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1 Introduction 

In the absence of a satisfactory theory of quantum gravity, many ideas about the 
structure of spacetime at the microscopic level have been suggested, one of which 
is that there may be more than four dimensions some of which are curled up and 
only visible at extremely short distances. The assumed structure of spacetime is then 
E = M 4 x B, where M 4 is the macroscopic world and B is the compact internal 
space of extra dimensions, this structure is usually called multidimensional. The idea 
of extra dimensions dates back to the seminal works of Kaluza and Klein [1], but 
in recent years has become an essential ingredient in string theory, supergravity and 
many other models (see [2] for a review) . Though the classical properties of these 
theories have been extensively analyzed,( see for example [3] and [4] for a review and 
earlier references) there are still many models which are as yet not well understood (see 
[5]). Intuitively one expects that if the size L of the compact additional dimensions 
is small enough then the contributions from these dimensions become negligible. In 
this context a basic question arises as to whether the contributions from the extra 
dimensions are really small when Lis small and how small they actually are. This is 
the question we wish to address in this paper. 

Two complications arise which make the question not that straightforward. To 
explain these we re-interpret the multidimensional theory in terms of four-dimensional 
objects, where it can be represented as a model with an infinite number ("tower") of 
particles. The simplest way of seeing this infinite tower is to make a Fourier expansion 
of the multidimensional field 1/>(x, y), 

¢>(x,y) = L ¢>N(x)YN(y), (1) 
N 

where x and y are co-ordinates of the four-dimensional and extra-dimensional parts 
respectively with YN(Y) being eigenfunctions of the Laplace operator on the internal 
space, substitute it into the action and integrate over y obtaining 

S =- L { tfx!¢>N(x)(82 + m 2 + M'J.,)¢N(x) + Sint 
N 1M• 2 

(2) 

where m 2 + MJ., appear as four dimensional masses, MJ., being the eigenvalues of the 
Laplacian on B. In many models there are modes with MJ., = 0, the remaining modes 
have MJ., proportional to L-2 • If L 2 m 2 is small then the former modes correspond to 
light particles whereas the latter correspond to an infinite tower of heavy particles. 
Now if the energy scales of our probes are less than the threshold energy for the 
creation of these heavy particles they will never be created in our experiments. These 
modes however, do make a contribution to the quantum amplitudes through loop 
corrections. That the tower of modes produce a finite or small contribution is not 
obvious due to their infinite number. If this number were not infinite but finite then 
we would have the decoupling theorems [6] to reassure us, however in the infinite case 
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no such ,theorem has been proven, thus the first complication is whether decoupling 
is valid or not. . . 

The second complieation is to be seen in the nature of the infinite tower of inodes · 
refelecti~g the multidi~ensional character of the original theory, which f~equently 
is non-renorinalizable. In general the nature of the ultraviolet divergencies:changes 
because' of the infinite summation over massive modes, which can give rise to non~ 
renormalizable terms in the Lagrangian in certain cases even· when the zero mode: 
theory is renormalizable.· : , ' . · · 

To gain some feel for what one might expect to happen in this setting we ap- · 
·peal to ~xperience in statistical mechanics,.since euclidean quantum field theory is 
intimately related· to statistical mechanical systems· near . their second order phase 
transition points; where similar questions arise [7J. Here the relevant phenomenon is 
the evolution from one critical behaviour to another, often referred to as crossover. 

. The a~alog of the multidimensional problem in this setting is the crossover from the 
critical behaviour in· one dimension to. that of another; via finite size effects .. When 
.the infinite tower of massive modes yields a noncrenormalizable interaction the bulk 
system is said to be above the upper critical dimension. When crossing over from one 
dimension to another both of which are below. the upper critical dimension the inter~ 
polation is from one renormalizable theory to another,. this problem was investigated . 
in somedetail in [8] and [9]. The experience of calculations in statistical mechan­
ics suggests that theories above the upper criticaJ:dimension (where the theory· is 
non-renormalizable) behave essentially as mean' field theories, i.e. loop corrections 
are negligible. An example of such a rriodelis the Ising model which i~.equivalent 
to a scalar field' theory.· with an infinite number of non~renormalizable interactions. 
Monte-Carlo simulations and other lattice calculations demonstrate the qualitative . 
correctn~ss of these asserti~ns in the statistical mechanics setting [10]; howeverin.the 
field theory setting the crossover has 'not bee~ analysed before to our knowledge. · 

One of the aims of the present paper is t~ show the decoupling of massive modes 
from zero modes:at low energies inthe framework of a simplescalar,model in six di­
m~nsions with two extra dimensions being c~mp~ctified t~ a t~ru~.' .This is achieved hy 
~e~onstrating. the i~terpolation: of quantum attributes, ( r~n'ormalizati~n< f~~OrJA

0

al: · 
tzatiOn group (RG) equations, etc.) of the theory as the scale of the extra dimensions 
goes to zero. In particular we study the transition .from six to four dimensions . 

. An assumption is made' th~t the additiori~l 'dimensionless couplings requiring 
renormalization in the multidimension~l theory are of the orde; of the power of the ba­
sic _dimensionles; coupling appe~ring in th'e first divergent diagram which. contributes 
to ·their'renormalization. This. ~sumption 'is ~ssent1al for ou·r syst'ematic approach 
to controlling' the proliferation of divergences.· In the current study our analysis is· 
restricteC:l to' in~estigations' of·one loop diagrams; ; "· 

· The outline of the paper is as' follows. In Sect. 2 we describe the calculation of 
therelevant one loop contributions and discuss renormalization prescriptions. The 
renormalization group equations are obtained 'and analysed in Sect. 3. where we 
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also discuss the decoupling mainly in the spirit of the paper [11]. Some concluding 
remarks are given in Sect. 4: . 

2 One-loop corrections and·. the renornialization 
. prescriptions 

As a simple model which captures many· interesting features ~f quantum properties 
of multidimensional theories we consider a one 'component scalar field on the six­
dimensional manifold E= M 4 x S1 x S1 with the radii ofthe both circles L/27r (this 
is purely for p'resentation of the formulae). Here M 4 is Minkowski spacetime and the. 
internal space is the two-dimensional torus T 2• =:= 8 1 X S1, The a~tion,isgiven by ' 

S -.1·"' d2'(.l(oif>B(x,y)2+(o</JB(x,y))2. L. 2 "'2 )+L 1 . - . a~x y- . , - -mB'I'B int, 
· E ~ ., 2. • ax -·q , oy · 2 " . · 

{3) 

, xlB 4 ( . ·) ~2B ( ) 3 (.. . ) ~3B 6 ( , ) 
Lint= -4f4>B x,y - 4f4>B x,y Dif>B x,y - 6ftPB x,y, 

where we use the svbscript B to label b~re qu~ntities.~nd,D is. theD'Alambertian 
on E. We have introduced the second imd third terms in Li~t on the bare level since 
counterterins with such structu~es are neces~ary for s11btracting one-lo_op u!traviolet . 
divergencies in the theory under consi.deration. Substituting the Fourier expansion {1) 
into the action {3) and integrating out the extra.coordinateswe get the dime~sionally 
reduced action on M 4 the quadratic part of which is given by {2) with • • 

M
2 21rN·. 
N =. (--·)2 .. 

L 
,. •.· 

""· ,{ 

",· ~ ·: 

{4) 

where N 2 = n~ + n~ an.d the intergers n1 and n 2' label the Fourier modes on the S 1 's 
forming the internal ~pace. ~imilarly . · ' ' · · .. : · c ~ ' · • • • 

. ,· A2• . , A-2+2< . . . ..: . A_:2+4< '. • · . 

. AlB · 4 ( ) .I\2B · •·• ( ) . 3 ( ) . 1\38 · ·. 6 ( ) 1 '( ). 
Lint = -~if>Bo X :- , 41 if>~o~ ,~(4) fBo X -, 61 if>Bo X ~Lint.• 5 

where Lint includes heavy modes with N 2 f 0, 0(4) is the D'Alambertian on.M4 and 
the coupling constants .\m, {i = 1, 2, 3) are related to the multidimensional ones by 

· .\1BA 2' - ~tB -v:· .\2BA - 2+2< = ~2B 
L2' 

.\3B A -;4+4< - ~3B . --y;-:· {6) 

We have extracted the scale A, whi~ is -so~~ scale ~s~ciat~d with the bar~- the­
ory, to work with dimensionless couplings; sin~e only dimensionless couplings cai:t be 
large or small in and of thekselves, throughout we will work ~nly with dimensionless 
couplings. 
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In the present paper we consider the four-point function with,externallegs corre­
sponding to light modes with N 2 == 0, studying in.detail the four point vertex. Only 
such functions are relevant if the energies of the external·particles are much smaller 
than L-1 . In many compactification schemes [4][12] L turns out to be)>f the order of 
the Planck length Lptanck ·~ 10-33cm. . . .. . . . . .·.. . 

We.consider the four-point vertex function f 4 evalm\t~d at. the sy~inetric point 
p;p; = ~( 4o;j -'- 1 ), where p; a~e inco~ing four~~omenta. Calculating the st~ndard 
one loop diagram proportional to >.~8usingdimensional regularization we get · 

r-4( .L··. , ·' ·)·._·, ,:i,+·'2\''·.-i+2< ·,2 ·•4• -2<J(L m) (7) p, ,mB,"1B,"2B -A1Ba p A28". -"1B" P p,- 1 

':·. • ' ,· ••• •• <. ' ' ' • : '• : p. 

where f is' the regularization parametei<md 

m · 2 3 "".. j d4
-

2
' k ' 1 

I(Lp,-p)=p'2 L ... - ·-- -.. -
n1,n2=-oo 

·Performing the momentum integration, introducing the Feynmann paraiJ1eter t we 
obtain; 

:. . I L m = ~_B:L . ~ 11 . . dt . . . 8 
'. ' ... ~ p, ~)' 2 (47r)2

-f n,,~_;oo o, (t(1- t) +. e~~)~ +(~)2( ( ) 
"- ~. ' . . ' . ,' ' . '' . . 

Here we ksume that .\2B .!:::!· >.~8 ; so that the one loop diagrams proportional to >.18>.28 
. and >.~8 can be riegl~cted; The consistency'of this assumption is discussed in. Sect. 3; 
Note that if we do not make this assumption the proliferation of divergences b~comes 
uncontrollable. :' ·.; " 

Now we are ready to discuss our renormalization prescription. Analysing the one­
loop contribution in (7) we see that the functionoJ(pL,m/p) given by (8) and its first 
derivative with respect to p2 are divergent when f goes to zero (the sum can be under­
stood in the sense of (-f11nction regularization [13]): The divergence of the derivative 
reflects the six-di~ensionalcharacter ?f theoriginal theory. Thus there are two. 1m-. 
determined·parameters which correspond to the renorm'alizations of the operators cf>1J 
and cf>BD(4)cf>1 in theb'are Lagrangian., ,We will d~fine corresponding dimensionless 
renormalized coupling constants by the following normalization conditions: 

,ar•l :. , · 
. ap> ~·;,.. ==. >.2 ~-2+2• 

(9) 

(1. 2 a )f41 _ ,. 2< 
- p lijj'I p·=t<· - "1~ 

Implementing theseconditions· we 6btain; ~elations bet~een the' bare ~nd the renor­
malized couplings. In the current case these yield . . . ' " ' ' . " , . ~ . . 

.. '!1 •. .... . . . ' ' 
>. ~2•;, >. 11.2• + ).2 A4•~-2•!A I(K.L !!!.) 

.·: 1 : 1B,, •.. 18 ·" 2 <+1 . ',.' 
'(~0) 

, ~-2+2• _ , 11.-2+2• _ ).2 A4•~-2-2•!A J(~L !!!.) 
"2"'· - "28. 18 . 2 < ' "' ' 

4 

) 

•\ 

J 
·I;· 

~ 

' 

where we. have introduced A.,··~ ,.a,.·_:_ 2~. Note th{! following useful identities: 
[A ·A ] 0 . d. 2vA -2v· A . ·, · .. · 

"" 1'2 = an K oK = v• . . ' · 

lnverti~g the·expansions (10) to obtain the bare coupling constants in termsof. 
the ~enormalized ories arid substituting into eq: (7) 'we get . 

2 . 

f 4 = ).1K2
' + 5'>.2K

2
' 

(11) 

->.~K2' [(~)' l(Lp, ~) ·+~A1;J(KL, ~)- ~(~)A,!(KL, ~)]. 
. . -- ' ·, .. ·-· .,: 

It can be readily shown that the expression in the square brackets is finite when f goes 
to zero. Note we have used the fact that to one loop no wavefunction reriormalization 
isreqttired. · . 

We are specifically inter'ested in the limit of small ·,_L s~ we develop an expansion 
for I(KL,!!!.) to assist our, further discussion. We obtain from 

,, . "' .,.,.,;; ; ' l <' ' ' 

I(KL, ~).= Io(~) 
. (12) 

: ;_ ., 

((v) = L (N2.f" 
N2~o 

is the generalized zeta-function,· (see [13] fo~ a discussion· of its properties). When 
m 2 = 0 (12) simplifies to 

. ' 
. ' : 1: 00 . ' ·'. '. . •• ' ·' .: ' . . .. 2 <+k 

l(KL) = fo + .,~4!)2~, £;(-)k ~~~ :1~/(~ + k)(~t +k)[(;~) ] . (13) 

10 being. a numerical constant (though divergent when f-+ 0) given by 
''. ". i: "· • 

l - ~ f(~) f(1 - t? 
0

- 2 (47r)2-< f(2- 2f)' 
(14) 

Analysing the relations (10).in the limit of smaJl KL wesee that the coupling 
constant >.2 still has a finite renormalization .. Siitce in this limit the internal space 
disappears we would expect to recover standard four-dimensional formulae where >.2 
is not renorinalized. This ·can be achieved· by· another choice of· the .normalization 
conditions: For example one can choose them· as follows in the m2 = 0 limit (which 
we restrict ourselves to in the remaining discus~ion) . 

-2+2< 1 [ {) . P
2 

(,: {) )2] f41 
92" =I+' 82+ I+ 82 . P'=,.·· f p. ' . f p . . ' 

2< 1 .. [ . {) P
2 

{) )2] 41 
91K = 1 + f 1- {)p2 -.1 + f({)p2 ..r. p2="27 

5 
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In the present paper we c~nsider. the four-point fun~tion \~ith,ext~~nallegs corre-. 
sponding to light modes with N 2 = 0, studying in.detail the four point vertex. Only 
such functions are relevant if the energies of the external-particles are much smaller 
thanL-1 . In many comp.actification schemes [4][12] L turns out to be, of the order of 
the Planck length Lplanck -~ 10-33cm. . -. .· . .. , ... , 

We.consider the four-point vertex function f 4 evalmit~d at 'th~ symmetric point 
PiPi = 'f(4Dij-'- 1), where Pi are inco~ing four-rpomenta. Calculating the standard 
one loop diagram proportional to A~B using-dimensional regularizationwe get' 

f 4(p, f.-, mB, Allh.A2B):=·AtBA2' + p2).~~A-2+2'- Ai~A4'p-2' I(Lp, m), (7) 
.'. ' ' ,·. . . : ' · . , • iO ; p, L 

where f is' 'the regularization para~eter and 

I L - - 2'- , . 
· m 3 

00 J' d4
-

2'F · · · · 1 · 
( p, P)- P 2 nt,~-oo (27r)4- 2' (k2 + m 2 + Mk)((p- k)2 + m2 + M]v 

·Performing the momentum integration, introducing the Feynmann paraiT1eter t we 
obtain; 

I(L m) = ~_!11_ . -~ 1t . . dt . , . (8) 
_ .. p,.~ ..• 2 (47r)2

-< n
1
,;;;_;

00 
o, (t(1- t) +, e~:)~ + (~)2 )' ~ 

'· f ' . • . ' . . '. 

Here we ~sume t_hat A2Ei ~ Ai8 ; so that the one loop diagrams proportional to A18A2B 
. and A~Bcan be neglected: The consistency of this assumption is discussed in Sect. ·3. 
Note that if we do not make this assumption the proliferation of divergences becomes 
uncontrollable. ' · · · . · · · · 

Now we are ready to discuss our. renormalization prescription. Analysing the one­
loop contribution in (7) we see that'thefunction 'l(pL,m/p) given by (8) and its first 
derivative with respect to p2 are divergent when f goes to zero (the sum can be under­
stood in the sense of(-fun~tion regularization [13]): The divergence of the derivative 

r reflects the six-di~ensionalcharacter of the original theory . .Thusthere are two ,un­
determined-parameters which correspond to the renorm'alizations of the operators c/>'1 
and cf>BD(4)cf>1 in the bare Lagrangian., We will d~fine C()rresponding dimensionl~ss 
renormalized coupling constants by the f~llowing normalization conditions: · · · 

.•· . ar•l . . . ' ap ~2;.,.2 = A2K-2+2< 
(9) 

(1- p2~)r41p2=,.~ = At~2< 

lmpl~menting these conditions we obtain ~elations between the bare ~nd the renor­
malized coupling~: In the current case these yield 

A K2' ~-AB'i\2' + xz A4'K . .:.2<!A' . I(~L !!!.) 
; l . - 1 .; • tB, ,, 2 <+1 ' ,. 1 

(10) 
A K-2+2<- A A-2+2<- A2 A4'K_2_2<!A I(KL !!!.) 

2 · - 2B tB 2 < ' ,. ' 

4 

J 

•\ 

J 
·1;-

'f 

' 

where we have introduced Av = K:8,. - 2;. Note the following u~efui identities: 
[A 'A"] 0 d 2vA· -,-2v· A Vt> V2 = all K; Qfi: = v• . " . , . .. ' 

Inverting the expansions (10) to obtain 'the bare c~upling constants in terms'of 
the renormalized ories arid substituting into eq: (7) \~e get ' 

f4 = At "2< + ~ A2 K2< 
I( 

-AiK2' [<~)' I(Lp, ~) + ~At;J(~L, ~)- H~)AJ(KL, ~)]. 
(11) 

It can be readily shown that the expression in the square brackets is finite when f goes 
to zero. Note we have used the fact that to one loop no wavefunction reriormalization 
is reqttired. . . 

We are specifically inter'ested in the limit of small ·,.L s~ we develop an expansion 
for l(KL, ~) to assist,ourfurther di~c~ssion . .We obtain froip 

l(KL, !!:-).= / 0 (7)· 

3 "oo "k ( )k r(k-1+1)2r(<+k)((<+k) ( m )2'[( t<L )2J<+k 
+2(4")2-• wk=o wt=o - r(k+t)r(2k-21+2) . -; .. 2", . . 

(12) 

where / 0 (!!!.) is the N 2 = 0 term in (8) (the four dimensional result), and 
" ·, < • 

((v) = L'·(N2f"v 
N2 #0 

is the generalized zeta-function, (see. [13] fo~ a discussion of its properties). When 
m 2 = 0 (12) simplifies to . . 

,f(KL)= fo + ot•~,~~. f)- )k ~~kk:~~/(t + k)((t + k)[(;~ )
2

t~ 
k=O 

(13) 

10 being.a numerical constant (though dive;gent\vhen t -+,0) glven by 

1 
_ 3 r(~) f(1 - t),2 , · 

0
- 2 (411')2-< r(2- 2t:)" 

,,r; 

(14) 

Analysing the relations (10) _in the limit of sm~~:ll ,;;L we s~ that the coupling 
constant A2 still has a finite renormalization .. Sii1ce in this limit the internal space 
disappears we would expect to recover standard four-dimensional formulae. where Ai 
is not renorinalized. This 'can be achieved ·by another choice· of the normalization 
conditions. For example one·can choose them' as .follows in the m2 = 0 limit (which 
we restrict ourselves to in the remaining discussion) . 

-2+2• .·. 1 [' 8 .. 'p2 (: 8 )2] f41 
92K =-1+. -8 2+-1+ -8 2 p2=t<2> 

f p. . f p ' ' 
(15) 

2< 1 .. [ . 8 p
2 

8 )2] I' I 
YtK = l+t: 1- 8p2'-1+t(8p2.: •. p2="2. 

(16) 
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The 1 ~< arises as d
2
!2d, where d1 and d2 are the powers of~.:wi.th which,thecou­

plings .>.1 ~nd .>.2 enter into f 4, in this case -2t: and 2 :_ 2t:. respedively. The set of 
coupling constants (9t. 92) differs from the set (.At, >.2) considered before by a finite 
renormalization, the explicit relation between these. sets ·to. one-loop is . ' ' ' ' ; ~ ' .. ' 

f.::;= 9t- t9~A.At+J(,.;L), 

.. ·ftc= 92+t9~A.At+.I(~L): 
These formulae impiy that 

(1 + 
.) 2• _ , A2.·::- ,2· 'A..,4.-.·:22•[I. i A, A]./( ··L) . 

... f 9tli: ,:-.-"18 ·.:~~lB. , /(- , - 4(1+<) 0 < !.: • 

(1 + ) -2+2<- ,. A..:.2+2•'' \2 A.4<K-2
-
2'A' A I( ·L) 

f 92" - -"28 :" ~ -"18 4(1+<) 0 < li • 

(17) 

I 

(18) 

It can be readily checked th.~t the ren~rmalization of g2 in''(lO) vanishes when ,.;L -+'0. 
Observe from the normalization conditions {10) and (18).that .>.1 + >.2 = (I+ 

10)(91 +92) = f 4(,.;, L, >.18, >.2B),.;-2' where >.1B and >.2B aie understood as functions 
of either .\1 and .>.2 or 9t and 92· 

r~ can be written in the form 

which for t: = 0 gives 

4 p2 . ~· p2· . . :4 p2 . ! : 

r.(2 ,,.£) = f 0 ( 2 ) + cSr (2 ,,.£) 

" " " 

r 4(zC) It 3 9
2 

l It o "2 = 91 + "292 + 2~ n "• 
. - (19) 

c)f4(P2 ,.;L) = _92 3 "' (-)kr(k)r(k+I)((2k)("L)2k{(l'>_)k -1 + k2(1- P2)} 
~· ' 132,;2 L.tk=2 r{2k+2).. 211' . ~ ~ 

It can be·shown that the series.abo~e is convergent ~nd goes to zero when ~L-+ 0. If 
however in the above we had used minimal subtraction instead of the normalization. 
conditions implemented above we would find th~t 'the finite contribution to f 4 become 
infinite in the limit of ,.;L -+ 0. . 

. . 

3 . Renormalization group equations 

In this section we derive the renormalization group equations for. the coupling con­
stants introduced in the previous section and examine their solution. We conclude 
the section with a discussion of decoupling of the extra dimensions as a generalization 
of the usual decoupling theorems; -

Theii ,8-functions for these couplings, where ,B(X) = A0X, are the following 

,B().t) '= -2t:.\1 + >.p(~L) 

,8{>.2) = (2- 2t:).>.2 -~~p(,.;L) 
(20)' 

6 

,· 

'J·· 
I. 
i 

J ., 

where we found it.convenient to define a function ., ' 
' ,. ..• , 't 

J(,.;L) = tA • .t 1 A~/(,.;L). 
'. (21}" 

1 . ' dt' ; '. " -3r(2t•> "'"" r · 2"Nl2 <~>2>,· = ( 4,.) -• L.tnl,n2 ':'-oo Jo (t(l:-t)+(LP, + 'P '" :• 

which has the series. expansion for small,.;L ··''·· 
., 

' ' 00' ( ' .. )', (k . ' : . ' . . 2 ~+k 

J(,.;L)=a2+~ l:)-)kk k- 1 r +1)r(t:+k)((tt)~)[("L)J _: (22)' 
(411')2 < r£2k+2) ' .... ' '<; 271' .: 

k=2 ' 

which is a well defined function when t:-+ 0. 

. 3r(2 +f) f(1...: f)2 
a2= 

'(411')2 -;-<. f(2 -·2t:) 
(23) 

and is the usual .four dimensional coefficient. We can now consider the beta functions · 
for the alternative couplings. Let us consider first the couplings (9t. 92) defined in the 
previous section. We find that the ,8-functio~s for these couplings are 

,8(91 ) = -2f9t- g~A,[1 +. t:- t1oA.]J(,.;L) 

. : ,8(92) = (2 :_ 2t:)92 ..:...9~~At+•AoA.i(,.;L) ·· 
' ' . : 

Some rearranging yields 

,8(9t) = -2f91:+ 9~j~,.;L) 

,8(9;) :;;: (2- 2E)92 - f!~S(,.;L) 

For convenience we have defined 
. 1 ' .· t, . (··' . .• 

B(,.;L) = -AoA,At+.J(,.;L) = -AoJ(~.:L) 
4 ' .. _·' ' 2 ' 

and 
i(,.;L) = J(,.;L) + S(,.;L) 

which have the series representations for small kL 

(24) 
\,1 i 

:·' 

(25) 

L 

S(~.:L)~ _ 3 2~.E<-)k(k+t:)k(k-1)r(k+i)r(t:+.k)((t:+k)[('"~)y+_~ ·(26) 
' (411') k=2 ' ' f(2k+ 2) ',• . · .. 271' ' ' 

and 

i(,.;L) = a2 ·.-.1 
(27) 

+-3 _"co (-)~<CkH+•l~<Ck-t)r(k+Ilr(t: + k)(( + k)[("L)2]'+k 
(4 .. )2-• L.tk=2 .. r(2k+2) ._ · .. t: . . 2 .. 
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w~ readily see from the series expansions that these ~enori:nalization group equ~~ 
tions have the property that when KL -+ 0 .the coupling ~onstant 92 is not renormal­
ized; since in this limit S(KL) -+ 0. This is a desirable feaiuresince this coupling is 
not necessary in the four dimensional theory where it does not' undergo an infinite 
r~normalization. Similarly' in this .liffiit the re~ormalizatiori of 91 reduces to the four 
dimensional result, since a2 is' all that survives, and is exactly: the result obtained 
by doing the calculation purely in four dimen~ions. That this is true is essenti~lly ~ 

· demonstration of the decoupling ofthe infinite tower of massive modes. 
Two ?ther cou.plings related to the above are . 

These have beta functions 

_,_ttj,' 

ht = AtJ(KL) 

h2 = ).:lJ(d) 

(J( ht) = ...;.. 2t( KL )ht + h~ 

/3(h2) ~ (2- 2t(d))h2- h~ 

(28) 

(29) 

where t(KL) is a fuhction that interpolates between f and f + 1. These couplings are 
the most illuminating for the dimensional crossover since both terms in the above 
expressions do not vary significantly. More explicitly 

. ; .· l. . .. 
t(KL) = t- 2J(KL) K8~J(KL) (30) 

The corresponding set of couplings to (9I>fl2) giv~ 

( I I( I I 2 
(J hi)= -2f KL)hl +hi 

fJ(h;) = (2- 2t:
1

(KL))h;- h~
2

~~=~~ 
(31) 

where 
I 1 a -

t: (KL) = --:._K-
8 

J(KL) . 
. 2J K · 

(32) 

Before ·turning to the solution of these renormalization group equations let us 
examine the large KL limit of these equations. We note'that in this limit the functions 
J(KL), i(KL) and S(KL) have the following asymptotic forms . > 

J(KL) = (KL) 2(b +exponentially small terms) 

- 2 • J(KL) = (K{-) (2b +exponentially small terms) (33) 

~. . . 2 . : . . 
·S(KL) = (KL) (b+exponentially small . terms) 

8 

where· 

.l 

b = 3r{l + t)f(2- t)2 
. 

: . '(471f-<r(4- 2t) 

These functions are diverging in. this limit· because· the volu~e of the internal 
manifold was absorb~d into the couplings when we.did the .Fourier transform and this 
volume is now diverging. Thus the couplings (9~>92 ) arid (J..1 , ).2 ) which are n~tural 
for the four-dimensional limit (KL --+; 0) are inappropr:iate for the six~dimensional; 
limit (KL--+ oo). We define six-dimensional couplings · 

'!h = (KL)29t 

!h = (KL)
2
92 

and equivalently for the set ().1>). 2 ). Similarly we define functions 

and 

J'(KL)·= J(KL) 
. . . ~ (K£)2 

j 1 (KL)'= J(KL) 
. ' (KL)2 

Sl( ·L) =· S(',;L) 
,_ (KL)2 

'• 

I. 

(34) 

. ' • ' I i I .. · • ' -

Note that the couphng constants (h 1 , h2 ) and (h 1; h2 ) naturally tncorporate the 
above re-definitions in t~king these limits: The renormalization gro~p equati~ns in 
this limit in terms of (g1,.ihlin six dimensions have the form· , · . · 

I' ' , 

(J(gi) = (2 -2t:)gt + g;~:(KL) 

(3(92) = (4- ~~)~2 .:_ g;SI(t!L). 
.(35) 

where in. the limit KL ~ oo, i1 (~eL) ·._. b a,constant. These are the natural six 
dimensional renormalization group equations f~r this system. 

Since we have performed a renormalization of all terms necessary to m~ke. the 
results finite in thesix-dimensional CaSe and recover thidour~dimensional renormal­
ization group equatio_risin the KL--+ 0 limit, we have reriormalization group equations 
that interpolate; in what w~ believe to be a n~tural way, between' the fotl~ and ~ix 
dim~nsi~nal theories. The n~n-tri~iality :of the ren~rmaliza'tion group' equation fo~ 
the additio~al coupling 92 in six dimensions reflects the non:renor~alizability bf th~ 
six~dimensional theory. In general. in . higher ioop c~l~~laticms we expect the. same 
features to :persist, however; a 'proliferation of'additionai param'et{;r8 :will arise in our 
pr~scription. The ess~titial featu~e of our work is that it bririgs into: the r~alm of . 

·9. 
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calculability the correcti~ns due to additional dimensions, even when working with 
non renormalizable theories. 

. We now turn to the solutions of the renormalization group equations. We illustrate 
the method of solution by considering the equations (29). which we solve by noting 
that they can be rewritten in the forrri 

.8(h}1 exp['-: I:a 2t:(xL)d;J)' = -exp[- L: 2t:(xL)d;J 

,B(h2exp[- L:(2- 2t:(xL))~]) = -hrexp[- I":(2- 2t:(xL)):Xl 

and integrated without difficulty to obtain _.; 

ht(Ko)exp[-,,J.·" 2t:(xL)dx] 
ht(K) = . t<o x 

1- h f." !!l!.exp[- J. 11 2t:(xL)!i£] 
lKOY KO X 

h2(t>:) = exp[1:(2-2t:(xL))d:] _ , 

(36) 

[ 1" 2 111 
dx dy] h2(Ko)- ht(Y) exp[~ (2- 2t:(xL))-]- (37) 

"o "" X Y 

In the above ,;0 is an initial renormalization point, and the so!ution tells. us how 
the coupling changes .as the renormalization point is changed. The solutions of the 
equations (25) are obtaine"d by substituting back for the original variables. We obtain 

. ' . 

~ _ . At(1)p-2
< 

· t(P)- 1- X1(1) I: dxx-2<-lJ(x'-oL) 
(38) 

A2(p) = p2~2<[A2 (1) -lP dxx2'-3 Ai(x)x-2'J(u~L)] (39) 

where ,we have defined p = !· ·By direct analogy the solutions for the couplings 

(h~,h;) can be obtained yielding (91>92 ) to, be 

( ) . 
9t(1)p-2

' 
91 p = -

1 1- 9t(1) I: dxx~2<- 1 J(x,;0 L) 
(40) 

· 92(P) = p2- 2'[92(1) -lP dx9i(x)x2
'-

3 S(xt>:oL)] . (41) 

Since in th~ four-dimensional limit the coupling 92 does not get'l"enormalized it seerri.s 
natural to Cho~se the normalization. conditi~n such that 92 = 0 in which case the 
throry reduces exactly to the four-dimensional one. This of course is a form of fine 
tuning in six di~ensions, however it is _preserved by the renorriialization group fl.ow 
and is natlual from the four dimensional point of view. Our initial assumption of im­
posing the relationship 92 .,..;, 9~ is similar to the fine t,unirig of Coleman and Weinberg 
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in' th~ case ~f ~cala:r electrodynamics [14]. Note, that' the non-re~ormali~ability ~f the. 
theory begins to become important when we begin to probe· the theory at scales of 
order L: . ' · · 

In.the li~1it t>L-+ 0 i(,;L) = a.2 and (40) gi~es a La~dau pole at p = p• [15]. If 
9z(1) = 0 or is fine tuned to be small then g2(p) rem~ins small relative to 9t (and 
our assumption is valid) for 1 $ p << p•(,;L); otherwise our ~sumption is not 
self-consistent and other diagrams must be considered. . . 

4 Conclusion 

\Ve have demonstrated toone-loop that a non-renormalizable theory does reduce to a 
renormalizahle one as. the extra~ dimensions are shrunk t~ zero size. Tho~gh we have 
only addressed the question in the case oft he four point function in this work~ simil~r · 
analysis can be carried out for the a•general N-point function. Agai~ one .se~~that 
our method generalizes, however additional renorrnalization~ ·are necessary. By per­
forming appropriate L dependent subtractions one can obtain renormalization group 
equations where each of the Wilson functions reduces in the limit,KL-+ o· t~.the ones 
obtained by a .direct calc~lation in, f~u':" dimensions. _Tl~us ~ye h~':e. an' interpolation, 
between the L -+ oo case and. the L = 0 case~. We believe our prescription should 
be extendable to any order, at least in principle, though in practice this may be very 
tedious. · · · · ·.: . .· 

We can summarize our results as the decoupling of compact dimensions in the 
infrared doinain, vi~ decoupling of the infillite to~\·er of tnodes. Zero' modes give' the 
leading contribution to physical amplitudes a~d the ~·en?rmalizatiq,n group eq':lation 
in. the limit of KL -+ 0, i.e. when heavy modes cannot be seen experim~ntally. It 
is in' this ·sense that we have dimensional 'crossover from non-renormalizability .to 
renormalizability. This makes the picture'of dimensional reduction more pl~msible in 
that it appears self consistent at the quantum level. . , . · . . 
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