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In the past years a number of remarkable efforts were taken aimed at extracting physical 
i~formation from quantum fi~ld theory'by studying it~ semitlassical versions. Nonlinear 
models which support kinks, bubbles as elementaryexcitations, such as sine-Gordon, ifJ4 

and ifJ6 ones, play an important role in various branches of physics and chemistry. f'he 
model ifJ6 admits the nontopologicaLsoliton solution in the gravitational background: 
This scalar field then would be stable and can forin a scalar soliton star [1]. The 
'ivell kn~wn faC:t 8fspontaneous ·symmetry:bi·eaking in a: scalar field theory spumid'the 
interest;i~ 'getting se~rching for classical solutim:is in' those iriode!S.wliich.provide the 
'to~ol~gical and'nonti:Jpological types-of ·solitons:•:Standard seiriiclassical·meth~as give 
the ii,nk: between· the quantum field theory and· ito~linear phenomena· and •allow for 
physical interpretation ofthe results obtained. · ' _;. · ; · ,: 

Recently, Masperi et.al [2] and [3], constructed a lattice yersion of the ifJ6< Klein
Gordon model in 1 + 1 dimension. If in this quantum lattice version,· the lateral walls of 
the potential are deeper than the central one,'a bubble-like soliton .;,ppears in addition 
to kink solutions. Applying perturbation treatment an:d ren~rmalizatic;n techniques 

- - . ' ' I the authors obtained a phase diagram for ordered and! disordered states, 'Yhere the 
bubbles and kink solitons play a great role in phru,;e tran'sition:s. 

On the other hand, in the work [4] the method of 'qe_!l_~ralized Coherent. States 
( GCS) developed in the work [5] and [6] have been succesfully employed for investigating 
the Heisenberg lattice model of ferromagnetism. It is well known that the GCS are 
states which minimize the Heisenberg uncertaintity principle.· Although the conclusions 
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of (2] are. seem to sure enough, we need to improve our understanding of the' symmetry 
breaking phenomena via the coherent states method. This method would allow us for 
a clearly understanding of how there is appearing the phase transitions in the systems: 

with different kinds of symmetry. · · 
In this paper we investigate the phase transitions in the lattice model of rp

6 
- field 

theory with the aid of coherent state on the SU(3)/SU(2)®U(l) coset space. We will 
obtain a phase diagram by means of computer experiments. 

1 The Hamiltonian Model 
We study the ~6- theory as one of the simpfest example of no~linear field theory. Its 

Lagrangian density is 
L = ~8,.~8"~- U(lfl) 

where 
U(~) = Clt~6 + a2~4 + a3~2. 

The lattice version of its Hamiltonian assumes the followi~g form 
. . 1 ,. . 
H = >. '2:l?7rJ + Q(~;)..,.. ~;lfl;+t) 

j=l o.J i. 

:-
(1) 

'• 
and 

Q(~;)= U(~j)+ ~~ 
. . . . . .• J ' 

For our porpouse we :must choose the signs ofcoefficients in U(~) in. such a way 
that a

1
,a3 >: Oand a 2,0. In this case the potential Q(~;) reveals threewalls, This 

sort of assumptions leads us to consider a. quantum meChanic~! problem here. The 
problem of quantum mechanics for the single site Hamiltonian my. be approximated by 
investigation of the following square-wall potentials, see Jig.l 

·, ,i·~ ~i· :; .;.::>h"•..:Jf.~ 
tL'_ J;;:·t u~L 

~~:;.;~:= ~1:fo:- :tn:/ 
_;;£().: :h.i.t> 

:) :: ~' ~ ~-

~' 

l Jig.l 

According [2) we assume that V2~ Vi and L are small enough to discard all levels 
except the lowest one in eaCh wall. When Eo '= - ~ the hamiltonian for one site in· 
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the basis of .the lo.west-energy eigenvalues without overlapping takes the form 
r. ).·. _> { ;1 -~' !.J•'J ;.0 · "· • , : -~ _., t ,: ' • ' ' •. • :,. '·. - ' • - ; .:1 • •• , • •: : • '-.-" 

; "~; 

_ ..... (Eo+ l't,_ o_ 
Hss = 0 Eo 

• ' 0 0 

0 ·.) "o ·~ . 
Eo+ Vi . 

Quantum mechanical problems reduce to s?lution of the system 

]!,: 

where 

H •• p >= (~o + Vt)ll > 

H •• 12 >,=: (£.o)l2,? , .:·.H; 

H •• l3 >= (Eo+ Vi)l3 > 

( 
83j) 

' li >:;= .. 82j ·. 

. 8ti 
.'1 

:~··. 

- '·. 

(2) 

Taking into account interacting overlapping terms in (2), the hamiltonian will take 
the form,:·>·,·· . . . . ,, .. . 

H~ =(E"t ~· E,~ V,), '~ ;, '; 
For this kind of the harriiltonian w_c mtttlrally have the eigenvaltie equation 

\' 

II •• It/J >= >.itt·> 

Resolving it we obtain that 
. . ..\o = V1 . '''.''·,· ;. . . ·''( v 

,: I ••• ~\± = 2(\·;± llt+S~2) 

Representing the eigenfunction in the form 

If/!>-'= all > +bl2 > +cl3 > 

for the first eigenvalue, >.o =;= v; one finds 

Itt• >.,~= ~(11 > ...:...13 >) 

For others eigenvalues, ..\± after some algebra one can see that 

c± =a± 

. ).~. 
ai = 4 lf2 + 2>.~ 

4ll2 

bi = ,t\/2 + 2..\~ 
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As is seen: frox'n the aho~e'cllculaiim1' the 'system his tht~e eriergy'\ev'~l~'1 .. 

,, 

E1 ~ ,.\_:_,_.; E~-~jo, ;E3·~ ~-{· 
• ! ;~ ' : _, ~ 

:: - (4) 

If we employ the following generators of faithf~Lrepresentation of the group SU(3) 

. ( 0 ·1 0)· 
T{== 1 0 0 

0 0 0 
( 

0 0 J·) ' ( 0 0 0) 
Tf= 000 .. Tf= 001 

100 010 

. we can' repl~ce th~ fu~dion ~f ·witli the following operation 
..J 

~i-+-/8(Tf + aTf) 

where 
W =< ).+j~jiAo > 

a-/8 =< Ll~il>.o > 
• ' 1 ~. ·' :· , > ' ~~. 

a= (,~.)2 and·f = ).+- A0 ;_ K = >.+- )._ The further pr<?_cedures are similar to those 
of Masperi [2]. Then we can rewrite the ha~iltonian as . 

~ , l 

}I_=;=~· [( ~--. ~f ~-- ·) ~ ~ 5 (-~ 
J 0 0 -1\: - 0 

.J 

2 · Phase Transitions 

10)('01 
0, Q' . 1 0 
Q 0 . 0 Q 

J DJ (5) 

To analize the phase transitions in this model q~alitatively it is more convinient to work 
with the wall potential representing three en~rgy' levels ( 4) see fig2 [2]. Neglecting 
overlapping integral the potential wall is represented in Jig~. 

. 

---- ~-- -- ~-- --~. ']~i~- --
Ao ]_ _____ · ___ ____ Q_ 

---------

·-~ i.t j ~ '' ,.-;· 

--[-~~- ~----

-- ---- -----------------~--------~. 

',. Jig.2 

4 

1 ,,. 
!I 

In this problem we deal with two parameters Vi and. \1. We wilL be approaching to 
the point. Vi from both semispace (Vi > 0 and Vi < 0). Then we ha~e two cases: . t- ; ' 

First case 
·corresponds the semispace Vi > _0 In this ~egion without overlapping integral V = 0 ' 
~h~ .. 

,.\_ = 0 ).0 = Vi ).+ = VI 

and the corresponding picture is 

. r, (; 
~_; 

~·< .!..' ;i ·-· 
,, -- t; .1~~ ~ ": J i :.} . ! . --;"·-t=' 

~~[~~~ 

":.,•; 

>.o j_ ___ =t~!Jl~' ----- _.----

Jig.3 t· 
' 

~ ,.. --
' i : 

When Vi -+0 the parameters>.+,>._, A0 -+0, the potential walls transform to the one 
given in figA. · · · 

'. 0 
,\_ ).0 ).+' 

fig A 

If the interaction has been introduced (V = 0), the Jig A changes to fig.5 and one 
can obser'\e that >.+ = J2V, >...:. = -J2V, >. = 0 

5 
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Ao 
.. , 

fig.5 
..J 

Second case. 

We now start in the semispace VI < 0. Neglecting overlapping terms (V = 0) after 
some bit of calculation one finds Ao = -:-IV1I · .,\_ =. -lVII A+ = 0. The potential 
wall transforms to fig.6 . . 

--0 

-~ 
!.~ 

.A+ 
.,\_ Ao 

fig.6 

In the same way taking into account the int~ractions terms (V d:-0) we obtain that 

) -~ 

the picture will be the fig.7· 

>-+lv,.<o ,;, -.A-Iv,>D 

.A-Iv,<:o = -.A+Iv,>D 

J.lv,<o = -.Aiv,>o 
'.,.: 

6 

(6a)_ 

.I 
I 

I 
for 
:! 

'.; 

.A+ ,; 
-----------0 . -.·' 

~- ··:-
1 i ~ 

c 
·t-

Ao 

.A~ 

Jig.y 
.:t 

~; ' ) 

From the expression (6a) one can see that the parameters .A; in the s~misp~ce VI.> 0 
are the mirror map with opposite sign.' , . 

Now let us analiie phenomenologicaly this prbblemin the framework of.the density 
distribution of probabilities. As it :;een from the plots presented above the system has 
a lmvest ~nergy .A_ for all case:;. For these. lowest levels the wave functio~ has.the form 

. ." ' . '1 ' ' . ~ . : ..._, : - . . i -~ . ' 

I~·;,\~;:::; All > +'BI2 > +CI3 > 
r . • , 

Where A = a_, : B = b_, C = c., . 
. It is obvious that the system would be situated in that configuration with lowest 

~~~rg~}~-?n~ide~ 1t:f?Ji~i~i~g_s~s~~-=·.;t'l ;:; , , . : ,,;;' : .'· .· ., ,;;;, · 

I'·•' 

~ i..' - 1 . "') 
,,,

1 
.(1)::,y;·;~ v,~ 

t~~'. ,-,1 

The values for the coefficients of the wave vector in the both ~ec'tbrs1 of~h~ 11~t~est 
energy level will take the form 

I) For VI > 0, A2 = C2 ~ ( ~ )2
{ )J_.~ 1 

II) For VI< 0, A2 = C2 ~ 1/2(1-'- 2~
1

) 
. B2 ·~ •J ~;p ~ ~:: -\', 

;', . I . '1, 
L}.,• "-- ~ .. 

'i: !. ·"::· 

If ~e present the probabilities corresponding to the state .1,2 and 3 we obtains the 
pictures (see fig . .'IO) in which the hight of the lateral bar correspond to the. vahies of A2 

and C2 'respectively.The central one is for B2 • We can'seethat the.system undergoes 
a transition of first• order since the cl{arige' of values'A: and ·B ocurrs continuosly so in 
the critical point::W:b:: .v, the both. "phases"· (see:fig~ lOa' and lOb )'.will acquire tb'e 
same! probability. ·~:This: means 'that the· transition just~ considered is· cone'cted to the 
change oLthe probabilities rather then the e1iergy changiiig.) 1.~ 1::-:· .. :: : ,;·:t ' . , 

•'i ~'!::" ~l. ~-·~,.~, .,~ ·io.;l)~ t{-: •.• !-<.::~- \ :: 0'~-":; '-~ 

'" . : No\v' let 'us consider the opposite;case when ·r · ,: ; 1 ~ :,CJ Ll.c• '1ii.· 
'\"' 

' . -_.} 
r_ ·~--:: ·:.,._·.., 'T • ~ 

',:.;' -.: , ' i' '>{ '., ! ' ,._.,., <. 

•,! 

·,, 
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(2). Vi << v 

I) For Vi > 0, 

Where 1 =I Vi I IV. 
Then 

II) For V1 < 0, 

for which 

( ·. 1 12) 
.L = -hv 1- 2v'2' + 161 

A2 =C2~ ~ (1- 2~1) 
...J 1 ) 

B2 ~ ~ (1 + 2v'2' 

( 
1 1 2) 

A_= -hv. 1 + 2v'2' + 161 

. 1 (' 1 )' A2 = c2 ~ 4 1 + 2../2' 

1 '( 1 )' B2 .~- 1---1 
2 2v'2 . 

'.1· 

,.;" 

. Now, ifwe proc~Manalogously as above in (1) we can observe tha.t in this region 
there is no phase transition. (see fig. lOc and 10d). Note that'fr~rit the energy·poiilt 
of view one-site hamiltonian does not undergo any transition, may be except the point 
f = 1 The account for the interaction of nearest neighbouring sites in the chain will be 

made ,by the follo~}p~ 

3 ·co~erent St~tes Approach 

NowJet us try to describe some features of the hamiltonian (3) using the generalized 

coherent. states approach. , . . . 
I~ the view of abetter,understanding we outline some basicideas of the coherent 

state techniq~es, (for more details see [5]:) .. : 
: .:Let' G be a ·Lee group i and T its, irreducible:unitary representation, acting in a 

. Hilbert space .H:, Let, us denote .through Ill!.>, a w!ctor of thisJspace .. The scalar 
multiplication will be;<<I>IW:> and the-projection operator.on'.t<> w ilS IW .>< wj.; ". 

We fixe some vector I Wo:->E Hi ·We-consider a·set oLvectors {1\ll(g). >},:such 
that IW(g) >= T(g)IWo > and g spans all the group G. Vectors which define the 
same state i.e. different only in the phase' will be .collected in a class of equivalence 
(lll!(gl) >,._; llll(g2) >).~It is possible only if llll(gt) >= exp iOIW(g2) > then T(g2

1 
x 

· gt)l\ll(go) >= exp iOI\ll(gJ) > 
Let H = { h} be a set of elements of the group G satisfying 

T(h)l\ll(go) >= expiO(h)llll(go) > 

8 ;;-

' ; ~ 

l 
\l 

i 

This set is a stationary subgroup of theve'ctor IIlio >. From the above assumptions it 
is easly seen that vectors IW(g) >.being embedded in the left adjoint class 91h E g1H 
will differ each other only ii1 the phase .. It means that they define the same state. 
From this assumptio~ one conclude~ that different veCtors (states) will correspond to 
the elements 9m that b~long to the fa~tor space· M = G I H., In this way in order to 
describe the set of different st;,tes it. is .enough. to take one element of each class. In 
the geometrical point of view the. gruop G is treated as ·fibre~bundle space with a base 
M = Gl Hand layer H. Then the.clwosing ?f 9m corresponds to some.sectionof this· 
fibre-bundle space .. The. set of vectors . . . ._ ~ . I"; 

IWm >= T(gm)l~o ::> 

with 9m E.G I H we call a system of the generalized cohe.rent states on the group G 
with a referent vector I W 

0 
>. These. ·coherent states are closest to 'clasical in the sense 

that they minimize the dispersion 

b.C2 =< wg 1 c2 1 wg > -gjk < wg I Xi 1 wg >< wg 1 xk 1 wg > 

Where, C2 ,; gik XJXk i~ the qu~drati~ Casimir oper~~or, Xi- generators of the Lie 
algebra, and gik is the Cartan-Killing metric tensor. · · · 

'A. futher development of this method was made by Debergh N. and;Beckers·J. 
[7] and also B:'·W Fatyga, V. Alan Kostelecky et aL[S] up to supersyriimetric quantum 
mechanics. It is also interesting to note i1~ this sense works of S. De Bievre [9], which had 
constructed coherent states for the Euclidean group E(n). The generalized procedure 
to construct generalized coherent states presented in the cited paper works in a number 
of cases where the Perelomov's procedure f~ils. · ' . . 

As a ground state (referent) in the system described by: the hamil~oni;m(5) w_e,take 

I•>= 0)" 
'. jl 

f/', 

The generalized coherent states in our. case correspond, acwrding to the d~scription 
given above, to the point of the factor space SU(2s + l)I(SU(2s)0U(1)), namelythe 
complex projective space CP2 . For this space the system ofcoherent state~ have been 
constructed (for more details see [4]) looking like . ' ' . - . 

, :' ~ ' 

; ~ I' ' ;,I 
,. 

.11/J}.::: exp{t:f~ift ~[iT }}lo}. 
' .. 

:,._, 

:~'. . ~'} ~ ; ~ i . ' 

or in the faithful representation~ , . ~ ~ ~' 

• .. 0 '! ·, ',. •• .· i ' . :. ~<· .~:.-:.:; ~' -,j ·;- : ; 2~- . ··t,·, ~ 

lt/Jf~'.(r-f-1~12)~ 112 {lo}+ l_2t/J·I"}}. · ._,, 

•ti'l:• ,· . ' ' ;;: :;:·(:;: •. :/::~· .·~,,,~· .j:: :i; : •' .. j' ~
1

:~::::·:; ... : 11 ,

1
,,,;,,;.,l 

. :Where lt/JI2 = E/ lt/Jil2•and Tt·- :are the generators of faith~lftrepresel1~at~o!ls8f ~he 
group SU(2s + 1) · 

. ": ~ ' 

9 :.; 



Or in amoreexplicit form 
. ' . ~'' 

.... \ 

(0 ) . . ( 0 •) ' ( 1) 
. ~ • + ~: ' & . ·~; ,p~ ' ~ > 

,ji + lf/Ji 12 + l?f; 12 
. 

' ~ _. 

~-· -~ i,l 

1111 >= 
·'• ... 

;, ' 1~ -·: ( 6), 

·'' 

i: 

·'Now thedassical hamiltonian we obtain.by averaging th~ quantum hamiltonian (5) 
over the above coherent states (6). This procedure'gives the following result: · . 

H = U-'+ V 

U_-. ·j·d· .. aob. (a· T .. )2 =-· : x-:-;;- x< _x> 
. . ' . .... . ' i . 

:1!1 
,. : ; ~ \ ~' ~. 

where 
.. · . . < Tx >='=< W I Tt + a% 1111 > 

V=~Jdx[ •+•1~•1' +,(o(~d~)H,oh+M~)'] (7) 
. . . 1 + l?ftl2 + l?f212 ' (1 + l?fll + l?f21 2

)2 . 

. ~All inforrriation about the "thermodynamic" featu;e ~f. the ~;stem is cpntaine~ Tn· 
: th~ p~tenti(tl v: When tPi ~an be represented as :tPi = Riei<P,; itr i~ e":i~ent th~t ,the 
·hamiltonian achieves the minimum when </1. = 0. Then the expression (7) transforms 
to . · . . · r. '... ·.. · J [·1+a:Ri . 2 (a+'R2)2·. ]·· 

y =- dx 1 + Ri + R{~ ~~R1 (l+,}li ,+ ~~)2 :. 

:where'lr:~(t-/K.)~~d~='=(8/K.) ,.. t:,:· • 

4 Numerical Calculation 
\ ~ i 

(8) 

The -~ain purpose of this paper has been' to acquire some general experience in applying 
the coherent' states approach in: q)6 - field theory. , ; :• . . · 

Now let\is con~ider it:for a physically reliable t;ange of the system parameter~, u 
and t:... Looking at u :.ve·can 'see that it may vary between 0 and L ~ is only > 0. 
The problem for a = 1 has been totaly resolved in [10).' The variables R; and R2. are 

·. positive by definition. With the aid of the Physical Analysis Workstation (PAW) we 
have performed investigations of the integrand expression in formula (8) starting with 
(7 = 0.1, and ~ = O.OL Then fixing some valu~ ~f d arid varying-~ with the step=O.OL 
we have looked for the appearance of additional minima, besides the ground one .:md 
studied the manner they have appeared. · _ · ' · ·. :::<::·· • . · ::; · 

The results of our experiment are depicted in the fig.8. The .solid line corresponds 
to a phase transition oUhe first order.' The dashed' curve rep~e~ent~ a seco~d ord.er 

:phase transtion. Ail in the sense tl{at in th~ ·c,. -.>. 0.2{interval the complc~enta~y 
.. minimum of first appears very Close to the ground, then it goes apart getting growing 
'd~eper ~bile the·ground minimum disappears. ·For u·.< ·o:24the additional minimum • 

10 
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0.6 

0.5 

~ 1) 'I' 

··'• 
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,, 
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appears independently~of the gro1md -one. Then it gain-s d~eper while the ground one 
reduces. We mark the points in which the ground and its complementary minimum 
coincide. Near: u = 0- the system- exhiJJits ambigi1ity -since-the potential display wide 
valley, instead of a clear mimimum. hi this situation it' is nearly impossible to predict 
the exact value of the functional F ~< exp-{JH >. . , ' 

s - . • 

5 Discussion 

In conclusion, we have therefore establish that the curve-·represented in the fig.S with 
good app~oxim~tion coincides with the corr~onding .curve in the Mcisperi's works [2] 
and [3], but all efforts made to get the three critical point by means of our methods 
failed. This allow us to point out two posibilities: · 

1.- The method of coherent states is insufficient for gettings this in such models or 
2.- One can put the corresponding curves in these cited papersunder doubt1 

To clarify the situation let us review the general picture of the phi-six ( ¢6
) theory 

in its one dimensional version. (for more de'tails see [11]) · 
. '' 

it~Jt +.7/J~x + o:t/J +(I 1/J '1 2 
:-'- I t/J.I4 )1/1 = o (9) 

The investi~ation of the solutions of the above equation essentially depends on the 
asymptotics' of lp( X f We shall consider two--cases \vhich are interesting from a physical 
point of view . 

1/J( X) --;:-+ 0, X -+ 00 (10) 

~·· 1/J(x)-: const, x-+ oo · - . {11) 
i - ,, 

Now we restrict ourselves to the second case with boundary conditions of the con
desate type. The ·corresponding. Hamiltonian and number of partides read 

E=_Jdx{I1/Jx 12 +(I 1/J 12 
-;-Po)

2 (1 t/J.I2 -A)} = /#{f + W} {12) 

where 
W= (I 1/J 12 -po)2 (1 1/J 12 -A) T =I 1/Jx 12 

. { ' 3 3 . } 
A= Po. -2-' 4o: .± 4 I 0: I vf1.+4o: . 

,•; 

. . N = J dx(l 1/J 1
2 
-p0 ) . _ ' {13) 

The function W is sho~n in fig.9 for different values of the para'?eter A and Po= 1. 

'I) A=1, 

1 It looks like this curve is related to the transition which is connected with the. changes of proba
bilities. One point of this curve at A = 0 was found earlier. 

/ 

<> 
I> 

12 
0 

II) 1 >A> 0, 

III) ,4 = 0, _ 

--Iv):... 1/2 <A< o; 
V) A< -1/2, · 

For A > 1, the investigation of solutions' behaviour of the phi-six model will b~ 
given in detailed.form in the second part of the paper, for this has still remained at tli~ 
frontier of the theoretical physics. We can see from fig.9 that for (I) A= 1 t~en! is nb 
localized'solutions .. The correspondingly potential is of oscillatory type. In tlie region 
(II) 0 <A< 1 thereis ~soliton in the rest ~hich is named "bubble" [12]. This stati~ 
bubble solution is un~table for; any A, and ,in any dimension. Due to their instability 

' these bubbles tends to destroy the' condensateand.the f~nction W.tninforms to that 
as is represented by the line (I) the easier the nearier A to unity. When the system 
reachs the form (II I) for which A = 0, there is a solution which conects two stable 
vatcum ~tates: the 'condensate I 1/J 12=·1 and the trivial one I 1/J 1

2= 0. The sector 
(IV), .,-1/2 < A < 0 is characterized by the presence of kinks and drop solutions. The 
first start from the left wall ( x -+ - oo) and finish' in the right ob~ ( ~ -+ ~) and vi2e 
versa. The drop solutions have remarkabl~ properties .. These; will appear essentially 
when the boundary conditi~ns take,the fo~·m.(10): and i~ the region (IV). Then tlie 
point Ao = 0 divides the domains wl~ere th~ solutions are quite' different. On the right 
of Ao at A E (0,1) s~liton-like 'solutions ·ar~ bubbles with'the c~ndens~te asyinptotics. 
On the left from Ao, there are kinks and' also appear particle '-like solutions which 
are drops with zero asymptotics whiCh are stables imd can be stables in this"ga.Seous" 
state. We see that there are tw~ types of.lo~alized exitations of thk condensate (liquid): 
bubbles and kinks. In conclusionwe can observe that the point A= 0 is critical. Along 
the kinks and bubbles the phase transiti~ns ~ill occur also with the presence of drops. 
The last type of solutions will be responsible for the pass of the system to the condensed 
state at A~ 0. Finally, in the sector (V),A <;-;:-1/2 there exist only the kink type 
solutions defined by the paths going from the top of one hill to that of another in the 
picture of the mechanical analogy relation. 

We are now in position to interprete our results of numerical calculations whithin 
the framework of the above explanation regarding the types of solutions and definition 

of phase transition: 
The solid line of the fig.S represents the first order phase transition between the 

st~tes represented by (II) and (V) {see fig.9J2 
The other line would represent the phase transitions of the second ordt;r. which arise 

at the point A = 1 when the stable phase becor:.:~ imstable~ The i~ve~tigation of this 
·kind oftransition will be published elsewhere. . .. ~ , ,, , ·t: . 

2 As 'usual as, the first order pha5eti~gsiticin we ~~n consider only those bf,'th~ transitions ;vhen 
' below and higher'ofthe critical poi~t th'e'b~th phaseS ar~ simultaneously eXist (though) with different 

probabilities: Second order phase.i.ran~ition'we will call those transitions . .iri which below and higher'. 
of the critical point only one phase lives in each sector. ..' /.; . ·:: ., :· .. ,T 
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