


in the field of the resting inflnite CS The term in Lagrangian "

describing their interaotion is

Q UQ ﬂ ULQ rLS ) (I)

hererLQ andlSQ are the radius-vector and velocity of the CP

eop., rLS is the radius—vector of CS- j} 15 the vector poten- e

'tial (VP) produced by CS at the position of CP The Galilean inZ
variance leads to the following modification of Eq.(I) when both

the CP and CS are in motion
_¢
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Here TIS 1s the velocity of CS5. As was shown “in /1/. the*

term’
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corresponds to the scattering of neutral*particles with the ;
magnetic dipole moment by the infinite charged filament. The exXe nit
periment in which;the neutrons were scattered by such 2 filament

was; perforned in 1989 /ef. It has confirmed thehex1stence of AC
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effect. ol tve
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The interaction of CE: with resting" toroidal solenoid (TS) is
described by the same Eq.(I) where under,H-one should understand VP
of TS. This VP was obtalned in ref.” /3/, its properties were*
discussed in /4/. The ‘excellent experiment in whioh the electronsv”
were scattered by- the magnetic field 0" TS was performed“by Tono-loxf"ﬁ

mura et al. /5/. :Their theoretical description may:be found in ,
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refs; /6/. : The same considerations of the Galilean invariance »
oblige us to choose Eq.(z) as an interaction when both crp and Tb

-are in motion. It is our goal to derive _a_»nd interpret the added

term S’B) Let TS with poloidal current (\ (fig.l) move with velo- i
city ES . Accordi_g to bpecial Relativity this induces charge '
density P (US {\)X / C’" L 4 As ‘we 1imit ourselves /]
to the Galilean invariant theory, so factor 3/ can be discarded.' ’

2 I

ix

The interaction of moving '.[‘S with an external electrical field
E - f&’bc\d\g "'“‘_ 1s given by g atEee w Ty

u $ep: k&()\\/ S\.? (Us ) c)\\/ ff’; (4)

We change the cu.rrent by the equivalent magnetization ‘VI
( (\ ( ot M ) - and integrate by parts ’

M US S [ X M o\\/ - (5)

At large distances (comparing to the dimensions of TS) from the

. sox;roe of E the latter can be developed into the - series .
CEA rLs Te) = T ( To- 'lL)'H'LVo\ EUlu ) )

Here r(,o “.refers to.some;point:.at- the neighbourhood of TS5 (e.g., ..
1ts centre-of-mass) “Substitute (6) into (5

U= \Us ([X}Ad)—“‘ (Vs Vo) Eﬂe) <7>

Hereﬂo\ SM(A\/ andﬂt = \Sl'LXM )0‘\/ - are the magnetic .

dipole a.nd toroidal moments (TW) . of the IS, resp. For the TS ,uo( 0
Zand’ 4. Juf_- is directed. along TS symmetry axis (fig.l) It has

" the magnitude Mt ( i‘gdﬁ’/ (Here % (Pl[l\\ ld— Sdl Q’ls:l 5
Q is the magnetic flux inside TS, dsR are -geometrical R ;f"
T (\P d) %L P\{L) . As Vexpansionn('o); holds

 parameter:

- was omitted in the derivation of (7) 'I‘hus~

~to ‘oybt 1n term (3)? By conparing Eqs._ (3) and (8) we get "‘“f

Qe

1nto the Lagranglan wi. th negative sign, it is taken into account

rri“,[

outside the source of electric field, the term containing div

Ealies: = KUS V \ ( ﬂt\ (8)

Ve ask now: what electric lield E should be substituted 1nto’ (8)

L

el T 23 (5% (B0 w;)‘

"l‘he sign minus arise, here because the potential energy enters
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also that VP of TS is an even’ function of coordinates /7/ (contrary

to the Cb case) Equatnn" coefficients at the particular cartesian

component of Us we arrive to

/C) tK w—o PL?_ )
}A ) ’é')(. oL e Rt

;e that symmetry ‘axes o*’ TS in"

LGN thout lo 55 of generality we’ass

both Sldes of this Eq. axe p rallel to the 2‘ ) axis.l 'l‘his gives

:

Mt?; “%O\K /8/ As an expansmn (6) holds’ for the large

separations of- TS a.nd "elect ic field sou:rce; one should use in ="
: .
the LHS of (IO) the .,ymptotic values “of- H /3, 473"

A4~ rgdk(i+3oﬂﬁ/13 jﬁv~”rgdal&kﬁe/1$z s

gives ¢ o
i TeBC ’;\ j_ TL_"“ 3‘1

z:[g-—*DCQ, letoide nownr iUl

Q%/73

It 1s easy, to check that these J1'qs. are satisfied if l:?;-‘

But this 1is aust 2. component of E Q'L /75 . This means that
texm (3) restoring Galilean symmetry at large distanoes corres—

ponds to the motion of TS in the Coulomb field., To find the

~ electric field at finite distances we turn to Eq. (4) where expan—



sion ofE was not yet perforned. Again_ye require the coincidence ' Tw it ) g

ot Faa. () ant (0):0 s =209 (U §)dV . ve rentna mat ¥ e aer o aTeeafiiget L -.Qi” 22
T e = =T . i )

is‘the scalar potential of,the electrical,»field to be defined._ . . ’g \—6“ v V\E‘ L-)\ \lf: ZL\Y '\;E,__ ":?S e

Compare . coefficients at, US L o o LA - ‘ RS

Qﬂm-cgmtf J(Q),AV . .(»11)::,(

They describe the sca attering of TS and M by “the Coulomb Pre1d.

The question arises: how to verify the existence of AC effect for' L

Ve keep in mind that VP_S".f TS satisfies Poisson Eq. TM? One should £ind the neutral” particles having the nonva.nishingv

A _Q = - Llr/ d e ’ , ) g T (and zero magnetic dipole moment) ¢ was claimed in ref. /9/
Its solution 1s \ o ‘. ' ’ ” that Ha.]orana neuorinos are .]ust such particles. The second way
‘—7_ _|- g _l——_-; 'l (rL ) (A\/ - v. (12) ;r ‘ is to study the’ scattering of ferromagnetic microparticles W
\H - C P‘L I _ . ' (which according to /I0/- carry nonzero toroidal moment) by o

By comparins Eqs-(ﬂ) and (12) we get “f KI\L-'thhat corresponds o S ,' | "

to the scalar electric potential of the point charge.’l'hus,tem (3) -

describes the motion of TS in the: Coulomb field.There :Ls no classi-

cal scattering as Eqs. - UQ_ - ﬁxs ’,O follow :Erom Lagrangian
L"f——molfg,-\— mes* = (\SQ ds)ﬂ('l.e 15) ‘v ) Fixing the' . RIS
position of the Coulomd center (‘(_(Q’ '{Q 0 155 U '(,5- r_l_' e
W\S— ‘ ) we obtain I.agrangian describing the scattering of

TS by the resting Coulomb charge- “L—— IMU“ CQ K ﬁ['z) o
For the infinitely small 8’ ‘this’ reduces to L - ' )»‘U"' - + .

‘- (U \7) (E ﬂ ) E QFZ/.I: that corresponds to the sc

of toroidal dipole moments by the Coulomb field. Again ‘there is

no classical scattering ('U 0) . The corresponding Schroedinger : R S ’

qu- are Fi’g'.l. There are. shown poloidal current on -the; surface of torus

and the associated toroidal moment.
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