





‘no such theorem has been proven, thus the ﬁrst comphcatron is whether decouplmg ‘

" is-valid or not.’

"~ The second comphca.tlon is to be seen in the nature of the mﬁmte tower of modes s
refelectmg the multidimensional character of the original theory, which frequently‘. :
is non-renormalizable. In general the nature of the ultraviolet divergencies changes - :
because of the infinite summation over massive modes, which can give risc to non- .
renormalizable terms in ‘the Lagranglan in. certaln cases even' when the zero mode;; i

7 theory is renormalizable.-

To' gain some feel for what one. mrght expect to happen in thlS settmg we. ap- :
lpeal to ‘experience in statistical ‘mechanics,.since euclidean quantum field theory is - o
mtrmately related  to statistical mechanical’ systems  near: their second. order: phase . -
transition points, where’ similar questions arise [7]: Here the relevant phenomenon is. ¢

the evolution from one critical behaviour to another, often: refcrred to as crossover.

The analog of the multldrmensronal problem in-this settmg is the crossover from the . .
critical behaviour in-one dimension 'to that of another;via finite size effects. - When' .

* the infinite tower of massive modes yields a non‘renormalizable interaction the bulk .

system is said to be above the upper critical dimension. When crossing over from one.

. dimension to another both of which are below. the upper critical dimension' the inter:;

polatron is from one renormalizable theory. to another, this problem was inv estrgated :
in some detail in.[8] and [9]. The experience of calculations in statistical mechan- - -

ics suggests that ‘theories above the upper critical {dimension (where the theory is
non-renormallzable) behave ‘essentially as. mean’ field theories, i.e.-loop corrections

are neghgrble An example.of such a model.is.the Ising model which i is.equivalent .
to a scalar field theory: with an infinite number of non:renormalizable interactions. .
Monte- Carlo simulations and other lattice calculations. demonstrate the. qualitative.. .+

correctness of these assertions i in the statistical mechanics setting [10], however in the'

field theory setting the crossover has not: been analysed ‘before to our l\nowledge :
One of the aims of the present paper is to show the decoupling of massive modes

from zero.modes;at low energies in the framework of a simple : scalar .model in six di- ,'
mensions with two extra d1mensrons bemg compactlﬁed toa torus Thls 18 achleved by t
demonstrating the 1nterpolatlon of .quantum attributes (renormalxzatlons renormal— :

ization group (RG) equations, etc.) of the theory as the scale of the extra dimensions
goes to zero. In partlcular we study: the transition from six to four dimensions.

An assumptlon is made that- the additional d1mens1onless couplmgs requiring’

renormalization in the multidimensional theory are of the order of the power of the ba-
- slc dlmenswnless couplmg appea.rmg in the first dlvergent dlagram which contributes

to their renormalization. This assumptron is essentlal for our systematic approach’
to controlling' the prollferatron of ‘divergences. 'In the current study our analysrs is'

restrrcted to’ 1nvest1gat10ns of one loop diagrams: ' commininiaan
- The outline of the paper isas: follows." In Sect. 2 we descrlbe the calculatron of

the relevant one loop contrlbutlons and discuss renormalization prescriptions: The -

renormalrzatron group equatrons are: obtamed and analysed in Sect 3. -where we
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reduced action on- A/I“ the quadratlc part of which is glven by (2) with;,

R also d1scuss the decouplmg mamly 1n the sp1r1t of the paper [11] Some concluding

remarks are glven m Sect 4

2 One—loop correctlons and the renormallzatlon"

Asa srmple model wh1ch captures many mterestmg features’ of quantum’ propertles, ‘
of multidimensional theorles we ‘consider a one component “scalar -field ‘on ‘the’ six-
dimensional manifold E = M* x §! x S with the radii of the both circles L[2x (this
is purely for presentation of the formulae). Here M* is Minkowski spacetlme and the .
mternal space is the two-d1mensronal torus T2 = S! x §*. The actron is glven by '

o S /d" d2 3¢B( ,y)z+(a¢a(z,y))2 1 2¢B)+Lmtla . (3)
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Lint = ’B ( ,y) -——¢B(z‘,y)D¢3( ,y) 3B¢%(9«‘,y),

where we use the subscrlpt B to label bare quantltles and El is the D’Alambertian
on E. We have introduced the second and thlrd terms in ‘L, on the bare level since"
counterterms with such structures are necessary. for subtracting one-loop ultravrolet ’
dwergencres in the theory under consideration. Substituting the Fourier expansion (1)

into the action (3) and integrating out the extra coordinates we get the drmensronally ‘
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where Li, includes heavy modes with N2 2 # 0, Og).is’ the D Alambertran on M 1 and
the coupllng constants A,B, (z = 1 3) are related to the multldlmensmnal ones by

Line = —

———I\IB . ,\ A—2+2z = ’\23 S
L2 Y DTy L2 -

We have extracted the scale A, whrch is some scale assoclated with the bare the-
ory, to work with dimensionless couplings, since only dimensionless couplmgs can be

large or small in and of themselves throughout we will work only with dlmensronless
couplings. : :
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» where €is the regular1zat1on parameter and

Iu the present paper we consxder the four-pornt functlon w1th externa.l legs corre- . -
- sponding to hght modes with N2 =0, studymg in.detail the four pomt vertex. Only

such functions are relevant if the energies of the external particles are much smaller

than L~'. In many compactification schemes [4]112] L turns out to be of the order of
the Planck length Lpianck = 107 ~Bem. . ‘

We. cons1der the four-point vertex fuIlCthIl ™ evaluated at the symmetrlc point

pip; = (46,_, = 1), where p; are incoming four-momenta Calculating. the standardk

one loop dlagram proportlonal to by B usmg‘ dlmensnonal regula.nzatlon we get .

F (P, L mB$ AIB)A2B) A]BAh + p2A BA‘2+2C

d* 2ck - [T .
I(L”’ )—”_:“ Z /(27r)4 2 (k2+m’+MN)((p W mi T M2

ng,nz=—0co

. Performmg the momentum mtegratxon mtroducmg the Feynmann parameter t we
obta.m o -

| m 3 F(e)

»Z/ “ o

maig=—co Ml—ﬂ+0m)+()y

Here we assume that )\gB ~ )‘1 B SO that the one loop diagrams proportlonal to )\1 BA2B

s, i

“and Agcan be’ neglected - The consistencyiof this assumption is discussed in Sect. 3.

Note that if we do not: ma.ke this assumptlon the prollferatlon of d1vergences becomes
uncontrolla.ble " »?;’,; R A ; BTG i S S g bl

Now we are ready to dlscuss our renormallza.tlon prescription. Analys1ng the one-
loop contribution in (7) we see that the functlon I(pL,m/p) given by (8) and its first
derivative with respect to p* are d1vergent when € goes to zero (the sum can be under-

" stood in the sense of ¢-function regula.rlzatlon [13]). The divergence of the derivative

reflects the s1x-d1mens10nal character. of the original theory. Thus there are two un-
determined- parameters whlch correspond to the renormalizations of the operatoxs %

“and ¢BD(4)¢B in the bare Lagrangian. : We will deﬁne corresponding d1mens1onless

renormahzed couplmg constants by the followmg normalization COI]dlthnS

T st

(l —p —;)I‘4|pz_,¢z _b)\lrc
Implementmg these conditions we obta.m ‘relations between the bare and the renor-
mahzed couplmgs In the current case these yxeld

-
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where we ‘have 1ntroduc"ed'wA = na = 2u Note' th‘e'ﬁ fOllowling useful identitiesi
[A,,,,A ]=0and ICZVAOIC = A, : AR
*“Inverting the- expansions (10) to obtam the bare’ couplmg constants m terms of .
the renorma.llzed ones ‘and substltutmg into eq (7) we get ' '

F4= /\1h2¢+LA2I€ R ".J e : v'
‘ : . (11)
-,\2 2 [( )I(Lp,';;)+ ‘AHJ(::L m --(a,)A I(ch '")]

It can be readlly shown that the expression in the square bracl\ets is ﬁmte when € goes
to zero. Note we have used the fact that to one loop no wavefunction renormalization

is requlred

We are specifically mterested in the limit of small kL so we develop an expansron
for I(ch ) to assrst our, further d1scuss10n We obtam from L

I(ICL 2= k(@) st

) ]¢+k . (12)

C(k=I41)2T(c4k)C my2l
+m‘ﬂﬁ? Ek—o Zl—-o( )k (l‘(k+1))l‘(gk-2)1+(;;.J( ) l
where Ip(Z ) is the N? = 0 term in (8) (the four d1mens1onal result), and

=Y "
‘ N0 : ,
is the generallzed zeta functlon, see [13] for a d1scuss1on of its propertles) When '
m2=0 (12) s1mp11ﬁes to :

; ; : oy 2 ¢tk R
1(~L)—10+,,(4 )2_ Z( )*lﬂg’;trl})r(wL)C(e+l~)[(—‘-"—)1 __(,1”3;
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Io be1ng a numerlcal constant (though d1vergent when c —b 0) glven by '

3 F(C) F(1—6)2 i A O ""s’,“ i i
2(am)—T(2 - 2¢)’ | RS

Analysing the relations (10) in-the limit of small kL we see that the couplmg
constant A, still has.a finite renormalization. .Siiice in this limit the internal space
disappears. we would' expect to recover standard four-dimensional formulae where Ay
is not renormalized. “This ‘can-be achieved by -another choice of the normalization
conditions. - For example one can choose them' as follows in the m? =0 limit (whlch
we restr1ct ourselves to in the remalnmg d1scuss1on)

Iy =
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In the present paper we consnder the four—pomt functron \V]tl’l external legs corre— o
. sponding to llght modes with N2 =0, studying in.detail the four pomt vertex. Only -

such functions are relevant if the energies of the external particles are much smialler

than L~'. In many compactlﬁcatlon schemes [4)[12] L turns out to be, of the order of '

the Planck length Lotanck = 1073cm

- We. cons1der the four-point vertex function T evaluated at the symmetrlc point
L pipi = A"-—(46,J = 1), where p; are incoming four—momenta Calculating, the standard

one loop dlagram proportlonal to A2 B, usmg dlmensmnal regularrzatlon we get
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: where €is the regularlzatlon parameter and

‘ a4 2ek . PR 1
I(LP’ )-—P. 5 Z /(2”4 2 (k7+m'2+M12V)((p k)7+m7+MN)

N1 N2==—00

Performlng the momentum 1ntegratlon 1ntroduc1ng the Feynmann parameter t we

obtain, ]
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Here we assume that /\23 o~ /\13; so that the one loop dlagrams proportlonal to /\13 A28

Ny, nz...—oo

“and A2g can be neglected The consistency‘of this assumption is discussed in Sect. ‘3.
Note that if we do not make this assumptlon the prollferatlon of d1vergences becomes

i .

uncontrollable. ++ * 11 e i T e s ¢
‘Now we are ready to d1scuss our. renormahzatlon prescrlptlon Analysmg the one-
loop contribution in (7) we see that’ the functlon I(pL, m/p) given by (8) and its first

/derlvatlve with respect to p? are d1vergent when € goes to zero (the sum can be under-
stood in the sense of (- -function regularlzatlon [13]) ‘The divergence of the derivative

reflects the 31x-d1men31onal character of the orlglnal theory. .Thus there are two un-
determined- parameters which correspond to the renormalizations of the oper ators %

“and ¢BD(4)¢B in the bare Lagranglan We wrll define’ correspondlng dimensionless

renormalized coupllng constants by the followmg normalization COndltIODS

“‘Ipz:n
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Implementlng these conditions we obta1n relations between the bare and the renor-
mallzed couphngs In the current case these yleld

Sy
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AT = Nop A= _ A2 A2 A (L, ),

Z / ‘L o

(10)

,

k where'v /we‘ha'vve 1n‘troducedm/l =k0, — 2u Note the followmg useful 1dent1t1es

[A.,,, A,;] =0and K AT = A L
lnvertmg the' expanswns (10) to obtaln the bare couplmg constants 1n terms of ;
the renormallzed ones and substltutmg mto eq (7) we get o ‘

T /\1 K2+ L/\gn

;{ [

« - (u) |
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It can be readily shown that the expression in the square bracl\ets is ﬁnlte when € goes
to zero. Note we have used the fact that to one loop no wavefunctlon renormalization

is required.

We are specifically interested in the limit of small ‘sL so we develop an expansmn
for I(nL =) to assrst our. further d1scu551on We obtaln from

I(nL BERICR

(12)
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+ i41r)7—< Zk 021—0( )k[‘ ’l‘(:;ill)rrh:_sz.;.;;k ( )2’[( T
where Io(Z ) is the N2 = 0 term m (8) (the four dlmen51onal result) and
=3 (v
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is the generallzed zeta- functlon, (see; [13] for a dlscussmn of its propertles) When'
m2=0 (12) srmphﬁes to

2 etk Bl
I(KL)_10+,,(4 ),_ Z( -y rr((212++ 12))r( +;,)c<e+m(—-’i)1 .19

ol

Io bemg a numerlcal constant (though d1vergent when €- - 0) glven by
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Analysing the relations_(10) in the limit of small.xL. we see that the coupllng'

I = “(14)

constant ), still has a finite renormalization. .Since in this limit the internal space . '

disappears we would expect to recover standard four-dimensional formulae where Az
is not renormalized. ~This ‘can be achieved -by - another. choice of the normalization-
conditions." For example one can choose:them’as. follows in the m? = 0 limit (Wthl’l
we restrict ourselves to in the remaining dlscussmn) T ' ;

—2+2( i 2op2;
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; The '1? arlses ‘as % 2d Where dl and d2 are the powers of K with Wthh the cou-.
plings Al and )\ enter mto F", in this case —2¢ and 2 = 2¢ respectlvely The set of
coupling constants (91,92) dlffers from the set (A1, A7) consrdered before by'a ﬁnlte_’ B

renormallzatlon, the explicit relatlon between these sets to one-loop is .o -
- : l+¢‘ = gl glA Al+¢I(’€L), ’ s - )

St (17)

. l—’:g;:_qz+4glA AH.(I(A,L) oo
These formulae lmply that ~ ’ i - .

Y

(1 + E)gllc = /\13/\2E — A2 A‘“ —2‘[1 - 4(1+!)A0A ]I(ICL PR
Seeeo( +€)gar2 = X 2 AT AT A% ;;f;j; AoAI(kL). A

It can be readlly checked that the renormahzatlon of g2 In (10) vanishes when ch —0.
Observe from the normalization conditions (10) and (18)-that A, + A = (1+

€)(g1 +.92) = T"(x,L, /\13,/\25)l€ —2 where Mp and /\23 are understood as functions

~-of either A\;*and Az or. g, and g;..

‘ I'* can be written in the form ‘

’r"— ) ro( )+6I“‘( SR
‘which for e =0 gives

2
o(L) =qa+5 392 + 33—2,,%1115—2

(19)
2"{(”—:) 1+k2(1 - p_,)}

It can be: shown that the series above is convergent and goes £6 : zero when kL — 0 1
~ however in the above we had used minimal subtractlon instead of the normalization
conditions lmplemented above we would find that the finite contrlbutron to I' become
infinite in the limit of kL — 0. Lo

6r4(ﬂf,~L) gm—,;rzk_,( )‘Mﬂc@k)(

T(2k+2)°

3 Renormallzatlon group equatlons

In thls sectlon we ‘derive the renormallzatlon group equations for the couphng con-
- stants introduced ‘in the previous section and examine their solution. We conclude

‘the section with a discussion of decoupllng of the extra d1mens1ons asa generallzatlon ~

of the usual decoupling theorems: :
Then ﬂ functions for these couphngs where ﬂ(A) = AOX are the followmg

ﬂ()\ )= —26/\1 + A2J(NL)

B0) = (2 2e)A2 "z\’J(ch)

(20)..-

5

where we found it, convenlent to deﬁne a functlon e T
, J(KL) = ‘AmA I(KL) ,:.ir;,
1 : RS A P I (21)

3[‘!2-}-(! f St dt. 5.
4:) - m,nz——oo 0 (g(] ‘)+(2

CEG )’r
wh1ch has the serles expanslon “for small ch

- - - 2(+h
L =) Z( )"%ﬂr( TR +k)[(-—)1

which is a well deﬁned functlon when € 0.
3F(2 + c) F(l - 6)2

amy T2 -2 (23)

and is the usual four d1mens1onal coeﬂic1ent We can now consider the beta functions * -
for the alternative couphngs Let us consider first the couplings (g1, g2) defined in-the -
previous section. We find that the -functions for these couplings are

Blg1) = —2¢q —-gffh[l ul —%49.;‘1:]](.5[,‘)"

ﬂ(gz) = (2 26)92

Some rearrangmg ylelds

- (29)

%Ai+eA0‘/?¢‘I.(tCL) : ~: y ;‘ 3

, ﬂ(gl) = —2691 +9IJ(“L) . EUERE
ﬂ(yz) T (2 26)‘92 S(KL)* v_ |

For convenience we have deﬁned

S(KL) = —AOA AHJ(NL) = —AoJ(nL)

and

J(ch) J(xL)+ S(KL)

which have the series representatlons for small nL

2c+<iv~‘;" S
st = o) Z‘ ’k(kﬁ)t((’;;i)zr)(kﬂ)r( +k)<(e+k)[(—L)1;, :
and‘ v [ ,
- j(ch)T—-‘ a . . -

O P

(27) %

T(2k+2)

+(41r)2—¢ Zk_z( )kwﬁ——lwr(c + k)((c + k)[( ’2‘5) ]



We readlly see from the series ‘expansions that these renormallzatlon group’ equa-r ‘

tlons have the property that when xL — 0 the coupling constant g2 is not renormal-

iged, since in this limit S(xL) — 0. This is a des1rable feature since this coupling is
not necessary in the four d1mensronal theory where it*does not’undergo an infinite
renormalization. Similarly in thls limit the renormalization of ¢, reduces to the four
dimensional result, since a; is all that survives,’ and is exactly:the result obtamed
by doing the calculation' purely in four dimensions. That this is true is essentxally a

- demonstration of the decoupling of the infinite tower of massrve modes

' . Two other ‘couplings related to the.above are '

N

h] = A]J(RL) [FRER
o (28) .
. h2 = /\2J(RL) v
These have beta functrons
CB(h) = -’-2c(nL)h1 T i
(29)

B(ha) = (2 26("L))h2 — hi

where €(xL) is a fuhction that interpolates between € and ¢ + 1. These couplmgs are
the most illuminating for the dimensional crossover since both terms in the above
expressrons do not vary 51gn1ﬁcantly More exphcntly : o

c(ch)—c - 2J( L)

: The correspondmg set of couphngs to (g,,gg) glve
‘ ﬂ(h ) = —2¢ (nL)hl + b

. (31)
, B = (2 2c(nL))h2—hl’§E:£}
where o
c(ch) 1~,<——J(nL) o A_, o (32)

‘Before - turnmg to the solution of these renormahzatlon group equations let us

examine the large £ L limit of these equations. We note'that in this llmlt the functions

J(ch), J(xL) and S(ch) have the following asymptotic forms
J(xL) = (xL)? (b+ ezponentially small terms)

j(nL):(nL)2(2b+ezponentiallg} small ‘terms) T (33)

; “S(kL) = (ni)z(b + e:i:porlfentr'a'lly‘ small - terms) .

8. J(xL) '/ (30)

where - =

_ 301+ 4T~ Db

: C(4m) T4 —2¢) e
These functlons are d1vergmg in. this limit because the volime of the internal :
manifold was absorbed into the couplings when we did the Fourier transform and this

¥

. volume is now diverging. Thus the couplings (g1, 92) and (A1, ;) which are natural

for the four-dimensional limit (kL —: 0). are inappropriate for the six- d1mens1ona.l’
limit (RL — oo) We deﬁne six- d1mens1onal couplmgs
.o i by

(’“L) 91 S
6y
=(nL) gz_k." ' o
~and equivalently for the set (A1, A2). Sirhilar'ly we define functions
| U J(sL)
L
J( ) D
’ o : J(nL): U PR o
L . RIS : J( L) ( L)z AR TR e O T
and SRR Rena i s W S(L)A 3
e - K : AU SRR 3 SRS
L 1) = I

‘Note that the couplmg constants (h,,hz) and (h,,hz) naturally mcorpora.te the :
above re-definitions in taking these limits. The rcnormallzatlon group. equa.tlons in
th1s limit in terms of (§1,52) in six d1mensrons have the form: :. . o ~

ﬂ(gl) = (9 "26)91 +912J ("L) N
s 3(35)‘

ﬂ(gz)— (4 - 26)92 S(RL) B

where in the limit xL — o, J (ch) Sba constant ~These are the natural s1xk
dimensional renormalization group equations for this system. Lo
Since we have performed a renormalization of all terms necessary to make. the /

Tresults finite in the s1x-d1mensronal case and recover the four-dimensional renormal-

ization group equations in the kL — 0 lxmlt ‘we have renormahzatron group equatlons
that 1nterpolate, in what we believe to be a natural way, between the four and six

,dlmensmnal theorles The non-tr1v1a11ty of the renormallzatron group equatlon for~ ‘
“the addltronal couplmg g2 in six dlmens1ons reflects the non- renormahzablllty of the

six- d1mens1onal theory. In general in hlgher loop calculatlons we expect the sa.me
features to persist, however, a prollfera.tlon of addltlonal parameters w111 arlse in our
prescrlptlon The’ essentlal feature of our work is that it brmgs into the realm of



ca,lculablhty the correctlons due to addltlonal d1mensnons, even when workmg w1th
non renormalizable theories. , .

We now turn to the solutions of the renormalization group equatlons We 1llustrate -

the method of solution by consndermg the equations (29). wlnch we solve by notmg

" that they can be rewrxtten in the form

" ezp[ f" 2¢(z L)% ]) = —-ezp[ f 2c(zL dt] ARy

o e : 7(36)
(hgezp[ fno(2 26($L))d’] = —h2emp[ f (2 26(1'L))d’] ’

a.nd mtegrated without dlfﬁculty to obtam ~

hy (no)exp[ f 2¢(zL)%]

hi(k) = —
) = b T Zeapl- [7 2e 5]

(e = exp[ /(‘)—ﬂxL))dz—”‘] |
[hz(no).— / " hx(y)’ezp[-— / @ —-26( L)) d—“"d-”] (37)

In the above kg is an initial renormalization pomt and the solution tells us how
the couplmg changes as the renormalization point is changed. The solutions of the
equatlons (25) are obtamed by substltutmg back for the original variables. We obtain

/\1(1) —-2c )
Mile) = -0 7 dez=2VJ(zxol) '(?‘?)
o) = mzu)—/ e (@) )z l)] -+ (39)

- where we have defined p = By direct analogy the solutions for the couplings

; (h,,h ) can be obtained y1eld1ng (g,,gg) to be

g1(1)p~*
! 1 - 1(1) fl (Izz"2“’J(a:fcoL)

alp) = (40)

Calo) = “‘[g2‘(1)~«/ dagi(z)e* “S(znoL)l (41)

Smce in the four-dxmensnonal llmxt the couplmg g2 does not get‘renormallzed it seems x

natural to choose the ‘normalization_condition such that g2 = 0in whlch case the
theory reduces exactly to the four-dimensional one. This of course is a form of ﬁne
“tuning in six d1mensnons, however it is preserved by the renormallzatlon group, ﬂow
and i is natural from the four d)mensmnal pomt of view. Our initial assumptlon of im-
posmg the relatlonshlp g2~ g1 is slmllar to the ﬁne tumng of Coleman and Wemberg
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4 'Conclusion'

References

in the case ol' scalar electrodynamlcs [14] Note that the non- renormallzablhty of the .

theory begms to become 1mportant when we' begm to probe the theory at scales of ‘

V :order L.

'In the lmut h.L - 0 J(ch) = ag and (40) gives a Landau pole at p = ‘p [15] 1
g2(1) = 0 or is fine tuned to be small then g2(p) remains small relative to gl (and
our assumption is valid) for 1 < p << p*(xL); otherw1se our assumptlon is not
self-consnstent and other d1agrams must be consulered L : ;

oy

We have demonstrated to one- loop that a non- renormallzable theory does reduce to a_
renormalizable one as the extra-dimensions are shrunk to zero size. Though we have

_only addressed the question in the case of the four pomt functxon in this work, s1m11ar o
analy51s can be carried out for ‘the a-general N-point function. Agam one sees that :

our method generalizes, however additional 1enormallzat10ns are necessary. By per---
forming appropriate L dependent subtractions one can obtam renormallzatxon group |
equations where each of the Wilson functions reduces in the llm]t kL — 0 to.the ones

-obtained by a direct calculatlon in, four dlmensxons Thus we have ‘an mterpolatlony '

between the L — oo case and the L = 0 case. We belleve our prescription should -
be extendable to any order, at least in prmc1ple though in practlce thls may be very E
tedious. Vi : S e e
“We can summarlze our results as the decouphng of compact dlmensmns in the -
infrared domain, via decouplmg of the infinite tower of modes. Zero modes give the ‘
leadmg contribution to: phys1cal amplitudes and the renormalization group equatlon
in'the limit of kL — 0, i.e. when heavy modes cannot be seen experlmentally It =
is inthis-sense ‘that’ we have dimensional ‘crossover from. non-renormalizability ‘to |
renormalizability. This makes the plcture of d1mens1onal 1eductlon more plaus1ble in

_ that it appears self consistent at the quantum level.

~ Acknowledgements Ttisa pleasure to acl\nowledgc helpful conversatlons on’

~ this topic with J.G.' Brankov, K.G:’ Chetyrl\m, D.l. Kazakov, V.B. Priezzhev; D.V..
- Shirkov and 0.V Tarasov. Denjoe 0’Connor expresses his thanl\s the .lomt Instltute "
~ for Nuclear Research for its hospltallty and ﬁnanc1al support i

L

[1] Th. Kaluza Sltzungsber Preuss. Akad. Wiss. Math Kl (19"1), 966."

0. Kleln, Z. Phys 37 (19”6 895

2] M.l Duff B.E.W. NllSSOIl CN Pope, Phys Rep C130 (1986)
M.B. Green, J.H. Schwarz, E. Witten, Superstrmg Theory Cambrldge Umver51ty
. Press: New York 1987.

11 - -



: [3] R. Coqueraux, A Jadczuk “Rremanlan Geometry, Frble Bundles, I\aluza-Klem" 8
" “Theories and all that LT, \’Vorld Screntrﬁc Lecture Notes in Physrcs, vol 16 \’Vorld o

Scientific:- Synsapore, 1988 R S
.P. Forgacs, D. Kapetanal\rs, G. Zoupanos “Coset Space Drmensronal Reductron of

Gauge Theorres to be publlshed m Physrcs Reports C

[4] Y A Kubyshln, J M Mourao, G. Rudolph IP Volobu;ev, “Dlmensronal Re-
duction of Gauge theories, Spontaneous: .Compactification. and Model. Burldmg
Lecture Notes in Physrcs Vol 349, Sprmger -Verlag, 1989. '

R N
KA R

_ [5] T. Appelquist, A: Chodos, Phys. Rev. D28(1983), 772, o et
E.S. Fradkm, AA. Tseytlm, Nucl Phys B227’(1983),‘" 252; ‘Phys. Lett:123B
(1983) 931 : IR RS
"N.Marcus, A. Sagnotti, Nucl Phys B256 (1985) T ' R
LP. Volobujev Yu Al Kubyshm, in Quarks-86 Proceedlngs of the Semmar (Tbrllsr,“
'1986);165. . e
P.D. Jarvis, J. A. Henderson, Nucl. Phys. B297 1988), 5‘39 SR
R Coquereaux, G Esposrto Faresc, Class Quant Gvav 7 (1990), 1583

,[6] T Appelqurst and J Carazzone, Phys Rev D11 975), 2856
' [7] Denjoe O Connor, C. R Stephens and B. L Hu Ann Phys 190 (1989) 310

v [8] Denjoe O Connor and C R Stephens Nucl Phys B"GO (1991), 297.-

[9] Denjoe O Connor and C R Stephens Fmrte Srze Scalmg and the Renormallzatlon ‘
Group, Imperxal preprint:; Imperral/TP/89/ 90/36.. B N

{10] Jiirg Fralich, Nucl, Phys B200[FS4] (1982), 281

: ,.[11] Wllllam I Welsberger, Phys Rev D24 (1981), 481

“[12] EG Cremmer 3. Scherk Nucl Phys B118 (1977), 61
- J. F. Luciani, Nucl. Phys. B135 (1978), 11 e
, P G O “Freund, M.A. Rubin, Phys. Lett.. B97 (1980), 233.

_l[13] S.W. Hawkmg, Comm Math.. Phys 55 (1977) 133 s s
-[14] S Coleman, EJ Wemberg, Phys Rev D7 (1973) 2887 4

[15] N N Bogolubov and D. V. Shrrkov, Introductron to the Theory of Quantrzed“
Frelds, Interscrence, N.Y. 1959. . S ;

EEES P

Received by Pubhshmg Department :
on November 15, 1991.

12



