


§ 1. Introduction
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‘In ref. /l/ ‘we have analyzed the - electromagnetic proper—
ties of the toroidal solencia (TS). The present paper deals
with physical applicatlons of the formalism presented there.
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We are plannihg our exposition as follows. In .2 the’ informa— gk
tion on the T$ whlch w111 be' used In the subsei;uent sections is
presented. In‘fGB we cons1der a num‘ber °.L current distributions
Cor nagnetizations) which generate quite diff;rent (gauge non—
equivalent) vector. potentials and:lead: nonetheless to the same
quantu1 mecha.nical scattering of.: charged particles. _Inj4 the
motion of TS in the external magnetic fie 1d is analyzed and

the physlcal meaning of‘the VP obtained “inthe previous section

is clarified. In§ 5 we study the interaction of two T8,.Inf 6

we prove the exist bnce of the Aharonov —‘ Casher '/2/'effect for

»v; -4 -~

the TS and 'oropose experlments testing it.

¢ 2. Preliminary consideriations ’oAn'thetoroidal solenoid -+ *

b1

Consider the torus T : L ; :
( \9 (A) RN %L K U A S R A LTl B . (2:1)

Let the consta.nt poloidal current (fig.l) flow over its surface.

To write out the current density explicitly, we introduce the

.coordinates -,} ’w = ) . l,

pedi RV 2= 7 S‘“‘F

‘The value R:'Ri 7 corresponds to ' tne torus 0. The infinitesimal

volume and surface (of the torus T) elements have the form
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The density of the aforementioned poloidal current being expres—-

sed in R)\.\f ‘coordinates 1s

~._,'-g_cgmmn -
A AT de R “j R (2.
Here %-Q.NLIC __‘N 1sthe ﬂtotal numberof\tu‘i.ns\}i\n the

tor01da1 coil, n\\j’ is the unit veotor defining the current

direction on the. torus: suzface .
il Ng-CosW~ (R tas9 4R Sing) s\h\\f o e
The constant « % may. be:also: expressed -through the magnetic flux

Q and geometrical dimensions of the” torus (2. 1) 3 (D
-l T

In‘what follows we shall extensively
use ‘toroidal coordinates }/\, G Y

. ‘They are kintrodu_ce_d:as

rfollows
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Let: M= JA0  correspond to the torus T (£ig.2). Then for .

M?}lg (}AA)M)) the point P(mﬂ,%> (where X,Y, % are defi-
" ned 1 by Eqs. (2 5)) lies inside (outside) 7. For }/\ fi,ced

Goag MEN
torus T with parameters 0\ G ('H\yo ’
of the ‘angle e
-+ the -'circlezofh the radius 0\-— Q :

) the points (1)9)2) fi11 the" surface ‘of 'the

when one intersects

Jumps’ from—-rl ‘to F’
lying ,in\%=0 p.la.ne:.l The volume

Q/SLﬂO ', ‘the value '

element . c), current denSity (2 3) and unit vector (2 4) being

express\.u in toroidal coordinate are [ N SV,
_Q SLMJGcAMd‘S d L SL}AOABASO
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In the stationary case the magnetic field (MF) H equals
zero outside the tor01da1 solenoid (’I‘S) In51de it onl,:y 5’ o
: Here .Pis -
the distance from the solﬂnon,d's symmetry, axis (P d"‘RCOS\{I =

= G- SL},\/(CL}A ocse)

lb vas obtained 111 ref. /3/ Its prooertie were discussed in” i

.wi

component  of H differs from zZeros H\g- g

). The vector potential (VP) of the

/4/ In the 1ntegxa1 form! the nonvanishing cylindrical components

of Ve are

S
S\'{ T ruv % \3 t/;g/)lcm O UAV
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(Chy =ty d’w\" Q,c\j)CU‘)Q)/lRC\ 4= Lipcox‘iao\) +z ] r

Cogar Q)
kind). For the ‘infinitely thin TS |

n1s" the?” Legendre, function of‘the 2nd:
RL d\,‘“ ‘these 'int egrals

can be taken in a closed form
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At 1a.rge distances VP fa]_ls as’ 'l‘ co
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'y @5 aze the usual spherical coordinates).

Instead of currents (2 3) or (2 6) one may introduce mag—
netization- ¢ 'Luk M A It is ‘confined ent1re13r inside
:the T-S and 15 given by o o ‘ o SRR

LS vy

: ‘ G(R—R\ 'R M wsO ¢
M M h‘“M L\\ (A+Roos‘kf una - S O(ﬁﬂ) 9

Here 6 is the step function(@(ﬁ(\ 0 for XLO and 1 for
)(70) As the current and magnetization formalisms are enti-
rely equivalent /5,6/, ‘one may forget about the solenoid s
current and treat TS as a magneti ed ring wi th magnetization
,giveﬂn jby‘”Eq. (2.9)5 Its 'technicé.l realization’ (ferromagnetic o

ring with magnetization 1ndependent.: of applied fields) was used
/7/.for the. exper:.mental verificatlon of the Aharonov - Bohm
effect,

By

§3. More general current distributions

Vie have mentioned that for the current densities (2.3) or
(2.6) the MF H equals ‘zero outside TS Whether this cholce

Hi AT ko M& 3R d}* Me \\ /Lm’

of current density is unique? It turns out that more general

current disti 1bution hav:.ng the same property is:
- :

A— g_.u QlJA)A (LkM 6030\ V\@ | (3.;)

Here 'gfu) 1s an arbitrary continuous function. The occurrence "
of the step function in (. 1) means that the currents are T
contained inSide the torus of the radius e /ﬂ‘ﬂl « The current
distribution (3 1) ma)r be treated as the continuous superposi- -
tion of the’ S —type distributions (2 6)." The VP corresponding
to the current (3.1) is given in Anpendix 1. At 1arge distances
it falls like Wf K ‘ ’
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Inside i only \9 components: of ma gnetic field: \'\ } and magne—

ation \V\ are- diffe*'ent from zero

(3.3
‘S\'\/U\ M\ _ g ‘ JRy : )

P . LR

The magnetic flux through 'J.‘b cross-section is . .« P -
0= ({Hyipat = e S ek p- D in OU&

For the sake of completeness we present here the current distri-

‘bution, gnetic field and’ 1ts flux ‘in R ’\}! ‘- coordinates
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Consider two concentric Solenoids \Sl and \Sl(see fig.Bb)
, i . v o , . with parameters 0\ R\ ) Q\ = and dl R‘L)(PJ__ . The total V'P
Here g‘ is an ar'b:l.trary function defining the current distribu- 3 equals . :

: t:l.on inside fS Up to now we have dealt with VP which fall as | (1 )_‘ (l) (‘L\ ,1) @)’ A o
:r:'"3 at 1arge distances (see uqs (2 8) anda (3. 2)) The freedom H -H \9\;) ﬂj} +ﬂ R (.7)
in the choice- of the function £ Cor f ) gives a hint that . - o T
asymptot:l.c behav:l.our of VP may be changed To prove this we Now we adjust the solenoid's parameters in such’ a way as to
need the terms of higher orders in the asymptotlc expanqa.on of g *  cancel the leading terms: (~r 3) in’ the asymptotics of VP Thls

VP, For the current density (2.3) this expansion was obtalned in " happens if : L :
- . . . - P iak
~ % d, R B (AUAIQL —-O s (38)

Subst:l.tutlng here the expllc:l.t values ofg) of,  for each of the i

‘ . o solenoids (d\')_, Q L“\}A\L 9 R\,L— a—/yt‘/"l?. %\L I qjh
. ﬂ\P T %K 2 :—LQ-H Q. (Q-H) p ((JOSDS S"Q - o ‘_0‘ l(u\}l\)_-‘”:\ ) and puttlng Y e L(’kﬂ. 4 . We obtain:

Here ‘gQ Sd\\foos\\f S)Q’ PQ\RS\V\\“f SLQ Sd“fS\h‘lfj) PQ(RSW//J)

P‘(dl+R +LdR otV )VL . The summing in (3. 5) .1s performed

k/‘/l/. ‘It has the form :

H%: %RE ,_LE‘\_\ 3 LWSOS) ge )

the following equat ion

@ M (% 11) + ®, ‘ﬁm \‘51*\) "O

over the even values- of e The deviation .of these: Egss (and ; Thls Eq may be resolved wrt \51, . ek
- all others conta:l.n:l.ng Legendre polynomlals) from those presented ' . e B
3 | 1y [ - (\5\+\\ (5.9
/1/ is due to the fact that normalized to unlty ‘ ; S ‘l-.,‘ R S
P (G4 Legendre funct:l.ons were used there. Here . »
\S [ R }d)l- 4) K_ (1 \ : \QJH“)\ ) ’ The total VP (3.7) now falls as r—5
. we adopt the usual no:rmallzat:l.on(g PQ OV AX = 7 Q.QH :

TCRRYE

The first two terms in the expansion (. 5)7 are
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Now we, surround TS, and TSL vby the impenetrable (for the in-
coming. charged’pa‘rti’cl_es)ﬁto‘r;us P, Let the total magnetic flux
of TS‘ and TS, be equal CD (that is (D:Q).‘. (DL ). The quan-
tum scattering cross—sections (CS) of .charged particles deperds
only on the geometrical para.meters of the 1mpenetrab1e torus T ’
and the magnetic flux inside T. This means that situations pre-
sented in figs. 3a (one TS with magnetic, flux 47 _inside T) and
3b (two TS with magnetic flux (p inside T) are physically in-
distinguishable inspite of the quite different asymptotic.
behaviour of VP (~r3 for fig. 3a and~ T -> for £ig.3b). The
transition between VP corre\spondin.g to figs." '3a" andv':Bbj 'can'not be

performea by means of ~gauge transformation (there are different

H inside T for figs. 3a ‘and 3b> Our game may be " continued -

further. Take (in addition to TS;and TS, ). solenoids TS+ and TSH
with parameters satisfying relation %3A§R.f—k— g‘“ cAv\ 2}3 O
The complete VP of TS and 5y 1is given by: e ‘

3

£
ﬂ}% ,\1) q)g 'LHSHS“\’\) (&53 ‘Jv\) Pt‘ (o) 98)
(z.11)
\H;Me ‘g% @, 01"'53“13-&\)(‘53 \53:) PL‘ (wst)
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Here \jg La\‘}J\s and (j‘1 C(/t\ﬂh The complete VP generated by
solenoids T S‘ — S yis

U.l) ('Sk

ﬂi:\ﬂlm ﬂ\:“) Jﬂ(y ﬂy lﬂﬁ

We reruire now the equality o he total magnetic flux to (P

\(D'tq),_tq)’;\” ®L\ (U) and the c:;ncellation of coefficients at

5. The latter happens if

o www&;w Qohpsg43):0; s

T‘ms obtained configulation of four S (fig 3c) generates VP
falling like r 7 at large distnnces. Be:Lng :Unbedded into the ’
same 1mpenetrab1e torus T it underéoes the same quantum mecha—
nical scattering as Tb configur ti'ms hown in fig. Ba,b. The
coincidence .of quantum mec‘lanical Cs reflects merely the non-
singlevaluedness of either quantum 1nverse problem (the same Cs

for different current distribu'tions in31de 'l) or c1a551cal elec—

trodynemic problen (the sanme t H are’ generated b,,r the diffe—
rent currents) For. each of the current configurat"ons shown ‘
in figs. 3a-3c the magnetlc flux equals q) . fl‘his means that
integral éﬂg dé ta}'en along any closed contour pass:.ng
through the hole of T also equals (p . Pz’rticularly this is
valid for the integral Sﬂ‘k‘“—‘ ‘taken-‘along the' %‘ axis. as VP
-ﬂ{ falls faster and faster as one pushes from top to: bottom in.
fig 3, so VP is concentrated more and more at the neighbour—.~

hood of T.
§ 4. The motion of, toroidal moment in, the external
, magnetio field o N

The interaction energy of TS with the externe.l MF )
equals/1/.



g\‘\o&t M 0\\/ | o oo b (4.1

}Here \\/\ ~1s the magnetization of ?3. 4s only 57 component )
of M differs from zero (see Eq. ( 9)) s0 TS 1nteracts with :
external MF 1f the latter has nonzero proaection on the equatorio.l
pla.ne of T8 and nonvanishing overlapping witn M:.P As an examn-
le consider the interaction of TS,;with the linear c.onductor wnich
carries current .\. (fig.4) It turas out that the interaction '
energy equalsh“%l/cr if the conductor passes through s hole
and zero otherwise. - If the source of MF is sufficiently separa-

ted from 7S then MF may be developed (near TS) into the series

(SO . E ooy

HQ"“'LQ Hqumo +('LV \’\Qum“ i "(4.2)

—¥- : ,
7\Here ;-LO defines some point at the neighbourhood of Tb (e:g.,
its centre—of-.mass (CM)) '-L i<'. the vector going from 7,0 ‘
to the particular point inside TS Inserting this expan ion into
(4.1) we get

._U- ~ Ma HI(T) - : {)—1 H WU) - (4.3)

Here,}\l’d:g M (Av - is the magnetic dipole moment. It equals

zero for TS.: The quantity o :
My = (M) Y o @

uP to a constant coincides with’ the so-ca"led toroidal dipole mo-
ment (TDM) /1, 8/ For the magnetization given by hq. (2 9) only &
component of M{._ differs from zero.

Mes + Tadl ", 4.5)

" 10 :

For the arbitrary orientation (Q,S’ ) of the solenoid symmetry
axis Mt ( SIHO(A)_SQ S\‘AGSIky &)59)“ Q E\OWL “To ‘study the mo— .
tion of TS in the magnetic field one should write outhagrangian

. : - {
L, One has L = T U e The Jinetic energy'is’ the sum of CM: &

Tm = 1M Uredg)

energy I(m = (xo + ‘\' 0 and the rotation energy ¢+ '
i’
\'Lot- (ﬂu).x-\—(ﬂd»)-\- C“\)?__ ) e Here M is the mass of
55 Xo, \)o,ﬁo are CM coordimates of S; s Wo! W\j W are the
angular velocity projections on the body fixed axes )
Wae= Osin¥- Soimd sy, Wy = Qoo PinBsinY w2 ‘8&»‘4’*‘&’
angles Y \9 \{J determine the orientation of the body fixed coor—
dinate system wrt 1aboratory one, dots ‘over these a.ngles mean. time

derivatives. 4,B,C are the moments of inertia for T8 ( A = B =

W RMU SR WA, €= Lo RIM (e SR 4l ). ﬁsing*the
Maxwell‘* Equation"" 'LDQ‘HQ'X{; —“"\' \:Qﬁtt' M nge_ iand

bearing in' mind that! expansion (4 2)" holds at large distances

from the MF: source where : AQI_E O . one_gets

U:=- E }lt o E = 3?

If \:.Q\Lt(or ‘10{ HQ’)L[— ) is directed along L axis then this Eq.

U=- L By oy ws@ e,

is simplified

K.

Here’ @ is the angle betweenﬁé‘»’iand' 2— '-:axisj; ‘Tt i?olloyvs

from (4 6) that potential energy of TDM in the external MF dependsl
both on TDM position and its orientation. The Lagrange Eqs.

(4 Ak 9[' 0 q, 2 Xo,‘bo,f:o) %9, U ) leam“o% the ! .

de 9.%
coupled systém of Eqs. which uniquely determine the motion of

TDM.

11 o



- We.Have seen that TDM 1s.'an’ important characteristic of the
fnfinitely thin TS. In fact the position of CM and ’theT direction
of TDM completely determine the dynamics of small TS. We turn now
to the situation shown in fig.3b. ,’l'he total maig‘netiaation' is
given by :

A

~"""iM"-1’:.q€\‘a SL\H [-(3 O(J*"}A \+%L@(}A Mm\] (4 7)}

The corresponding TDM equals

1 4.8%

Mt =3 %dQ\-\— %ld‘lRL : :

This quantity vanishes for the conflguration presented in fig. 3b.

(see bq. (3. 8)) This means that next. term in the- expansion of .-
\’\Q:L(r_- should be taken. into account.,v It equals -— '1 V()\
\-—\Q,M_VLO) . Substituting it 1nto Eq. (4 l) one arrives to

U=— ?L ,\'Lo \'\m) §3( (MM\L] d\\/ *-‘(4.9)

It is easy to check that integrals in the RHS of this Eq. dis-
appear fOﬂ the magnetization (4.7). The next. term in the expan—
sion of HQS(.t is - ) |

Inserting this into Eq. (4 1) one obtains after ‘some manipulations

. L("LO["HQ wl \\a \
l@“% ’éiuc'éioa - &'X Xy \rl‘x M\’L\ (M/
: " (4.10)

12

of different multipola.rities. '

the nomvantohing ihtegrals ocourring here ate

ot - T =39
S M\L\lo\\l : \b o QB )ly-u), oy
g3(%\17‘Mu\3((>\\/ g% u,( M\«. 0\\/_

i

CP a‘* Yi-(a (i)

y yis ¢ ?‘?ﬂ Qo

Thus, for the confi’gura‘tion" show in' fing the interaction '
energy is given by Eq. (4.10). The‘integrals'Len’tering":"t‘he;}i?}{}'s" -
of (4.10) are usually referred to as tor01dal moments ‘ot higher
orders (or multipolarities) /8, 9/ Turning now to the current :
configuration 1nd1cated on fig. 3¢ we have 1nstea.d of* (4 10)

TE A ('IOk Hmk\\a &1 ¥ ,.LY\(M\L_\,M»S\,‘5\ V

2@ %10&10& P (4. 12);

Here M‘&L\ is given by r‘q. similar to (4. 7) From the Eq. (3 12)
it follows at once that interaotion term (4 12) disappear; for R

the configuration presented in fig Jc. 'l‘he interaction terms ‘

made. Thus, we obtain the phy31cal interpretation oi‘ the current

configuratiom shown in fig.J they generate the toroidal moments

13 R
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Ir the conditions (5. 4) are not satisfied one may use ezact
expressions for EMF strengtgs whidh are; valid outside the sphere

of the radius Ri+dy . For ¥4f one has /1/

) .
'k'f'}h’\( AR \'\d\ﬂ) p (‘“95) aQ( e). &7
Hg= T Q(Q* ) '

=1

: o )
Function (have) = Hogy o [PX )

- Here \"Q is the spherical Hankel function
QQ(F 3 is determined by the current density

| | _ 2. R\ .04\ 2 ‘: \ . :
(ME\ 1hw J@\mekm‘ b W °*) ) .o

) i

is the spherical Bessel function.

0,002 39*.,“‘) / BL

The arpuments of the Bessel and Legendre functions in (. 8) “)
‘are KP\ ana R, sinlf | _P\ , Tesp. Here P\_(o\ -\-R +1t* Rites )
?The summing in (5. 7) is performed over the odd values of e_
Inserting (5.1) and (5.7) into (5.}) one arrives to

S LKLQ &” RLESN kQ(in) gz ( ) a2(€) © (5.9
U\' lV ' Q(Q—&\ S

‘ To obtain the final answer»onekshould multiply‘this Eq. by thel
factor exp(-ihik) and’then take a real part. Thus, - there exists
nonvanishing interaction between two TS with time—dependent cur-.

: T5,and T3
rents. Consider now the case when the symmetry axes oi rand a,

16

are mutually orthogonal (fig.é) In this case the overlapping
fintegral (5.3) disappears. We concluae: the interaction energy
of two. TS w1th alternate currents 1° nroportional to the cosine
of angle between their symmetry axes (or between their tor01dal
moments). , . .
. The EMF of TS with time—dependent‘currents and their in-
teraction was experimentally studied in ref. /12/. The fOllOW

ing remarkable fact was observed there. Consider torus T (flg.7)

‘Now "dress" it by the toroidal solenoids{:st (instead of the'
poloidal turms). iThese“sOIenoid are feeded by the alternate -

e

current. For-the very thin solenoids fZSL one obtains dense co—
vering of the torus l surface. “ccording to ref. /12/ the !
electric field“E:f differs from zero only inside torus T

Thus one gets electrical solenoid of the finite dimensions. The
present author has not been able tc Justify theoretically this
fact. ‘Up to now there are known- only infinitesimal realizationst“

of electrical ‘solenoids /13/ as well as nonphysical realizationiﬁ

via:the ‘current of negnetic monopoles /14/

§6.~Aharonov - Casher effect for the toroidal solenoid

_)L (e i".?_’i

In'arguments /2 / for the cylind-;y

‘ At first we repeat well-kn

rical solenoid (Co) Consider the charged particle &L; in the Gl
field of the infinite resting CS The tenm in Lagrangian

describing their interaction is R ;7 ST f@ :
U"e ﬂ( o-'ls “« 1)

HereFLQ. and 15Q -aTe the. radius—vector and velocity of the:
charged pqrticle, fls 1“iszthe3radius7vector,of CS...The Galilean . -

invariance of the Lagrangian permits one tn write out explicitly

17 O




the interaction when both charge and solenoid are in motion

Q \UQ Us 9('1@ 'Ls) o
. _? (6.2)
Hore
Casher /2/ the added term

-+ 1 7 ~

— g ljg J} ('125—'LS,)

1t the velocity of CS. is was shown by Aharonov and

» (6.3)
-~ )
describes the scatternng of neutral particles with the magnetic .
‘dipole moment on the infinite charged filament. The experiment/l“/
in which the neutrons were scattered by the electric fileld of
charged filament was performed 1n 1989 .»It has confirmed the
existence of the ac _effect. o ey ‘

Now we turn to the - TS, The interaction of a charged particle

with resting TS is described by the same BEq. (6.1).where under-
\ﬂ_“ one should understand the. VP of the TS (see§‘ 2. and refs.
therein) The experiments in which the electrons were scattered
by the YP of TS were: performed by Tonomura et al /1/. Their
theoretical interpretation may be found in refs. /16/. The same
requirement of the Galilean invariance oblige us to chooee Eq.
(6 2) as an interaction between the moving charge and TS. It is
our nearest goal to obtain and interpret the added term (6 3).
" Let TS with the poloidal current given by Eq. (2 3) moves in an’
external electric field with scalar potential Ef and field
:strength E; I - gradj? . ACcording to Special Relativity the

: -~
generates charge density () 3 (US A )/C—
can be disregarded 1f we limit

t
moving current

(= (\ j) '/L), The factor ¢

ourselves to the Galilean invariant ‘theory. The interaction of

movinngS with an external electric field is given by

18

U= Sms-u ytm(ws- &ws o\\/s

(6 4)
_v. a
Ve change current J by the equivalent magnetization *s‘li
( J C 'lDt IV\) and integrate by parts ' .
U- ! v Sms "le.)xM cA\/ )

At large distances from the source (or“for small’ dimensions of

TS) the electrical field' E. ‘may be developed into the ' series
=

El*Ls*:L’fo_) [('lo o) 4 (T vo) BT - ru)

Here Uy and ( are the same as in Eq.(4 2).Substitute this Eq.

into (6.5)

Us=-1 (UZ AN

(6 6)

(E. '_/)

Here .“(: is 'the TDM' (}At S'l. )\M dV) . Inkth"e"de&rivation :
ot (6. 7) it was'also taken into account that dipole magnetic'
moment }Ad U for the 18 (see§ 4). We ask now: what electric‘“‘t
field" E should be substituted into (6.:7) in order to ‘obtain
term (6.3) restoring the Galilean symmetry of Lagrangian? We'

equate Eqs. (6:3) ana (6.7) = I R e

9'1-5'5‘-9(104'_lre):--\\ﬁs§0)'( hO 'Le) ﬂt) (e. 8)

xv

The sign minus appears here because the potential energy enters
into the Lagrangian with negative sign, it is also taken 1nto
acoount that VP of the TS is an even function: of ooordinates/l?/

19



(contrary to the Ccs case) Now compare coefficients at the parti-

cular cartes:Lan component of US

- QE.(TQ‘%L, L (6.9)
QQL(io‘TL):"%Jj*Qn‘ ﬁim: - e

Without loss of generality we assume that symmetry axes of TS5 in

oth sides of Eq. (6.9) are parallel to the ¢ axis. In this
case only 1 component of Mt différs from zero (Mg =
al —- ﬁdQ . seejS 4). As -expansion (6.6) is valid at large -
distance from electric field source one should use in LHS of

(6.9) the asymptotic values of ﬂ ¢ deiined by Bq.(2.8). This

gives .
g bty | 96y
Tons 2t !’

(6.10)

—_— -

At  Er g, 3T €2

o/
v
~
3
]
Ve
<

Here 3 = o - etc: It is-easy to check that these Egs.
are satisfied for E 2 - Q1 [ 'L © . But this is just &
component of ‘:f - ()_"L /1’5 » . From this it follows
at once that at large distances the aforementioned term (6.3)
describes scattering of toroidal magnetic moments on the Coulomb
field. In order to find electric field at finilte distances we .
turn to Eq.(6 4)-in which the expansion of electric field was

not. yet performed. Again we require the. coincidence of I‘Jqs.

(6.4) and (6.3)

B - Sen SR U {f . é AV R (6.11)
N%%vifs, 4 = §v |7 |V . :
or comparing coefficients at US
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Now we remind that VP ‘F—r satisfiesPoisson bq.- Y »
Aﬁ ll/l Q/ SR S S R IR

) Its “soylution is D | B

' c}q rl) : C féf*::-r 'A“fz‘}vo&\/ o ifn;:Soila)

rl,r'l,

By comparing .:qs. (6 12)" and (6 13) we get L
§= Q/\'Lo ’Le,\ P e 020

But this is just the scalar potential of the point charge.

Now we write out the classical Lagrangian ‘

3 R 2

L‘ "M;Ug 1— L g UQ A Q (Ue Ug )H ’lo_ —7-5) o e(eis)

There is no: classical scattering as r..qs. UQ_ O US O:“follow:z

from this Lagrangian. Now we_'fix the pos:Ltion of the’ Coulomb::.

centre(UQ 0 PLQ O u‘S z U '7—5 '-L m$ \f"‘) Then

0 (6.16)
For the infinitely small TS it reduces to T
ot L) A

@y

Agaln ’there 1s no classical scattering for these Lagrangians,:

- The:corresponding ‘Schroedinger Egs. .are
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( P+ ) w W ‘ (6.18)
\-P‘* l[ ﬁk” q{; CLW (6.19)

The second of these Egs. holds at sufficiently large

r\l@

aE
1

(comparatively with the TS dimensions) distances from the Coulomb

. center. Schroedinger Eq.(6.19) describes quantum scattering of
‘toroidal moment by the CoulombEfield. How to realizeJthis expe-
. riment? One should find neutral particles having nonuanishing
" toroidal moment (and zero magnetic dipolefone). It was claimed
“1n ref. /18/ that Majorana neutrinos are just such particles.
ihe second way is the scattering of ferromagnetic!microparticles
By the Coulomb field. According to ref. /19/ these microparticles
kcarry the toroidal dipole moment. o o ’
It should be noted that Eqs. (6.1'2)‘. (6.16) and (6.18) are
valid for the toroidal. moments of arbitrary multipolalities :
(see §4). In this case f? is the VP corresponding to the chosen
multipolarity;(seeé‘J).‘Eqs.'(6.7) and (6.19) are referred only

i

'to the: tor01dal di pole moments.

7. Conclusion

. Ve briefly summarize.the main'results‘ohtained.

1. The gauge nonequivalent vector potentials are obtained
;which lead to the same quantum mechanical scatterlng. It turns
tout that current. di,trlbutions (or magnetiuations) generating

these vector potentials carry toroidal moments of different

multipolaritles.

2. The equations are obtained which describe. the motion of "

toroidal moment in an external magnetic field.

- 22

3. It is shown that there exists nonzero interaction between
=y

two solenoids with alternate current in their coils.:
4. 1t 1s proved the existence of the Aharonov ~ Casher
effect for the toroidal solenoids and moments.’The experiments

teeting it are suggested.”;, : ‘ o _;N,? " N,
/ ; ; : ) }

F”Appendix 1 ; |

; P ‘w!

Here are the nonvanishing cylindrical ° components of VP

corresponding to the current distribution (3 l)

Rz %ﬁ /z, g \1 gd)& {-(}4) Q"_ qh/

(d«\}u\— \+é

ﬂ\p‘— %ﬁ& (cL}x WSB zS\vw\Q P gd}l &(}x QV\_ ”

outside the toroidal solenoid (}AL.Ml

) :




e :.o

‘JFlg.l. The p0101da1 current Fig.2. The geometricai=dimensions

,fon tthsurface “of toroidal
“ solenoid and the associated
" toroidal moment.

of the toroidal solenoid.

Fig.B. The different%oorreht cogfigﬁratioqs*are imbedded intov

N the impenetrable torus T. They generate gauge noneooiva-
lent vector-potentials leading to the same quantum mech—
nical scattering of charged particies. The vector poten-

tials are concentrated more and more near the torus T as

one moves from a) to c).
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Fig.4.

The 1inear conductor with the stationary current 1

interacts with toroidal solen01d hhen it passes through

““the qolenoid ‘hole (poqition 1). Otherwise there 1s no

Fig.5.

Fig.6.

Jinteraction between them (position 2)

The toro*dal qolenoids interact 1F the alte*nate currents'”ﬂ

flow in their coils.‘:‘ : {'yrxkéﬁ

o

i o
H 3

ERCL o aa Ttiipdiione B (ARl 1

The(toroidal(solenoids do.not:interact i1f their: symmetry

axes are- perpendicular.: r oo
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Fig{7;

" 1ipside it !}Af{}A‘) It is- understood that argument

The,torus T is "dressed” by, the toroidal solenoids

with alternate currents in their coils. For tpe very

"thin solenoids 'ﬁic and dense covering of T by fj‘

the electromagnetic field is confined inside T.
(according to ref. /12/).

!
;of the

¢

Legendre functions equals CQAJA : 1f 1t is not :indicated. Further,

q&‘)‘lw \Q« —U’\" Qv\- Qm‘ “Qh—- .-

The VP obtained 1n /3/ corresnonds to the current density Ca. 6)

It is obtained when the follow1ng choice of functiop J: is

ﬁade:
1.
2.
3
4.
S5e
s

S (e A Mo .
§: agar ke ﬂ’ﬂ\)
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