


~"Many ptoblems of the conﬁénﬁéﬁ?ﬂ : Sﬁv@@a‘*"’d m

“ticles. . The ordinary. explanation o

ard model (SM) arise from the

- -presence of Higgs sector:of scalar fields. Perhaps one of the most evident - /

* problems is the absence of any exper nental Iﬁgﬁifeéthtipﬁs of Higgs par-

. thia fact by alarge Higes boson

E méés My may be unéétis{actoij; i Atfa.ulylarge My, 'jpp"rp‘:&matgly .at

Mg > 1Tev [1], (2], the SM-become

nes a strongly interacting theory.

“In ‘this case the usunal’ perturbation theory (PT), which is' the only re-

: 11ia.ble'flﬁéthod of calcula.tlonm Qua,ntum_ﬁeldt~ftheory (QFT),zcannot«be

‘applied to derivation of the SM. prédiqtioﬁq‘.'_ ‘In the near future at the

e LHC the Higgs mass range My <800 GeV il be exhaus

perturbative regime of :the,SM may bg"ext"ieédédf‘ :

. tively explored . [3l, --{4 and the inb@‘yg—j_mf{ﬁtibﬁqd ‘upper bound of: tbe

. Asituation when Higgoes are not discovéred in fiow under serious the-
 oretical consideration. The composite models and schemes with dynami-

" cal mechanisms of gauge symmetry breaking are investigated extensively

s an alternative of the models with the fundamental scalars. General
properties of spontaneously broken gauge symmetry (SBGS) are also ex-
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plored independently of concrete syrnrnetry breaking\ /mechanisrns (2],
[5]. To our mind, it is interesting to consider other approaches to’ SBGS'

without observable Higgs particles in the framework of QFT.

We propose an approach based on the idea of the so-called ”virton”

ﬁeld [6] which can be constructed within the nonlocal QFT. In the .. 4

local one it doesn’t exist. . The main- pecuhanty of the virton field is

the following. After quantization it describes not ordinary particles, but

unobservable quasi-particles, which 1 ,appear only as v1rtual states. If we
regard the virton fields as the nggs fields, we obtain an appropriate

model of the Higgs sector of SM which generates the vector boson and

fermion‘m'asses Without producing observable Higgs particles.

e Ll

The nonlocal quantum ﬁeld theory (NLQFT) 15 a self-consistent scheme n

“ satlsfylng all pnnc1ples of the conventional QFT (unltanty, causality, rel-

ativistic invariance, etc.) and providing the basis for correct. description k
At the same trme “the nature of nonloca.htyi*[\

= of the nonlocahty effects.

itself may be unknown. This point of view is accepted in the series of
 work (7] where a, version of SM is developed in which all interactions are”
;,-,nonloca.l There a.re some prohlerns wrth the ga.l.ge mva.na.nce beca.use of ©

aaaaaa

fundamental mteractlons Another way 1o’ the ﬁmte QF T was proposed =
1n the work [8] on the basrs of 1_nﬁn1te component ﬁelds which.also results L

In ‘our approa,ch the nonloca.hty ls int oduced only in’ the nggs self— |

mtera.ctron term. The main . goa.l of this’ nrodlﬁca.tlon of the SMis to

k:.;vexclude the scalar pa.rtlcles from the observable spectrum The’ theory ‘
- 1n this case is certa.mly not ﬁnlte, though its ultravrolet property-is im-
proved and dlvergences of many diagrams are reduced. Our method of -

:quantrzatlon of the nonloca.l fields also differs from the one applied to
 this problem in the above mentroned approach [7].- We use intermediate

: _regula.nzatlon of the nonloca.l field theory by introduction: the- infinite
- set of qua.ntrzed loca.l a.uxxha.ry ﬁelds deﬁned on’ the Hllbert spa.ce -with -

: the negatrve—norm sta.tes T

"‘Then the genera.hzed functlon )C(m - y)
j rnethod of quantrzatlon ‘of the. nonlocal ﬁeldsr 'developed in these works ‘

L= <r:f(a:)lc-2 (ll az) (.92 + ) @(z)’ + A (q»(z)* . ‘I’(z))

2 Electroweak Symmetry Breakmg and
Nonloca.l Self Interactlon of nggs Flelds

o .(»

We introduce nonloca.hty mto the nggs self-lnteractlon wntmg ‘down the
Lagranglan oi' the scalar electroweak doublet ﬁelds m the form : ar

,—c ¢*(z)(8’+ )¢(z)+A(<I'(z)**<I>(w)) (1)

where m? < 0, and the nonloca.l field ¥(z) is obtained from the local ome
#(z) by ”smearmg over the nonlocality domain with the charactenstrc
scale %, We 'don’t specify the nature of this nonlocahty and, mtroducmg
the phenomenologrcal formfactor K, define the nonlocal ﬁeld P

<I>(n:) / 4y Kz =) qS(y) lt(ﬁ 32) (:c) | (2)

The nonloca.l operator K (22 62) can be presented m the form

)C(€2 82) 6(:1: ;—Dy) belongs to

one of the spaces of nonlocal generalized functions which:was mtroduced ‘

- and’explored in the works of Efimov [9].

T Consrdenng ‘the theory: based:on:the Lagrangian (1) we follow the

Let us rewnte the Lagra.ngmn ‘ :

_We are-looking for such’ conditions whrch bemg applied- to this La—
granglan guarantee “thevirton rea.hzatlon {or the scalar field remain-
; ‘mg a.fter SBGS In tlus case observable scala.r pa.rtlcles wrll not appea.r




operator

e 5(32) )+ 6
The constant w ) will be ﬁxed from th\, condxtlon G’(pz) £ '1(— 2) Then
we also require that the function K i is an entire analytlc function’ wrthout

any zeros. This.means that the. nggs propagator G’(pz) has no poles
after SBGS: The-E-function must- satisfy some conditions. following from

the genera.l pnncrples of QF T These are. the Eﬁmov condltrons [9] NN

[5(2)] —5(2 ) o

‘o E(z) >0 for real Z, :

, fo In Euchdean momentum space 8 1(—-pz) has to decrease steeply

) enough fOl‘ Ciriod ‘u:"f' Bl DAL TN s iy e e TR DT '

.The ]ast condltlon resu]ts in decreasmg Euchdean Green functlons ‘of
“NLQFT: The mt general form o{ the ’

condltlons 1s

s

s a. rea.l entlre functron mcreasmg w1th 22 = 0o,

" The mteractlon w1th the gauge ﬁe]ds is mtroduced by usual mrmma.l
' substltutlon R ~ A .

where A# and B are the SUQL and Uly ga.uge ﬁelds rmpectlvely, Y is
a weak hyper(‘harge operator ’

-~

* Toking these into account, we rewida the Loagrangian (4) in the fomi

- ) 8(e) + A(<I>(ﬂc)*"“1’(““)) ©

Gauge invariance of thrs Lagranglan is the direct consequence of the

- L = 3\(z) (o (D’)

_ fact that the E(z)- functlon 15 an entlre one. Under gauge transformatlons

R R @g ...‘iq@ - E (10)
Do & Di=gDg-1 (“);

the operator £ (Dz), being the sum of posrtlve degrees of the covanant’
denva.tlve D tra.nsforms as Lo

£ ___' gg _ g(gDZ —-l) o gE(DZ)g (12)

Noteworthy is that accordmg to the Prka.r theorem on a pomts of an
entire function [10], the £(2) function takes the w-value an infinite num-
ber of times. This statement can be easily understood with the simplest
example of function exp z. Consequently, the propa.gator (E(—p*) — w)—l
of the @ — field has an infinite number of poles, some of them at negative’
or imaginary values of p?. In quantum theory they correspond to parti:"
cles. with unphysical comp]ex masses. As is well known, the presence of:
these states, analogous to ”tachyon states in the conventlonal SM are
the signal of SBGS. R PR X

- Let us consider the quantlzatlon problem for the theory based on the
Lagranglan (9). The standard canonical procedure cannot:be directly-
applied in this case due to the presence of higher time derivatives in
the kinetic term. Therefore, followmg [9] we consider the properly
regu]a.nzed theory B SR e

~ct <1>5*(z)£5 (Dz) @6(2:) - wscbst(:c)*ﬁ[’s(z) + . (13)
+ A (ep“*(z) *qr‘(z)) (14)

where Sis a regu]anzatlon pa.rameter The regulanzatlon is chosen mv

- such a way that



- limég? (Di) =~£(152) "“(15)"'

and the regulanzed functron

B 8‘(p?)‘ H(p em?(é)) e

. J—l

 hasan  infinite number of zeros in'a sequence of points such that m2(6) >

- 0 and m3(6) — co when § — 0.

B Then the theory can be quantized on the Hrlbert space w1th the

negatlve—norm states [11].

For the § > 0 the free Hamﬂtoman H, the S%-—matrix, the Green

" functrons G® and other objects of QFT can be constructed. It is accepted

[9] that in’ the limit § — 0 this construction gives the solution of a
quantrzatron problem for the mltra.l nonlocal system with the Lagrangian
13).- g o |
= The ﬁrst step is to represent the meromorphlc functron [E 5] in the
form :

ey 85(p2) t= 1y . qar

sl e E(’ Vae-r e
_ + 1) LA

s | 2(5) (J ) Moz ’, e i (18)

a.nd o< l/p < 2 Mo =I5 The coefﬁcrents .A (6) can. be easrly

calculated for any concrete functron Deﬁne the mﬁmte set of Pars -
Uhlenbeck aux1hary ﬁelds ‘

| ifté)

'i‘I"’(z), = Z( 1)1 \/.A 0) @5(:1:) o (20)'

,1—0‘

‘ fln terms of the ﬁelds @5 the regulanzed Lagra.ngmn (13) reads -

Z( 1y «p‘f(x) (D’ + mie) @‘(m) =i
sq;m)*@‘(x) + A(@‘*(x)m‘(z)) l @)

Consrdenng ®¢ to be mdependent fields we can quantlze the theory with
this Lagrangian in the framework of canonical formahsm Then the

- equal- trme canonical’ commutatron relatrons take the form

G [ses, elen] = dossE-n (22)

Due to ‘the presence of tlre factor ( 1)7 these relatrons can be realized only
on the Hilbert space wrth the ‘negative-norm qua.ntum states. Moreover,
it can be shown [9] that on thls space the quantum ﬁeld <I>5 is a loca.l

& operator

Consrdermg the SBGS we rnake standard shlft of all ﬁelds ‘1’5 mde—
pendently c } Ly

@‘(x) - b+ HE

Yo = (BN e

T R

where

Fe) = Z(—I)J \* /A (6) m (x) l?f)

£k iJ—-0~ .

.’.v;

() Z( “1>f /4; (s) ‘(5:)’ ~(‘ée)

Redeﬁnmg the theory in terms of the ﬁelds 7) we ﬁx the values of v}
; and w parameters from the requlrement of the absence .in the resultrng



Lagranglan of a.uy terms which are linear or qua.drat.lc in fields 77] excepti

2(5)77‘

Then we obtam the equatlons

2(5)1} - \/,4 (5) (w ~-A (vJ) ) =0

| (27)
# | Vw,; 3/\( 6) . (28) ‘
;The solutlon of these equa.tlons l.ea,cls o ﬂ |
W= ’?-_ 58(0) “(29)
g 8

| (vf) = 82(;)) e el (30)

| i(8) (£5(0 . ,

(v‘s) — %4_((6_)))_. ~ (31)

Takmg thls mto account and substrtutrng (25) -, (26) to (23) one. ﬁnds
- after some ‘transformations the final Lagrangian-in the umtary phymca.l
gauge - ~

S E =g L O mi) nfﬁ-+~‘:~Av“ () + 367" -

'&

B _ g_ =) ; B 5 " _“ 1 _
T [ wd] (e« )

—mwiwe - gz -
. 6
o ~zf:'$f (i‘YuD“ - my (1+;;)) ¥

For the couxplel.eness the fermion pa.rtof the model is also included’ri'u
;tlns expressron The nasses of the W and Z bosons are givenby

2 2 o ' 2 ’
2 v 5(0) 5(0)5 (0)
MZ = W ’ o
2 cos? Ow (34)

i

r i

TlrerLagrangm.n { 3‘7) 1ves theﬂolutron of. tlle problem we formulated at
the begmmug In the lnmt §-—.0.it describes the SM, wnth ‘a: nonloca,l
Hrggs ‘sector. _The. sca.la.r partrcles correspondlng to, the qua.ntlzed ﬁelds

(:r) escape. from the observab]e spectrum for. theu’ masses mz(ﬁ) —=, 00
when §—0: Moreover the, l\metrc terms of these helds in, the Lagra.ngm.n
(3‘7) can’ be wntten in ihﬂ form san Y Ealis s T 0

Z(—x Y fe) (0% + ) o) = FOE F)e)-

j=0
Tlrus in’ the limit: hmg_.o r) =T one! obtann:. the ﬁeld 9 w1t.ll the corre-
: spondmg propagator £7!(p?) is being an entire function. This is. another
‘From formulae
('34) it can: be deduced that-our. model drffers from the conven-

condrtlou ‘of absence of ‘the observable scalar partrcles
(32)

gauge fields The mass, formula.e for the W and Z—bbosons shghtly drffer
__but this difference is not essentlal as it will be shown further B
“The calculations of the S-matrix elements in our model mamly are

(+based on the standard technique, of QFT perturbation theory.

The Feynman rules can be extracted du‘ectly from the Lagranglan

‘ (32) “Here we'wnte down only the na(z) - field propaga.tors Rt

“ ;g\?_ .

Ghale =) =

i <ol T(nf(w ) 56) l0l>"—Y

( 1) (c)(‘c ~) " (36)
i3 where o P
o }‘f ch L (27!‘)* 2(5) k2 —1€ - (.37)
.;.lls the propagator of the loca.l sca.lar ﬁeld of the ‘mass m2(5) ‘ o

The essential pecuhantles of the. calculatlons in the framework of oul

l.-,;.fnonloca.l modlﬁcatlon of the mmuna.l SM are as follows The dlagramr

e wrth the extemal r;,-lmes must be excluded but a.ll posmble mterna.l



-states must be summed up. Final formulae for the physrca.l matnx
8 are obta.med in the limit §'— 0. ot vl v i o
(el?-nll: Irl: relevant to note that the’ dragrams with' the mternal 71,
“are ‘less divergent in comparison ‘with the conventronal SM. In some cas;s
“these diagrams are found to be ultraviolet finite. This -is because of the
fast decrease of the Euclidean ‘Green functions in ‘the: NLQFT. In t a](i
present paper this property is expressed by the condition (6). H |
the interactions are supposed to be nonlocal as accepted in the above-
:,';mentroned approach of Moﬁ'at [7 ] then the theory becomes ﬁnlte

: ]in'es

3 Model Parameters and Dommn of Per—
turbatlve Reglme AN

“To mvestlgate the main features of the proposed nonlocal modlﬁcatlon of

“"the SM let us consider’ the simplest ”mrnrrnal” variant of'nonlocality. Tt
corresponds to the followmg chorce W(z)'—‘z/M 2'in formula (7) TlllS

g(z) V % exp(z/Mz) (38)

‘nvhere L and Mo are free parameters, extracted from the expenment
' Regardmg their posmble values one notes that the -parameter has no

‘essential physical meaning. The proper 7-fields and the A-coupling con-
stant redefinition change it to any arbitrary, value.. In fact, the Lagrangran
(32) is mvanant under the followmg transformatron

5 r8

g — A= CORN|
S | wo— = nf | (40)
(T A ~—" iv’: /\', = fc /\ (41).

The latter transformatron reeults m pr = p = 'kp?. In‘the consrd-
e ered modlﬁcatlon of the SM there are o’ asymptotlc condrtlons on the
ormallzatron of free ﬁelds for’ the absence of observable scalar particles.

g

10

Therefore the physrcs 18 mdependent ‘of the ‘scale factor < and value of /

PR O

thl.b glves the hmltatlon

p?%:"The: only role of the: B pa.rameter 1s to provxde a correct dlmen-

sion of the: propagator of the scalar ‘field . For the snnphc1ty we take .

p#'='M,. Then the mass formulae (33) (34) a.cquu'e the same. form as,
in the conventional SM. " :

-For. the practical ca.lculatxons in the fra.mework of our approach 1t is.
1mportant to know the limitations on apphcablhty of perturbatlon theory.
These limitations come from the partla.l wave umtanty [12] [l],whrch
require - LR LN g '

‘ o » laJ(s)I < l (43)
To ﬁnd these hmrtatlons it is enough in our case to calculate the zeroth
partial wave amplitude ¢ ao for longitudinal W and Z — boson scattering

Wi W, — :Z.Z;. For the Lagrangian (32) w1th the S-functron in the
form (38) we have in: tree approxrmatlon : \

€

g Mg ( SIM’I) "

In. this kinematic' domain the condition Iao(s)] l xs satmﬁed The

function: S,MI(MO) monotomca]ly mcreases w1th Mo and asymptotxcally
tends toa consta.nt : r :

hm s,m(Mo) J?‘/_'”

(1 8 TeV)

The saturatron ‘occurs rather qulckly, and for My ‘=

(46)
l 5 TeV ‘we get

the upper bound VS < VSmaz =15 TeV. To achxeve ‘higher | energies it

is necessary- to’ perform the calculatrons m the next to leading order of
perturbation theory and maybe to sum up some classes of dmgrams o
~-Note that the obtained limitation® '(45) strongly depends on the form

arrive at the limitation other than  (45). :
In the conventional local SM the umtanty glvee a.n upper bound on’

11 aF

.

PYRRG S R

“of the E-function:: Starting from" the: functlon dlﬂ'ermg from (38) we i

“the Higgs boson mass. : At the ‘tree level thm is Mg < 2 TeV. If the :



: nggs ‘boson is. not discovered in. ‘this’ mass’ reglon, then' perturba.tlon..”
theory is not apphcable for the denvatlon of the SM predictions;at high-

energy. Moreover, some ‘of the low -energy, predrctrons obtained within

this framework are subject to doubt. The reason i a8 follows Because

n the CM there is a we]] known rela.tlon T

2 -%‘-MH TS

The last quantity characterizes perturbative corrections due to the Higgs
~ self-interaction. Therefore, if it is not small enough, the perturbation

theory fails. This conclusion does.not depend on the kinematic domain'
considered but only on the- M g — value. As we have seen, in the pro--
posed non]oca.l modrﬁcatlon of SM the gituation is different. There is -
no connection between nggs mvrslbrhty and applicability, of the pertur-’.

batlon theory It has been shown that the lowest ‘order calculatlons are
' correct. in the deﬁnlte lﬂnematlc domain whlch depends on the form of

nonlocality in the Higgs self-interaction. For. the mmunal variant (38) .

the domam is defined by (45)

4 Conclusron

Thus, the mtroductlon of nonloca.hty m the self-mtera.ctlon of nggs ﬁelds«‘ .«
enables us to exclude the scalar Higgs partlcles from the observable spec-
trum of the SM. We don’t speclfy the nature of this nonloca.hty In prin--

c1ple it may be considered not a fundamental physrcal notion but an ef-
fective phenomenologlca.l way of taking into account some of interactions

beyond the SM . Proposed nonlocal modification of the SM is described ;

by the renormalizable Lagrangian. (32) for which-we have formulated:the
_rules of perturbatlve ca.lculatrons of physlca.l matrix elements. - Though EF
“the apphcabrhty of the lowest order calculatlons 18 bounded within-the .
energy domam (45) n this fra.mework one can, nevertheless, calculate -

most of the electrowea.k effects and compare the predrctlons with:the ex—
penmenta.l data.. These wrll be consrdered elsewhere in’our next: paper
Here we confine ourselves to the followmg general remarks. . The main"

physical drﬁ'erence between the proposed nonlocal modrﬁcatron of the ‘

SM' and the conventrona.l one comes from their Higgs sectors. " However,

/

12

I i | (47)‘
where vsu o 250 GeV then for MH > ]TeV we have 4—"; > 1.

the Higgs field interacts: with: the léptons:and- qira.rks, ‘except_ the heavy
t—quark rather weakly. Thus we may expect the observable drfference in

"predrctrons of these two’ vana.nts of the SM'at’ the level of refined eﬂ'ects

of the radiative corrections or in the processes difficult for ithe’ expen-
mental lnvestlgatlon Among them there are widely discussed processes

of the W and Z - boson scattering. They will be accessible in the near

future at the SSC-and LHC + colliders: whereit. is: planned to-search for
possible growth w1th the energy of therr cross sections. This behaviour'is
predicted in the conventional’ SM' for-the longitudinal vector Goson scat-

‘tering, for exa.mp]e wWw, — 2z VAN . While the nonlocal modrﬁca.tron

predicts the growth for the every pola.nzatlons of W and Z - bosons. An-
other’ dlscrepancy is'the radiative corrections. They also depend on the
nature of the Higgs sector. One can expect the most considerable differ-
ence in the predictions of the nonlocal modification and the conventional
SM for those radiative effects which, being calculated in the conventional
SM, have the strongest dependence on the Higgs boson mass.

.1 thank M.A Ivanov, O.V.Kancheli, B.Z.Kopeliovich, N.V.Krasnikov,
S.Petcov, R.Ruckl for’ stimulating dxscussrons I am especially grateful
to G.V. Eﬁmov for the explanation of some questlons regarding the non-
local quantum field theory, for crltlcal remarks and guldance dunng the
reahzation of this work. SN e :
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