


Introduction

In the past years a number of remarkable efforts were taken aimed at extracting physical
information from quantum field theory by studying its semiclassical versions. Nonlinear
models which support kinks, bubbles as elementary excitations, such as sine-Gordon, ¢
and ¢° ones, play an important role in various branches of physics and chemistry. The
model ¢ admits the nontopological.soliton solution in the gravitational background:.
This scalar field then would be stable and can form a scalar soliton star-[1]. The
well known'fact of spontaneous symmietry ‘breaking in-a scalar field theory spurred the
interest in'getting searching for classical’solutions-in’ thése models:which 'provide'the -
topological and ‘nontopological types 6f solitons.”Standard semiclassical ‘methods give
the link’ between ‘the ‘quantum field theory and nonlinear phenomena: and:allow for
physical interpretation of the results obtained. e tahes L e T e
Recently, Masperi et.al [2] and [3], constructed a lattice version of the ¢%-:Klein-
Gordon model in 1+1 dimension. If in this quantum lattice vel:'sion,'jthe lateral walls of
the potential are deeper than the central one,’a bubble-like soliton 5ppea,ifs in addition
to kink solutions. Applying perturbation treatment and renormalization techniques
the authors obtained a phase diagram for. ordered a.nd_}f: disordered states, vghére the
bubbles and kink solitons play a great role in phase trafl'sition;s. Y
On the other hand, in the work [4] the method of :G_Qp»eijq,ljz.(;d»Coherept'iS_t_a.tes
(GCS) developed in the work [5] and [6] have been succesfully employed for investigating
the Heisenberg lattice model of ferromagnetism. It is well known that the GCS are
states which minimize the Heisenberg uncertaintity principle.: Although the conclusions ‘




of [2] are seem to sure enough we need to 1mprove ‘our understa.ndmg of the symmetry T

brea.kmg phenomena via the coherent states method. This method would allow us for o
a clearly understanding of how there is a.ppea.rmg the pha.se tra.IlSlthnS in.the systems i

with different kinds of symmetry.

In this paper we investigate the pha.se tra.nslt)ons in the la.ttnce model of ¢G ﬁeld
theory with the ‘aid of coherent sta.te on the sU (3) /SU (2)®U (1) coset spa.ce We w,u i

obtain a phase diagram by means of computer expenments

1 The Hamlltoman Model

We study the ®°- theory as one of the s1mpl.ést exa.mple of nonlmea.r ﬁeld theory Its“’

| La.gra.ngla.n density is
: . L= ;3,,@3“(1) - U(®)

:where o
U(®)= 3% + a2®* + a; 0%

| The la.ttlce version of its Hamiltonian assumes the following form

H=2Y R +Q(<I> )_q, <b,+11

coi=r T

(<1>)_U(<1>)+<1>2

Fot' our poroouse we must choose the signs of coeﬁic1ents in U ((I>) in: such a wa.y

“that a1,a3 > 0 and a3,0. In this case the potential Q(®;) reveals three wa.lls ‘This- -

R GRS

. “sort of assumptions leads us to consider. a. quantum mechanical problem here. The
problem of quantum mechanics for the single site Hamiltonian my. be a.pprox1ma.ted by Pt

mvestlga.tlon of the following square-wall potentials, see fzg 1.

e
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Accordmg [2] we assume that Vz>>V) and L are sma.ll enough to discard all levels
" except the lowest one in ea.ch wa.ll When E(, = —Vz the hamiltonian for one site in- "
— i ;
9.

-the form

v

the ba51s of the lowest nergy cngenvalucs w1thout ;overlapping ta.kes the form -
e E0+ V 0 } _0 - A o
Hy="| 0 " E 0 , 2

0 0 Eo+ W
Quantum mechamca.l problems re(luce to solutlon of the system

H,.ll > E0+l >

M2 >= (Eo)|2>

Ha.v|3 >=A(E0 + l/])l3 >
where
63j
51]

Ta.kmg mto account interacting ovorlappmg terms in 2) the hamlltoma.n will take
N R

Hg = 1% Ey Vv
.y .0 ViE+W o

For this l\md of the hamlltoulan we naturally have the elgenvalue equatlon

”ssw' > /\W‘

A Lt E s A Y

Resolving it we obtain that
o ,\ =W

A P 4553'\-\ (‘ :l: /l/2+bv2)

Representmg the exgenfunctlon in tlle form

[ >r=all > +b]2 > +¢|3 >
for the ﬁrst eigenvalue, A, = V; one finds
|+ ?Ao— ﬁ(ll > =[3 >l e

For others eigenvalues, Ay after some a.lgebra one can see that

A,l,,‘T . Cj;=a:t v
o2 )@F . R e
T 4vian
B b = 4v?
. : T 1 1 +2)2



As'is seen from the abové calcula.tlon the system has three energy levels

E, = A_, E2 T

0170 ~f"~001«\' 00 0
r2={100) TF=[000 ) T¥={001
000 =100 010

-we can repla.ce the functlon (I> w1th the followmg operation
-

o, —»\f(Ti + oTE)

where

'\f <‘A+|q>|A >
a\/_ <A 251% > .

P

a= —‘—),2 and €= /\+ - /\a K= /\+ - /\ The further procedules are sxmllar to those -

of Ma.sperl [2]. Then we can rewrlte the ha.mlltoma.n as

: 00 0? 01 0 010
(H= = 0|, =6(.10, a: 1 0 a (5)
i —K /. OaO 0 aa O

¥ J J+1

\2 Phase ’I‘ranSItlons ‘:’

: . E3—/\“+ RSSO IS 1 O (4) »Z‘
o If we employ the followmg generators of falthful representatlon of the group SU (3)

To a.nallze the phase tra.ns1t10ns in this model qualltatlvely it is more convinient to work =

with the wall potential representing three energy levels (4) see fig2:[2]: Neglectmg :

overlapping integral the potential wall is 1epresented in fzgl

| "['Xl """"" o

In this problem we deal thh two’ parameters Vl and V. We will be a.pproa.chmg to
the point. V; from both semlspace (Vi >0 and V1 < 0) Then we have two cases:

i

" First case - : v : : :
“corresponds the semlspace Vi>0In thls reglon w1thout overla.ppmg mtegral V=0

we have . . R S

A=0 MeVi A=W

and the corresponding picture is

fiod

When V,—0 the parameters A, )\_, Ao —v0 the potentla.l walls transform to the one
given in fig.4. v T

o y fi:(].4 i

: .If the interaction has been intieduced V= 0) ‘the fig.4 changes to fig.b and one

" can observe that Ay = \/EV,“ A= 4—\/§V, A=



Second case.

We now start in the semispace V; < 0. Neglectmg overlapping terms (V = 0) after
some bit of calculation one finds A, = —[Vi] < A_-= ~—|V1| /\+ = 0 The potential
wall transforms to fig.6

fig.6

In the same way takmg into account the mt.eractlons terms (V.= 0) we obtam that”

'\+lV1~<0 ’\ le>DQ ]
’\‘l"1<° = _’\+|v1>o»,
N fllvmo —f_ﬁf.f\;le?U

. the picture will be thefzg7

L‘f:‘___‘_:;..__F_-yw S

(6a)

Jig.7

From the expression (6a) one can see that the parametcrs ); in the semispace V; > 0
are the mirror map with opposite sign. ,

Now let us analize phenomenologlcaly this problem in the framework of the density
“distribution of probabilities. As it'seen from the plots presented above the system has
a lowest energy Al fox all cases Far tllese lowest levels the wave function has the form :

B :

1 [ >\' = 4]1 > +B|? > +C|3 >

WhereA—a_,ijB—b_., C—c A
SItis obvrous that the system would be 51t11ated in that conﬁguratlon w1th lowest

The values for the coeflicients ()l tllc wave vector in Lhe both’ sectors of the" lowesp .
energy level will tal\e the form

I) For ¥} > 0, Cl"’(\‘;V
II)ForV1<0 A? C’Nl/’

Bl
)\12) .' B

If we present the probabllltles concspondmg to the state 1,2 and 3 we obtams the'
pictures (see fig. 10) i in which the hight of the lateral bar correspond to the values of A2
and C? respectively. The central onc is for B2 We can‘see'that the system undergoes »
‘a transition of first: order since the cliange of values"Atand B ocurrs continuosly so in
‘the critical point* V, = .V, the:both."phases”: (see: fig.+ 102 and 10b) twill: acquirethe
sameiprobability.®This: means:that: thic transition just: consxdered is conected to the
"' change of\the probabllltles ratllm then: Llre energy changlug : ‘ o




2. i<V

- 1) For V; >0,

Where 7=| Vi | /V.

Then ) )
o A=C'~ - 1————-)
4\, 2\/57
1 -~ 1 :

Bzz—(l ——-—)

2 +2\/§7

II) 'Forr‘lfl <- 0,
for wh1ch ’, o

()

“ Now, ifv(v(/'hé’p'rb‘céé;(l':analogbﬁsly'és ‘above in (1) v\_/é éan obsjerv?; that in(ithié région
there is no phase transition. (see fig. 10c and 10d). Note that'from the ‘energy“point

rof -

of view. one-site hamiltonian does not undergo any transition, may be except the point o
. € =1 The account for the interaction of nearest neighbouring sites in the chain'will be

““made by the following

3 'Cbherént States Approach e

'NO.W;l‘et.,l‘lS try to describe some features of the hamiltonian (3) using the geﬁefalized i

coherent states approach. .- ;-

=" In the view of a better understanding we butline séfne basic ideas of the'céh'erént '

. state techniques, (for more details see [5]:) . = -

-7 Let' G:be.a Lee groupiand,T;,rité;irr’educi_blef:unitary;arepresehtation,,acting ina. -

7 ;Hilbe;\t Spac‘e .H:. Let.us denote through. |: >, a vector of thisispace. .The scalar
-multiplication will be.<-®|¥:> and the:projection operator.on to ¥ as |¥.>< ¥l
We fixe some vector | ¥;.>€ H; We consider a’set of.vectors {1¥(g): >},:such

that |¥(g) >= T(g)|¥, > and g spans all the groip G. Vectors which define the -

_ same state i.e. different only in the phase:will-be collected in a class of equivalence

(1%(g1) >~ |¥(g2) >). It is possible only if |¥(g:1) >= expi6|¥(gz2) > then T(g;" x-

- 91)|¥(g0) >= expi0|¥(g1) > ’ :
f Let H = {h} be a set of elements of the group G satisfying

o | T(h)|W(g0) >= expif(h)|¥(g,) >

8

constructed (for-more details see [4]) looking like o .

or ink thé \fai'ti'lfﬁl T

 Where [$]2 =

This set is a stat,ionary sub‘gvr‘b‘u‘p' of thélv’é‘ctory I\I"O >. From the above assiimptior{s it
is easly seen that vectors |¥(g) > being embedded in the left adjoint class gin € 1 H

will differ each other only in the phase.: It means’ that they define the same state..
From this assumption one concludes that different vectors (states) will correspond to

the elements g, that belong to the factor space’ M ="G/H. In this way in order to’
describe the set of different states it is.enough to take one element of each class. In
the geometrical point of view the gruop G is treated asfibre-bundle space with a base
M = G/H and layer H. Then the choosing of gm corresponds to some section of this:
fibre-bundle space. . The.set of vectors - B R

PO S A

¥ >= T(gm)|¥, >

with g, € G/H we call a systeﬁ; of the generalized coherent states on the group G
with a referent vector ¥, >. These coherent states are closest to clasical in the sense
that they minimize the dispersion ’

ACy =<, | Cy | Uy > —g < Uy | X; | ¥, >< Uy | X |, >

Where, C; = g’-"XJXk”is.the quédrétié Casimir Qp'erétorr’, X~ generators of the Lie

algebra, and ¢’* is the Caftafn-l(illing metric tensor. ~ © < < .
* A’ futher ‘development of 'this method was made by Debergh N. and:Beckers'J.

7] and also BX*W Fatyga, V. Alan Kostelecky et al.[8] up to supersymmetric quantum

mechanics. It is also interesting tonote in this sense works of S. De Biévre [9], which had
constructed coherent states for the Euclideén group E(n). The generalized procedure

. to construct generalized céhérent states presented in Qhe cited paper works in a number

of cases where t}ie Perclomov’s procedure fails.: > ¢ - . .
As a ground state (referent) in the system described by-the hamiltonian (5) we take

,0 5 .
lo >= SN RS BRI
: 1/

< : - IR IRIERRE . : A R L Teonld ‘.;(;i; .
The generalized coherent states in our case correspond, aceording to the description

given above, to the point of the factor space SU(2s + 1)/(SU(2s)®U(1)), namely the
complex projective space CP2. For.this space the system of coherent states have been

w=e{S{ef e

ER NNV e

epresentation .-

T2 |5/ and T4 -
group SU(2s+1) & -




. ~:Or in a,more explicit form

1 + W’ll + W’zl

Now the class1cal hamlltoman we obtam by averaglng the quantum hamlltonlan (5) -

over the above coherent states (6). This procedure gives the following result:’
- H= U"+ |4
P U":——v/‘d;p:"cvl:) (az<4TI >)? Booa i

,<T> <\Il|T1+aT3|\Il>
V=—-/dz [ "‘5+‘;|1/’1| ~ 5( (¢1+¢)+¢1¢2+¢2¢1) } -;
' T [T ] [l (1+|1/’1| +|1/)2|)

All mformatlon about -the ”thermodynamlc feature of the system is contalned in
“.the potentlal V. When ;- can be represented as ;= Rje's itiis ev1dent that the
hamlltoman achieves the minimum ‘when ¢ = 0. Then the expressxon (7) transforms :

A T SRR L : o
G 1+oR? 2 (Q+R2)2 S
‘ /d$[1+R2+R2+4AR (1—|—R2+R2)2
S Wherea—-(e/.‘c) andA 5/n)

G

[

e

4 Numerlcal Calculatlon

The’ maln purpose of this paper has been to acqmre some general experlence in applylng
- the coherent states approach in’ :®S - field theory: s o ; a .
. Now. let ‘us con51de1 it:for a physrcally reliable 1ange of the system parameters o
" and A. Looking at ¢ we’can ‘see that it may vary ‘between 0 and 1: A-is only > 0.
The problem for & =1 has been totaly resolved in [10}).: The variables Ry’ and R, are
: p051t1ve by definition.” With the aid of the Physrcal Analysis Workstation (PAW) we
have performed lnvestlgatlons of the 1ntegrand expression in formula (8) starting with
0 =0.1, and A =0.01. Then ﬁx1ng some value of o and varying A with the step~0 01.
" we have looked for the appearance of addmonal minima, beSJdes the ground one and
stud1ed the manner they have appeared B e Ghdrial o
" The results of our experiment are deplcted in the fzg 8. The solid hne corresponds'
“to'a pha.se transition of; the first’ order.” The’ dashed curve represents a second order

1 :'.’ Ly
I S A

phase transtion. All in the senise_that in the o > 0.24"interval the complcmentary :
' minimum of first appears very close to the ground then it goes apart getting growing -
deePer whlle the groiind minimum disappears. For o < 0.24 the addltlonal ‘minimim /.

. . P it e
-~ : L . . B N : T
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a,ppea.rs independently’ “of the ground one. Then it galns deeper ‘while the ground one
reduces. We ma.rk the points in which the ground and its complementary minimum
coincide. Near'c = 0 the system “exhibits ambxguxty since the potential display wide
valley, instead of a clear mimimum. I this snuatlon it'is: nea.rly 1mposs1ble to predict
the exact value of the functional F ~< exp=®H >. ‘

Ea.

5 Dlscussmn

- In conclusron we have therefore establlsh that the curve represented in the f 9.8 with’
* good approx1ma.t10n coincides with the correﬂpondmg curve in the Ma.sperl s works [2]
and [3], but all efforts made to get the three critical pornt by means of our methods
failed. This allow us to point out two posibilities: .
1.- The method of coherent states is insufficient for gettlngs tlus in such models or
- 92.- One can put the corresponding curves in these cited papers under doubt!
-~ To clarify the situation let us review the general picture of the phi-six (¢°) theory
in its one dimensional version. (for more- deta.lls see [11])

i

*'z'z/),w;;#aw(lw—|¢l“)¢'—o 'f‘ SN

asymptotics of ¥(z). We shall consrdel two cases which are interesting from a phys1ca.l -

pomt ofvrew
R Y(z) — 0, z—o0 (10)

~ (a:) — const T— 00

L hL (1)
"~ Now we restrlct ourselves to the second case w1th boundary condltlons of the con-
desate type. The correspondmg Hamiltonian and number of pa.rtxcles read

I

B= /dz{lw HIo P =per (o1 - /dz{T+W} a2

where

e W ";—(lezepo) GuPoa) Tolnl
A:po{—?.—:l—&:l:-——4|a|\/l+4a} :

= /dz(lwl )y
The functlon W is shown in fzg 9 for different va.lues of the pa.rameter Aandp, =1

1) A=1,

l : ;
It looks llke this curve is related to the transition whlch is connected w1th the changes of proba—
bilities. One: pomt of this curve at A = 0 was found earlier. i : ‘

P
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CIIY IS A0, e :
4 s Iy A=0,000 - R
Fhtaane ,.Y-.AIV,),,_, 12 <A< o Sl
Lo V)A<—1/2 I
For A > 1, the 1nvest1gatron of solutions’ beha.vrour of the phl six model will be t
glven in detailed form in the second part of the paper, for this has still remained at the :
frontier of the theoretxcal physics. We can see from fig.9 that for (I A=1 there is no
localized’ solutlons The correspondingly potentla.l is of oscrlla.tory type. In the reglon
(II) 0<A<] there is a soliton in the rest which is named "bubble” [12]. This static
bubble solution is unstable for any A,'and in any dimension. Due to their 1nstab111ty
these bubbles tends to destroy the condensa.te and.the functlon w. tranforms to that
as is represented by the line (/). the easier the nearier: A to unlty When the system
reachs the form (111 ) for which A = 0, there is a solution which conects two stable -
vaccum states: the'condensate | ¥ [*=°1 and the trivial-one | % [*= 0.~ The sector-
(Iv), =1/2< A< 0is. characterized by the presence of kinks and drop solutions. The
first start from the left wall (z — —oo) and finish in the rlght one (z — oo) ‘and vice .
versa.. The drop solutions have remar l\a.ble properties. These wrll appear essentially
when the boundary condltlons ‘take_ the form. (10): and in the ) reglon (IV). Then the
point A,= 0 divides the domains whele the solutions are qurte different.-On the rlght :
of A, at A € (0,1) soliton-like solutlons are bubbles with'the condensa.te asymptotics.
On the left from A,, there are klnks and’ also a.ppea.r pa.rtlcle “like solutrons whlchk'
are drops with zero a.symptotlcs WlllCll are sta.bles and can be stables i in this” ga.seous
state. We see that there are two types of. localized exitations of the condensate (hquld)
bubbles and kinks. In conclusion we can observe that the pomt A = 0 s critical.” ‘Along
the klnks and bubbles the phase transitions will occur also with the presence of drops.
The last type of solutions will be responsible for the pass of the system'to the condensed
state at A ~ 0. Finally, in the sector (V), A <;—1/2 there exist only the kink type.

~ solutions defined by the paths going from the top of one hill to that of a.nother in the

picture of the mechanical analogy relation. ;
We are now in position to interprete our results of numerical calculations whithin
the framework of the above explanatlon regarding the types of solutions and definition
of phase transition: '
The solid line of the fig.8 represents the first order phase trans1tlon between the
states represented by (II) and (V) {see fig.9}*
The other line would represent the phase tra.nsmons of the second order whlch arise
at the point A = 1 when the stable phase become unstable The 1nvest1gatlon of this

.. kind of:transition will'be publlslred elsewhele S T PP DA

2As ‘usual as, the first order phase’ transltron we can consrder only those of ‘the transrtlons‘when

“below and hlgher ‘of the critical pomt the both phases are simultaneously exist (though) with different
o probabrhtles Second order phase transition ‘we will call those tra.nsmons in.which below and hwher’»;.

B ] o . ¥
cjmadn ey it R R

of the cntrcal point only one phase lives in each sector. -
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