup> 5 <sup>8</sup> 19                               |
| <sup>b</sup> 1 | -2 <sup>4</sup> 3 <sup>3</sup>                 | 2 <sup>6</sup> 3 <sup>2</sup> 7 <sup>2</sup> 383 | $-2^{14}3^{2}5^{2}727$                            | -2 <sup>3</sup> 3 <sup>2</sup> 167                 | $-2^{11}3^{2}5^{6}21007$                                         |
| <sup>b</sup> 2 | 3 <sup>5</sup>                                 | -2 <sup>8</sup> 3 <sup>5</sup> 571               | 2 <sup>7</sup> 3 <sup>4</sup> 5 <sup>4</sup> 5717 | -2 <sup>5</sup> 3·1129                             | -2 <sup>9</sup> 3 <sup>6</sup> 5 <sup>5</sup> 7 <sup>3</sup> 319 |
| <sup>ъ</sup> з |                                                | 2 <sup>13</sup> 3 <sup>7</sup>                   | -2 <sup>5</sup> 3 <sup>7</sup> 5 <sup>6</sup> 101 | 2 <sup>8</sup> 9091                                | 2 <sup>6</sup> 3 <sup>6</sup> 5 <sup>3</sup> 7 <sup>5</sup> 677  |
| <sup>b</sup> 4 | Antes (2015)<br>A                              |                                                  | 3 <sup>9</sup> 5 <sup>8</sup> 7                   | -2 <sup>8</sup> 3 <sup>3</sup> 17 · 61             | 2 <sup>4</sup> 3 <sup>8</sup> 5 <sup>3</sup> 7 <sup>7</sup> 1199 |
| <sup>b</sup> 5 |                                                |                                                  |                                                   | 2 <sup>11</sup> 3 <sup>5</sup> 7                   | $-2^2 3^{11} 5 \cdot 7^9 313$                                    |
| <sup>b</sup> 6 |                                                |                                                  |                                                   |                                                    | 3 <sup>13</sup> 7 <sup>12</sup>                                  |

Initial state is 3s, f is the final state

|     |                |                                                                                                                                                                                                                                             |                                                    |                                       | an a                         |
|-----|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------|------------------------------------------------------------------|
|     | f              | 4 <b>f</b> 3.                                                                                                                                                                                                                               | 5f                                                 | 6f                                    | 7f                                                               |
|     | c              | 15 <sup>1/2</sup> 2 <sup>18</sup> 3                                                                                                                                                                                                         | $30^{1/2} 2^{9} 3^{7} 5^{4}$                       | $15^{1/2}2^{14}3^{-12}$               | 2 <sup>1/2</sup> 2 <sup>9</sup> 3 <sup>8</sup> 7 <sup>5</sup>    |
| •   | j              | 3                                                                                                                                                                                                                                           | 3                                                  | 3                                     | 3                                                                |
|     | d <sub>0</sub> | 7 <sup>2</sup>                                                                                                                                                                                                                              | 2 <sup>6</sup>                                     | <b>1</b>                              | 2 <sup>2</sup> 5 <sup>2</sup>                                    |
|     | d <sub>1</sub> | 2 <sup>4</sup> 3 <sup>2</sup>                                                                                                                                                                                                               | 3 <sup>2</sup> 5 <sup>2</sup>                      | 2 <sup>2</sup>                        | 3 <sup>2</sup> 7 <sup>2</sup>                                    |
|     | k              | 7                                                                                                                                                                                                                                           | 8                                                  | 9                                     | 10                                                               |
|     | Ъ <sub>0</sub> | 7 <sup>3</sup> 101                                                                                                                                                                                                                          | -2 <sup>14</sup> 131                               | -3 <sup>2</sup> 19                    | -2 <sup>10</sup> 5 <sup>6</sup> 1109                             |
|     | <sup>b</sup> 1 | $-2^{5}3^{2}7 \cdot 67$                                                                                                                                                                                                                     | 2 <sup>9</sup> 3 <sup>3</sup> 5 <sup>2</sup> 17·19 | 2 <sup>7</sup> 5                      | -2 <sup>8</sup> 3 <sup>2</sup> 5 <sup>5</sup> 7 <sup>2</sup> 863 |
|     | <sup>b</sup> 2 | 2 <sup>8</sup> 3 <sup>5</sup>                                                                                                                                                                                                               | $-2^2 3^4 5^4 31 \cdot 61$                         | 2 <sup>5</sup> 3·1231                 | 2 <sup>10</sup> 3 <sup>7</sup> 5 <sup>3</sup> 7 <sup>4</sup> 13  |
| 123 | ъ <sub>з</sub> | dan<br>Aan ay                                                                                                                                                                                           | 3 <sup>7</sup> 5 <sup>7</sup>                      | -2 <sup>9</sup> 3 <sup>2</sup> 7 · 13 | 2 <sup>6</sup> 3 <sup>6</sup> 5 • 7 <sup>6</sup> 13 • 383        |
|     | <sup>b</sup> 4 | a da g<br>Santa da seconda da se<br>Seconda da seconda da s | н — — — — — — — — — — — — — — — — — — —            | 2 <sup>8</sup> 3 <sup>6</sup>         | -2 <sup>2</sup> 3 <sup>8</sup> 7 <sup>8</sup> 19 · 193           |
|     | b <sub>5</sub> |                                                                                                                                                                                                                                             |                                                    |                                       | 3 <sup>11</sup> 5·7 <sup>10</sup>                                |

To calculate the sum of excitation cross sections it was taken into account that expression  $|F_{l}^{f}(\eta \vec{q}) - F_{l}^{f}(\xi \vec{q})|^{2}$  decreases as  $n^{-3}$  for the fixed *l*' [17,18]. The cross sections were computed up to  $n' \leq 10$  and  $l' \leq 4$ . Then the infinite series were approximated.

The cross sections calculated using Eqs.(3)-(6) and F(x,Z),  $S_{inc}(x,Z)$  function tables [15] are presented in Tables 1-12. The total cross sections are given in  $cm^2$ , others are given as the ratio to the corresponding total cross section. The initial state and the type of elementary atoms are mentioned in table headers, final states f are denoted by common symbols 1s, 2p, 3d etc. For all targets (H, C, N, Ar, Ta) there is a coherent (*coh*) part of the cross section in a left column and an incoherent (*inc*) one in a right column. The tables contain cross sections of only those transitions whose contribution to the total cross section is not smaller than  $10^{-2}$  at least for one of the targets. The numbers in the tables should be read as for instance:  $1.32-2=1.32\cdot10^{-2}$ .

For symmetric atoms  $A_{2e}$  and  $A_{2\pi}$  in the first Born approximation the transitions with the even l-l' number are inhibited [10,18]. Therefore elastic scattering is also inhibited and  $\sigma_{inel} = \sigma_{tot}$ .

The total cross section of  $A_{2e}$  interacting with carbon measured in Ref.[5]  $\sigma_{tot} = (16^{+16}_{-6}) \cdot 10^{-19} \text{ cm}^2/\text{atom}$  is consistent with the value given in Table 1  $\sigma_{tot} = 5.91 \cdot 10^{-19} \text{ cm}^2$ . For more detailed discussion see Ref.[5].

Acknowledgment

The author is much indebted to L.L.Nemenov, A.V.Kuptsov and A.V.Tarasov for encouragement and helpful discussions.

计正确时间 计正式分子记录 法公司 网络门口 人名法法 的复数重新的的短期的

二、1月1日日、北部市区、北部市区に1877

Appendix

The transition form factors of elementary atoms  $F_i^f(q)$  evaluated for Eq.(7) can be written as

$$F_{i}^{f}(q) = \frac{c \cdot q^{j}}{(d_{0} + d_{1} \cdot q^{2})^{k}} \cdot \sum_{n=0}^{N} b_{n} \cdot q^{2n}$$
(8)

Here q is given in atomic units i.e.  $q=q[MeV/c]/\alpha\mu$ ,  $\mu$  is the atomic reduced mass. For various initial and final states the constants C, j,  $d_0$ ,  $d_1$ , k,  $b_n$  are presented in Tables 13-18. Initial states i are notified in table headers, final states f are given in a common way as 1s, 2p, 3d etc. Numbers in the tables should be read as products of prime

number powers, though not all numbers are completely factorized to get shorter records. The hydrogen wave functions given in Ref.[21] were used for the calculations, another choice of the wave function phases might lead to an insignificant common factor -1 or i.

### References

- 1. Nemenov L.L. Yad.Fiz., 1972, v.15, p.1047.
- 2. Nemenov L.L. Yad.Fiz., 1972, v.16, p.125.
- 3. Nemenov L.L. Yad.Fiz., 1985, v.41, p.980.
- 4. Alekseev G.D. et al. Yad.Fiz., 1984, v.40, p.139.
- 5. Afanasyev L.G. et al. Yad. Fiz., 1989, v.50, p.7.
- 6. Afanasyev L.G. et al. Phys.Lett., 1990, v.236B, p.116.
- 7. Coomdes R. et al. Phys.Rev.Lett., 1976, v.37, p.249.
- 8. Aronson S.H. et al. Phys.Rev.Lett., 1982, v.48, p.1078.
- 9. Aronson S.H. et al. Phys.Rev., 1986, v.D33, p.3180.
- 10. Mrowczynshi St. Phys.Rev., 1986, v.A33, p.1549.
- 11. Mrowczynshi St. Phys.Rev., 1987, v.D36, p.1520.
- Denisenko K.G., Mrowczynshi St. Phys.Rev., 1987, v.D36, p.1529.
- 13. Kuptsov A.V., Pak A.S., Saakya S.B. Yad.Fiz., 1989, v.50, p.936.
- 14. Moliere G. Z.Naturforsch. 1947, v.2A, 133.
- 15. Hubbell J.H. et al. J.Phys.Chem.Ref.Data, 1975, v.4, p.471.
- Tarasov A.V., Christova I.U. JINR Communication, P2-91-10, Dubna 1991.
- 17. Gillespie G.H. Phys.Rev. 1978, v.A18, p.1967.
- 18. Pak A.S., Tarasov A.V. JINR Preprint, P2-85-903, Dubna 1985.
- 19. Reduce User's Manual, The Rand Corporation, Rand Publication CP/8
- 20. Prudnikov A.P., Brychkov Yu.A., Marichev O,I. Integrals and Series, Nauka Publ., Moscow, 1981, p.446.
- 21. Landau L.D., Lifshitz B.M. Quantum Mechanics, Nauka, Moscow,