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1 -INTRODUCTION 

Different fmir-dimensional metric spaces are of great importance in theoretical physics .. The 
real. physi~al. processes .·occur in four~ dimensional space-time and- therefore, naturally, . the 
~ost important physical theories - special and general theory of relativity and· electromag­
netic field theory- use Minskowski's space as a fundamental four-dimensional manifold for 
the description of physical phenomena. The four-dimensional Euclidea.it space has an appro­
priate place in theoretical physics, too, since e. g. the hidden symmetry of three-dimensional 
hydrogen atom is· connected with this space (1]. 

It is impossible to imagine a description of the physical reality without the introduction 
of.a coordinate system in a space of.certain dimensionality. An invariantintroduction of 
-~ coordinate system into a manifold is a really very essential problein. We know that a 
description of physical reality cannot (and must not) depend on the chosen coordinate system 
but' we d~ not always realize an elementiuy fact that each introduction of a ·coordinate 
system within given space means the introduction of a symmetry into a problem although 
the connection of different coordinate 'systems 'with an appropriate symmetry is well-known 
and quite a number of investigations devcited to this topic is carried ·o~t at present (e. g; 
[2]). Among the different'"coordi~ate systems an exceptional role belongs tothe orthogonal 
systems of coordinates the skillful application of which substantially simplifies the solution 
of most particular physical problems. The. orthogonalization (generally diagonalization) 
of different quantities in physi~ has not only advantages but at least also one essential 
drawbaCk. Each diagonalization means simultaneously a transition into particular coordinate 
system (or basis) and,. thus, th~ operatic~ contradicts a (widely. understood) principle-of 
relativity in a manifold. We are going to show i~ this p·aper an advantage of an approach when 
we do not diagonalize ~ constant metric tensor in the four-dimensional space from the very 
beginning but when we carry out its diagonalization in the final formulae. If the symmetry of 
a physical problem is obvious and known or can be obtained on the basis of an analysis ofthis 
problem by means of exact mathematical methods and techniqu~s it is the first. step to its . 
successful,solution .. If the symmetry 'of the problem under consideratio~ is unknown we still 
use a coordinate system for description of the different physical items.: In this case we very 

. often solve a problem whic;:h has one type of symmetry by:m~ans of a co~rdinate system with 
quite a different kind of symmetry, and naturally, we meet insuperable difficulties. Therefore 
it is extremely important to ,find out a symmetry of the problem befoke an introduction of­
any coordinate system within a space. From this point of view it is till more important 
to discover all the possible symmetries of a space in which we have entered no coordinate 
systems (perhaps except all. affine coordinate system). Such syminetri~s are inherent to the 
space itself and we have io take ~ccount ·of them from the very begin:ru.ng, i. e. before the 
consideration of the symmetry connected with the transformation of the chosen coordinate 
system._ Such symmetries exist at least for cert~n space8. A separat~ paper will be soon 
devoted to an invariant introduction of a coordinate system ·in' three- ~nd four-dimensional 
metric spaces with arbitrary signature.· In this paper we would like to1pay attention to the 
symmetry of four-dimensional metric spaces which exists independent of the presence of a 
coordinate system. / ' 
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All the real even-dimensional metric spaces possess an additional symmetry for the mul- -. 
tivectors a rank of which equals to half of the dimensionality of the given space. Here we 
shall concern such a symmetry for antisymni.etrical doubly contravariant or doubly covari­
ant tensors (so-called bivectors) i~ real four-dimensional spaces. This sym~etry is known iri 
physics as the dual symmetry or, simply, the duality. The term "dua,!ity"_ can be only seldom 
met in theories formulated in a four-dimensional space and it should be noted that many 
physicists do not give proper consideration to this kind of symmetry. By the way, the most 
famous monographs on field theory do not even mention aconcept of duality in space-time 
(e. g. [3]). , _ _· 

All the four-dimensional metric spaces have al specific feature connected with. the pos­
sibility to introduce the concept of duality in these spaces. Note should be taken the fact 
that the concept of duality introduced in the articles and ·monographs is rather formal and 
different (e. g. [4]). It is connected with specific aims which a_particular physical problem 
brings in the process of its solution as well as with not fully understanding the duality in 
four-dimensional spaces. Here we will give no attempt at. comparing different determinations 
of the du~lity in physic~. At the end of this article it will be clear why it has no sense to do' 
so. Maybe from the methodological point of view the best way_ to start an inve~tigation of. 
duality in the even-dimensional metric spaces is to consider the symmetry in two-dimensional 
spaces. However, the two-dimensional spaces seem to be rather simple and no theory of real 
physical meaning can be constructed there. We would like' only .to note. that' the_existence 
of spinors in two~dimensional spaces is directly due. to the dual symmetry of these spaces. 
We prefer to begin the study of duality in four-dimensi~nal spa~es first ofall in connection 
with an existence of a suitable physical theory based on a skew-symmetric. tensor of the 
second rank to which the dual symmetry can be applied. Such theory is a well-known theory 
of electromagnetic field in real space-time which uses the skew-symmetric tensor of el~ctro-··. 
magnetic.field as a fundamental matheinaticai object for the description of electromagnetic 
phenomena in nature: , 
· The modern theoretical physics cannot. exist without the system of Maxwell's equations 

for electromagnetic field which was formulated by. their author. more then a hundred years 
ago (exactly in 1861; [5]). These equations originated as a result of the careflll analysis and 
generalization of many experimental facts. They first of all generalized the Faraday's inves­
tigations. We shall use here the Maxwell's equations for a three-dimensional electrical field 
l( :&, t) and a three-dimensional magnetic -field il(i, t) in the presence of electrical currents 
J(:&, t) and electrical charges with.the density p0 (:&, t) in the form: ,;, , 

rot il(:&,.t) _;_c0181l(:&, t) - = J(i';t), 

divl(:&,t) / ~. Po(i',t): 
' - '•' ·, 1 - '' 

.rott:(i',t) +cO. 811-i(:&,t) = o, · ' (1) 

, . .divil(:&,t) = 0, •.. , 

where Co is vel~ city of light in vacuull1 ~nd at is deri;aiiv.e with respect to tim: co;rdinate. 
Equations (1) are assumed t~ be always true in physics.; . . , , . . ·. . 

Besides a number. of applications of the M~well's eguations. in physics ~nd ,technology 
the unique distinction of them is. their ri~h symmetry . to which. has. be~n. paid. attention 
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by miuiy 'mathematicians and theoretical physicists along ti~e ~go. 
·'observed a symmetry of the Maxwell's equations in va~uum (J(:&, t) 

Already Heaviside 
o, Po(z,t) =·0) 

under a substitution [6]: · 

l(:&,t) -+ ±il(:&,t), il(:&,t) -q:l(:&,t). 

The· generalization of this symmetry to on~-parametrical transformations of the.type: 

l(:&, t) 
il(:&,t) 

-> cos 8l(:&, t) + sinO if(:&, t), 
-> -sin el(z, t) + COS 8 il(z, t) I 

has been di~co~'er~d by Rainich and L~rmor [7]. However the most interesting symmetry of 
the Maxwell's equations is their inva~ianceunder the Lorentz transformations if we consider 
time t and three-dimensional Euclidean space in which ~ point is deterinined by the ~ector 
:& as one four-dimensional manifold [8]. The Lorentz invariance of the Maxwell's equ~ti~ns 
call be demonstrated in a better way if we rewrite the Maxwell's equations .(1) through a: 
skew-symmetric tensor of the electromagnetic field _;Fik(:&, t) = -_;Fki(:&, t) the components 
ofwhich can be expressed by means' of a threecdimensional (vector) electrical field l( :&, t) and 
.a three-dimensional (pseudovector) magnetic field il(:&,t) on the base ,of a correspondence 
(i, k :0:: 1, 2, 3; 4; z 4 = c0 t, diagonalized metric of space-time 9ik = ( -1, '71, -1,,+1)): • 

( 

0 
' . ' ' 1f3(:&, t) 
_;Fik( ~. t) = '.:_ 1f2( x, t) 

-£1(:&, t) 

-1i3(:&, t) 
0 

1f1(£, t) 
-'-£2( :&, t) 

1i. 
2

(:&,t) £
1
(z,t·).)··_·_· -

-1i1(z,t) :e2(:&;t) · 
0 t:3(x,t) ) 

-£3 (£, t) .o . '·. 
. ".... - .. 

(2) 

· i. ~::if we define six co~ponents of the tensor of electromagnetic field _;Fik( :&, t)- in the following 
way (9af3 ~ ( -'-1, -1, -1), a, {3, 7, 5 = 1, 2, 3): 

·.Pf3(:&,t) =Eaf3.,g.,0 1i6_(i,tL _;Fa4(x,t)'=t:a(x,t),' 

where Ea{J_., is three:dimensional completely antisymmetric contravarian(tensor with compo­
nents equal to 1 or - i depending on the parity of the permutation of its indices or to 0 if its 
two or more indices are coincided. In the previ~us formulae we have accepted the convention 
about summation through the identical upper (contravariant) and lower' (covariant) greek 
indices from 1 to 3.· In further formulae the summation through identical latin indices will 
be always implied from. 1 to 4. Note that the operation of correspondence (2) ·between a 
bivector in four-dimensional space~ time and t'wo three-dimensional vectors of electrical and 
magnetic fields is a sir~ngly non-covariant transformation. 

)tis, a, genera!Jy ~no\VI! fact that_ by means of the correspondence-.(2) the Maxwell's 
equation~ (1) can be:re\Vritten-in an equivalent and covariant form (e. g. [9]): 

.. , ; _:.~ , 

.-:: .. a-:F'k(:& t) .. -ik(£ t) -·' . ·~ -, -:-- . ' , aj:-ik(£,t) =O, (3)' 
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where j:ii(z,t) is so-called"dual" tensor of the electromagnetic field 1 which is usually_ 
defined by means of a· completely antisymetric tensor of the fourth rank fij/cl (which is 
defined analogously to the complet~ly antisymmetrical te~sor in three-dimensional space) in 
the following way: 

j:ii(x,t) .= l €;;"' g~g,n:P""(z,t). {4) 

There is another type. of symmetry of the Muwell's equations which is connected with 
the conformal tra~sformations in: space.. time [10]. We are not going to consider here all the 
known kinds of symmetry of the Maxwell's equations . There are monographs especially 
devoted to this problem (e. g. [11]). Nevertheled, in this paper weshall regard a kind of 
symmetry of Maxwell's equations· which is connected with the co~cept of duality in four­
dimensional metric spaces. Strictly speaking, based on the exact definition· of duality as a 
constant operator vie shall derive the Maxwell's equations in a covariant form in the four-
dimensional space with an arbitrary- signature. . . 

2 A CONCEPT ·OF DUALITY IN _FQUR-DIMEN-
SIONAL METRIC SPA(:!ES 

In this s~Ction we shall try to exclude any arbitrariness in the· definition of du~lity ir{sofar 
as we shall define' the duality by means of an' operator which always exists in each four- ' 
dimensional metric' spac:e. In order to use the' tensor calculus widely we can not restrict 
our considerations to a particular four-dimensional space like the Minkowski's space which 
is extremely interesting' fro'm the point of many physical applications.' Generally, we shall 
regard·a real four-dimeri.sionalspace n 4 in which an arbitrary constant covarianfsymmet­
rical metric tensor g;1c = g~c; is given 2 and where a point in an affinecoordinate system 
is determined by a contravariant vector :z:i (i = 1,2,3,4). At this· stage we· shall not be 
interested in the presen_ce of time in the set of four coordinates :z:i . The time coordinate 
can be introduced in the final formulae putting e. g. :z:4 = Cot. We shall not even suppose 
that the metric tensor 9iJc has a diagonalized form. It can always be done since the diag­
onalization of a real symmetrical matrix is a well-known procedure in algebra. We would 
like to stress that it is extremely effective if the operation of diagonalization is carried out 
in the final formulae. We only suppose that the metric tensor g;1c is not singular, i. e. the 
determinant go of the metric matrix g;1c is iwt equal to 'zero (go= d_et I g;1c I =/= 0). We shall 
strictly distinguish the upper (contravariant) and lower (covariant) indices of all the quanti­
ties ·which will appear in the following formulae. In addition, throughout this paper we shall 
successively mark any invariant or constant quantity by means of an index "naught" whi~h 
can be placed up or down depending on the free spot at a. tensor quantity (e~ g. n~ means a 

1 We have written the word "dual" in this sentence in quotation m~kS. It w~ especiiilly. d~ne and we 'ciill 
a tensor of the type determined in ( 4) as a so-called "dual" tensor of the electromagnetic field throughout the 
whole this paper. It is due to a possibility to introduce the duality in four-dimensional spaces as a strictly_ 
defined operator what will be carried out in the next section .. After such new definition of duality we shall 
be able io construct the skew-symmetric tensors with certain value. ofthe duality. 

2 As a matter of fact the restriction of metric tensor to be constant is not obligatory. 
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con'st_ant .co'utravariant. v~ctor, n? is a covariant constant vector). ,If we have two (or more)· 
invariants of the same order we shall number them by numerals 1, 2, ... as a contravariant 
vector ·in an .;,bstract space (in a manifold) and an order of invariants will be placed into 
parenthesis next to the index "naught"( e; g. IJ(2)(!) and Po(2)(/) are two differentinvariants 

. of the second order which can be constructed from a tensor quantity "f" ). Furthermore, the 
invariant eipressions will be often located in parenthesis or square brackets .. With~ut any 
misunderstanding the (scalar) quantities with the index "naught" can be raised to power. 
Thus, all the formulae of this article will have strictly tensor form and they will consist of 
different invariants and tensors of different ranks. We' suppose a reader is acquainted.with 
the tensor calculus and theory ofinvariants even though in the scope of the presently already 
classical monographs [12]. · 

The squa~e of distance l5( :z:, y) between two points with the affine coordinates :z:; and yi 
in n~ is determined by means of a usual way: 

. ~ . 

l~(:z:, y) = g;k(:z:i - yi )(:z:" - y" ). (5) 

If we consider an arbitrary centered affine transf~rmati~n (ali affinor) A~ in n 4 which 
changes the coo~dinates of that space in, the following ~ay: 

:z:1i ~ Ai zlc , zr. = .A~ z 11
, Ai .Af = cf, - Ao = det 1-A~ I i o 

. . ' 
(6) 

where .A; is an inverse affinor to the affinor A~· then the metric' g;r.: changes as a doubly 
cov~ant tensor according. to the formulae: 

g:r. =· Af A% gpq , gpq ·:,:, A~ A~ g:"' go = A~ g~. (7) 

It is obvious, that the square of distance between two points in n4 m:ittenin the form (5) 
is' an (absolute) invariant. The determinant of.a matrix is always an (~elative) invariant as 
well. Moreover, the quantity f:o which equals to the sign of the determinant of metric tensor 
g;1c con~erves ~nder the transformati~ns (6) since the follo~ing relaticin t'akes plac~:. 

. ·. , -1. I I 2 I 2 • -1 I I -1 : I 
f:o_=golgo I =goAolgoAo I =golgo I =f:o·· (8) 

Thus, any transformation in n 4 (including a diagonalization ,of g;~c ) cannot change the sign 
of determinan't of. a metric of given space 'and f:o represents a discrete invariant.· This discrete 

·invariant is of great importance for the correct introduction of the con~ept of duality in n 4 
• 

Let a real skew-symmetric .covariant (or .contravariant) tensor. of the second rank (so­
called bivector) f;;(:z:) be given in the considered real four-dimensional metric space n 4

• 

As we regard the metric space the constant metric tensor (more preci~ely the inverse metric 
tensor gik which fulfills the relation <;>f orthogonality: gir. gik = 5f } allows to carry_ out the 
operation of ra}sing of any covariant indices for a tensor determined i~ n4 

: Thus, in n4 a 
contravariant bivector Jii(:z:) can be bUilt up from the given 'covarian~ bivector /;;(:z:) ': 

Jii(~)- = f;ik gi' fk,(:z:), _ /;;(z) . ~ ~. -
= g;k g;i Jk1(:z:) (9) 

'· 
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what is a well-known fact. Th~ six-component" covariant bivector J;~e{z) can be consid~!ed 
_ an (covariant) antisymmetrical matrix in "R.4 • Each matrix in "R.4 fulfills ari appropriate 

Hamilton-Cayley's equation [121. This equation for a bivector f;~e{z) in "R.4 has the form: 
0 ' I < " • 

f;p(z) gpq fqr(z) g••fo~(z) 91
u fu~c{z) + Po(2){f) f;p{z) gpq fq~e(z) +g01 fo(:J?} 9ik := 0 {10) 

where the following three invariants were introduced: 

' ' 
Po(2}{f) =! gP" gq'Vfpq(z)J •• (z), 

_ _ Ji(2){f) = ~ epqr• fpq(z) j •• (z), 
fo(z) = {4!}-1 j;abcd fpqr• J.,p(z) fbq(z) fa(z) h.{z) 

[
1 ° 'lei ) ' _)- ] 2 '1 . [..-;, (. ) ] 2 = 8 f'3 f;;(z A1{z -= 4 eo go .L0(2} f 2:: 0, 

1 ' 0 -, 1 ° 

eijkl =I 9o 1-2 fij/el, · ,eijkl = I 9o 12 fijlcl • 
0 

{11) 

The invariant fo( z) in matrix equation {10) ~ep~esents .·a. determinant of antisymmetrical 
matrix f;~e{z) .From the set of invariants in {11) an jmportant-invariimt of the fourth order 
I 0(4}{f) _can be constructed, namely: . - .. 

Io(4}{f) = ~ { [Po(2}{f) 12 - eo [Ji(2}{f) 12 }. {12) ,· 

The meaning of this invariant ~ll be discussed later. 
It is generally known that especially in "R.4 one can raise (or lower) the indices of a skew­

symmetric covariant { o~ contravariant) tensor of the second rank by means of the <:ompletely 
antisymmetrical contravariant (or covariant) tensor of the fourth rank fijkl (or fijlcl ). The 
second way of raising ( oi.- lowering) the indices of bivectors in n"- leads to so-c.;_lled "dual" 
contravaria~t (or covariant) antisymmetrical tensors ofthe second rank jii(il:)' (or A;{z )): 3 

jii(z) = eiiklfkl(z) := eiikl9km9ilf;.,.n(z) = eogik_gil~klmnfmn(z),:: 
A;{ie) = e;;~c1J"1 {z) = e;;kl9~mgi1 fmn(z) = _'eo9ilc9jleklmnfm'n(z);: 

{13) 0 

In the formulae {13) we have used the relations from the ~ppendix of the.-report [13] between 
the components of a covariant metric tensor 9ij and inv~rse (contravariant) metfiC tensor glcl : · 

3
There is a third way of raising the indices ~fa covariant biveci~~ /;j(:c) in 7?.4 ·by ~eans- of two completely 

skew--symmetric contravariant tensors, namely: · · ' 

Jii(:c) = (3! Jo(:c}rl €iabc €jpqr J.,;(:c) /bq(:c) /cr(:c)' -, . , 

where fo(:c) is the determinant of the covariant bivector /;;(:c) defined in (11). The contrayariant bivector: 
fik(:c) -represents the so-called inverse bi:vector to the covariant hivector J;~e(:c) which fulfills a relation of' 
orthogo~ality: f;k{:c) fik(:c) = lif. There is a simple direct CQupling·between an inverse bivector Jii(:c) .as 
w~ll as a so-_ealled -q~ual" hi vector jii (;c) introdu~ed in (13): ~-

0 ' ' 

P1("'> -:"-Jta(~)_:f.i(iJ-::-.· 
--.-· ... : 
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We bring here fou~ such relations without any deduction: 

fabcd Yo = fijkl g.,; 9bi ·9ck 9d1 ' 
Yo = { 4!)-1 €abed fijkl 9ai 9bj 9ck 9d1 , 
yii = (3! go r 1 

fiabc fipq• 9ap 9bq 9a , 

±..fiG eabcd gic gkd =· ± 1::- eiikl Yak 9bl: 
yeo 

{14) 

In "R.4 one_can always deflne-two constant nilpotent operato~s J./!'!(+) and .Nl{(-) 
which represent (constant) mixed tensors of the fourth rank with the antisymmetrical doubly 
covariant and doubly contravariant indices (so-called biaffinors) by the following way: 

Nfl(±) = NJ[(±) = -:N;"f(±.) = -NJ?(±) =! (of! ± ,fiO e;;~e1 g"P g1q), (15) 

where of! = of oj -of o? is so-called generalized Kronecker's symbol of the second order. 
Note the operator~ Nl'[(+) and .N't[(-) become complexly conjugated ones for eo = -1 
(e. g. for the Minkowski's space with the signature (-1,-1,-1,+1)). Using the'formulae 
{14) onecan easily check that.the tensors .Nf'/(±) fulfil the relations: - . 

! Nl'/(±) N;;C±) =;= M;'C±), ! N[jq(±) N:,:(=F) = o. {16) 

From the flrst ,form.ula in (16) il follows tha~ the operators Nl'[(±) are really nilpotent 
quantities: . · · . · · 

Now for an{re;w_ ~ovariant bivectorf;;(z) in "R.4 one .can define two new covariant 
bivectors !lj(z) by meansofjust introduced biaffinors .Af;'j'(±): 

f;}(z) =d.Af;"[(±)fpq{z), J:1(z) =gikgil ffl(z). (17) 

From the explicit form of biaffinors .Af;'j'(±) in {15) the following relations can be found: 

f;}(z) + f;1(z) = J;;(z), .. , . 
J'±(' ) -+'f{ ) ±-~ km In J, { ) - ± 1 • ~-lei( } ._ Jij z - Jij z 0 = yeo e;;kl g g m~ ~ = ,fiO g;~ 9jl z ' 0 

(ls) 

.;_nd, thus, the so-called '~dual" bivector jii(z) introduced-before can be expressed in terms 
of the bivectors J;j(z) and f;j{z). Two nilpotent operators N[jq(±) allow. to build up a 

· (constant) tensor operato,r r:>fl in each real four~dimensional metric space "R.4 which has the 
form: ' 

VfJ = VJf: = -VlJ = -:T>'j/ = Nfl ( +) -'- Nm:...) -
- · ~· km lq ·~ 1 'pqr• =yeo e;;1c19 g = ~ e g;,gj •. yeo . ._ 

'-' {19) 0 

' ' ' 
. We. ~hall call the operator VfJ defined in (19) an operata~ of duality'in "R.4 • A~ it is seen 
from- the definition {19) the operator of duality in real "R.4 can be real or pure imaginary 
quantity d~pending on the sign of the dt;terminant of the (real) metric tensor 9ilc . We make 
su~e that a discrete ~ffine invariant ~0 -{n "R.4 plays an' exceptional role. Moreover, the double 
application of th~operat~r ofdtiality VfJ gives: . · · 

!Vfl"D!! =! [Ni'/J+) ~N;"[(->] [N;:(+) -JJ';:(-) ]= ot], 

7 
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and, consequently, the eigenvalues of this operator can be equal to ±1 ~nly. Indeed, if we 
act on the bivectors /lj(z) by means of the operator of duality 1YJ {19) we a."re convinced 
by virtue of the relations {16) that an equation can be written as: 

. l7YJ J;~(z) = ± f;'Jez). {20) 

The equation {20) can be. regarded as an eige~value problem for the operator of duality on the 
space of skew-symmetric functions in 7?.4 • We see the biv~ctors /lj( z) construCted before by· 
means oftwo biaffinors l..!l'/(±) from a given bivector /;;(z) are just the "eigenfunctions" of 
the operator of duality 1YJ with the eigenvalut;!i'equal to ±1 respectively. Therefore, strictly 
speaking, we will be right if we call bivectors !/j(z) as "genuine" dual bivectors with the 
certain values· of duality in 1?.'4 • Other definitions of the. "dual" bivectors in 7?.4 which can 
be met in the lite~ature (like the relation {13)) are fully.arbitrary'ina.smuch they use no· stnct 
definition of an operator of duality and such "dual" bivectors are ncit the· eigenfunctions of . 
an operator in 7?.4 

• Nev~rtheless, yre give an expression of the ·dual bivectors !/j( z). here as 

a linear combination of the initial'bivector /;;(z) and the so-called "dual" bivector h;(z) 
in 7?.4 which has the form: ' . 

± ·1[ '1 _. •]'. . 
/;;(z) = 2· /;;(z) ±Fa J;~(z) . {21) 

The initial bivect~r /;;( z) · w~s introduced as real quantity and it follows from the definition 
of so-called "dual" bive<;torh;(z) that it is a real quantity too. As ~een from the formulae 
(17) and {21) the dual bivectors f/j(z) are dual quantities, 4 with dualunitequaltci Fa: 
The dual bivectors /;}(z) have real and dual parts which are. equal to: . . . . 

± 0

1 .' ± . 1 ' -
Re/;;(z) =2/;;(z), · Du/;;(z) =±2eo/;;(z). 

· It is useful to bring 'up all the possible invariants which can be built u~ from dual bive~tors 
/;}(z). It follows from the relations' . . 

f g'" gil .AI;j"(±) N{?(-,:-) = i eiilel .AI;j"(±) Nf?(=F) = 0 

that the invariants constructed frcim bivectors of different duality are id~ntically equal to 
zero: 

t i" gil J,](z) J{z(z) ,; i eijlel J,](z) J{z(z) = 0. 
--~---------------------

4We understand a. dual number z a.s a. number of the type z = a+ e0 b where a. pair of numbers a a.nd b 
belongs to the field of real numbers a.nd e0 represents a. dual unit a square of which is a. real number. The 
dual conjugated number z• to a. dual. number z is a dual number z• ,; a- e0 b, (z• )• = i:. The product of a 
dual number z and a dual conjugated nm~ber 'z• is a. real number z z• = a2 - e5 b2 which is a. positive real!. 
number for e5 < 0 or any real number for ei\ > 0. The inverse dual number z to a dual number z is the dual 
number z = (zz•)-lz• which fulfills the relation zz = 1, ,;2 - eil b2 :fi 0. The special case of dual numbers 
with eo = i is field of complex numbers. H we accept ,;;a a.s a. dual unit in 'R.4 and decide to use the field 
of dual numbers in the theory we should omit to mark the dual quantities by the symbols "±" realizing that 
for each dual quantity (i. e: for a quantity marked by a symbol "+") exists the dual conjugated quantity · 
.(i. e. a quantity marked by a symbol ".:_". In connection with ~ absen~e ·of wide application of the field 
of dual numbers in mathematics and physics (in contrast to the field of complex numbers) we conserve the 
symbols "±" in all the 1ual quantities. · . . 
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.The invariants IJc2l{f) and Pcc2J{f) from (11) can be simply expressed in terms of new 
invariants Poc2l{f=¥) and Pcc2l(!±) which are defined in an analogous way: 

-r1 ( ±) 1 'lc 'l ±( ) ±( . "7"2 ( ±) 1 "'lcl ±( ) ±( ) .Loc2> f. . = 2 o' o~ J,; z Az z) , .Loc2> f . . = 4 e'' /;; z Az z . 

As a result of non-coniplicat~d calcuiatio.ns we have: 

IJ(2)(!±) 

Pc(2)(!±) 

l [Po(2){!) ± )a 7i(2){!)] ' 

- ±f Fa [Poc2J{f) ± Ji Poe~> {f)] ·. 

{22) 

{23) 

Note th~ invariants Poc2l(!±) and Pcc2l(!±). are linearly depende~t as seeing from the fortn:ula 
(23) and the relation takes place: 

/.,_, 

Po(2)(!±) = ± Jo- Po,2j(f±) {24) 

and therefore only two invariantS fro~ the ~et (23) are independent (e. g. invariant Poc2l(!+) 
and i~vari~nt Poc2;{!~) ). In addition, a~ i_nvari_ant of the.fourth order I 0(4)(!±) built :up 
fr_om mvanants I 0(2)(J±) 3;nd Pcc2>(!±) 1s ~denhcally equal to zero because of the relahon 
{24).· The invariant of the fourth order 7'0(4){!), defined in {12) can be written by means of 
invariants {22) as well: ' . 

io(4){f) = IJ(2){f±) Poc2><J'~') = ±eo Pa(2)(!±) Pa(2){!'~') .. 
y • " ' ' ' ' ' 

{25) 

If we regard the inv~riants IJc2><J) and Jic2)(J) in' the definition ofi,nvariant I 0(4j{f) in {12) 
as doubled coordinates in a two-dimensional spac~ we can observe that I 0(4){f) represents 
a quadric in that space with a diagonal metric tensor 'gAB (A; B =1, 2) in ~he form: ' 

. '(1 . 0 )··· 
• 9AB = 0 =-eo: . 

·The 'use cif th~dual bivectors ,,]<zJ instead of th~ initial bivector l•;<x>' in n• induces 
a transformation in an abstract two-dimensional space built ~n tw,o coordinat~s f IJ(2){!) 

, and l 7ic2>{f) . :A higher symmetry in the space of bivectors in 7?.4 . can be studied which is. 
connected withaninvariance of invariant 7'0(4){!) under transformations in two:dimensional 
space mentioned above but such investigation is fully out of frame of this paper. 

Thereby we have shown that in any real four-dimensional met:cic space where 'a co­
variant (or' cont~a~riant) bivector is given one can build up two different bivectors each of 
which possesses ;i certain value of duality. The duality defined in th6 way above is based 
on a possibility to introduc~ special operators with ce~tain transformation properties in any 
real four-dimensional metric space and, thus, the duality can be regarded as an additional 

. symmetry for the bivectors which alleady exists in each.7?.4 • From .the physiCal point of view 
. the concept or' duality allows t~ introduce two sets of qu~tities whlch, differ in the discrete 
(quantum) number connected with the operator of duality in any theory formulated in 7?.4 

' ' " . . ''· . ' 
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and based on a skew-symmetric field (like the electromagnetic field) .. The duality in four­
dimensional spaces is a kind of "parity" _for skew-symmetric tensors. The dual symmetry 

· repres~nts an additional symmetry of any four~dimensional metric space and we should not 
ignore this symmetry in the physical theories formulated in 1?..4. Jn·the next sections we 
apply the results obtained above to the formulation of the covariant Maxwell's equations iri 
1?.4 with arbitrary non-di~gona1ized const~t metric (not oruy in Minkowski's space). 

3 A COVARIANT THREE-VECTOR MODEL FOR 
BIVECTORS IN n 4' 

/ 

As we have shown in the previous section the concept ofduality can be strictiy introduced in 
any four-dimensional ~etric space. Let a skew-symmetric tensor of electromagnetic field s· 
exist in n 4 • ·Besides. this let an arbitrary constant contravariant vector n~ be chosen in the 
considered real four-dimensioital space (n~ = g;~o n~ n~ ·~ n? n~). 6 Now using the constant 
vector n~ , the constant metric tensor 9ik. and the completely skew~symmetric tensor .eijkl 
one can form a (real) vector E'(z) anda (re;u) pseudovector k•(z) fromeach (real) bivedor 
f;;(z). The vecto~sE'(z) and H'(z) have thefollowi~g explicit form: 7 · _· 

E'().· -tiiJ()'" E.(). ·.·E;(·) -t·J,·(.)'i. (26) z = n0 g jk z n0 , • ; z . = 9ii z =. n0 ;; z n0 , 
. I . - . 

Hi( z) = l n01 eiikl f;~o( z) nf , Hi( z). = g;; !fi ( z) = l e:0 n0
1 e;;kl Ji"( z )n~ ; (27) 

The d~finitio~ of vectbrs Ei( z) and Hi( z) is made ih such a way th~t both these vectors 
are perpendicular to the arbitrary constant vector n~ in 1?.4 : · c-

E;(~)n~ ~ H;(x)~~ = 0. . (28) 

'/ 

Two relations in (28) represent two couplings to which the four-dimensional vectors Ei(z) 
and Hi(z) automaticci.lly obey, and, thus~ each of four-component vectors E'(z): and Hi(z). 
has. really three independent components oruy. As a ·result ~f the transformations (26) ·. 
and {27) six independent components of a bivector J;;(z) in 1?.4 . can be substituted by 
three independent components of a four-dimensional vector E'(z) and three independent 
components of a four-dimension;u pseudovector H•(z). . . 

·The explicitform ofthe bivector fpq(z) e:xPressed through the vectors Ei(z) andHi(z) 
can be found ·easily by calculating the expression:. . · . . 

·-c 
eiikiH"(z)n~ = lc5tf fpq(z)n~n~ = nof;;(z) +n? E;(z) -:-n1 E;(z) 

51n this section and further mi we shall use. the tennin~lo.gy from electromagn~tic field theory for. the' 
quantities connected with a bivector in 'R.4 in spite ofthe.fact that we do not cmisidei electromagnetic field 
in real space-time only. . . . . . . 

6 Without loss of any generality the vector nt can be chosen as an unit' vector puttirig n~ = 1. We do not 
use such simplification in order to conserve the homogeneity of all the formulae. . . . · 

7It wonld be more correct to introduce the notation ~ ( "'• n) for electr!cal field and the notation Hi ( "'• n) 
for magnetic field in order to stress the dependence of electrical and magnetic fields on an-arbitrary constant 
four-dimensional vector nt . . ' · . 

i 
.I 
! 

:I . ~ 

where 6f;t = bf oJ[. +c5'J o't[ +Of ofJ1 i~ thegeneralized Kronecker's symbol ofthe third order. 
It is clear that the following (exactly covariant) three-vector model of a covariant hi vector 

f;;( x) in 1?.4 · eXists: 

f;;(x) =n0
1 [E;(x)n1-E;(x)n? +e;;kiH"(z)n~]: (29) 

Note the fact' of the linear dependence-of the bivector f;;(z) ·on the vectors E•(z), H'(z) . 
and n 0

1nt in the model (29) as well as ·the strictly covariant-form ·of this relation. Thus, if 
we want to construct ·a (vector) model for a bivector in 1?.4 correctly based on a set of four­
dimensional vectors conserving the covariant form of all the formulae we have to use three 
vectors in'R-4 : on~ vector is arbitrary constant and two variable vectors ~re perpendicular 

to it. 
As we have mentioned before besides the covariant bivector f;;(z) in 1?.4 one can consider 

the contravariant bivector J'i( x) as well as the so-called "dual" contravariant bivector jii(:c) 
and the so-called. "dual" covariant bivector f;;( X) • These bivectors c~n be expressed in terms 
of the vectors·E~(x), Hi(x) and n~ too. In the end the following relations can be derived: 

J'i(x) =. ,~01 [E•(x) n~ .- Ei(x) nt + e:0 eiikl Hk(z) nf], 

j'i(x) = n 0
1 [Hi(x)n~ -Hi(x)nt + eiikiEk(z)n?], (30) 

J;;(x) = n01 [H;(x) n~ - H;(x) n? + e:0 e;j~o1 E"(x) n~]. 
From. ~he form~lae (30) if is obvi~us. that the transition from. the bivector Jii(:c) to 

the so-called "dual" bivector j'i(x) in terms of the fields E•(x) and Hi(x) means the 

transform~tion: .. 
Ei(x) ..,... Hi(x), .'Hi(x) -'-> e:0 Ei(x). (31) 

The repeated application of the operation '(31) to the formul~e (30) leads to the transforma-

tion of the initial bivectors: · 

j'i(x) ..,... e:o Jii(x), . j'i(x) ..,... e:0 j'i(x). 
I 

To ~each the, initial bivectors ,;;e have to apply the transformations (31) twice more. Such 
transformations of the bivectors in 1?.4 seem to be very complicated and obviously do not 
reflect a "genuine" symmetry in a four-dimensional space. 

1 

• 

Ra~ing the ~xplicit form of a bivedor' Jii(x) and ~o-called "dual" bivector f'i(:c) in 
tenris of the fields Ei( :c) and Hi( x) one can write the explicit form of the"genuine" dual 

bivectors J!1 ( x) . They have the form: ' 
. J 

f ii(i) ·,;, ri-t [F' (x) ni - pi(x) ni ± _1_ eijkl y!:(z) no_] = 
. ± . . o.. ± . o . ± o ,jiO • , k I . . (32) 
= n0

1 N:fn(±) [F±(i) n0 -:- F±(x) n;;'J = 2 n0
1 N:fn(±) F,±(x) n0, 

whe.re we introduced two mutually dual (vector) electromagnetic fields Fi(x) instead of the 
(reat) electrical field E'(z) and the (real) magnetic field Hi(:c) in the following way: 

F,t(x) = l [Ei(z) ± )o' Hi(x)] = ~ N~(±) fpq(:c) n~ = f!1(x) n~. (33) 

·"'-



' 
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As seen from the fon~ulae {32) and {33) the transition J!t(z) --+J;j(z) means the tra~sfor­
mation Fj,{z) ~ F~{z). and vice versa, i.e. the change of duality of primary dual bivedors 
fj(z) induces the dual conjugation in dual vector electromagnetic fields Fj,{z) .. Once more 
we would like to emphasize the exceptional role of the square· root of the discrete invariant 
e;0 • As a matter of fact the square root of sign of th~ determinant of metric in 7?.4 represents 
a. dual unit in the theory. Thereby we have found an application of dual nu.mbers (more 
precisely dual quantities) in a theory formulated in "R.4 • If we consider a·non-diagona.lized . 
metric in 7?.4 the general approach to this space demonstrated here automatically leads to 
the dual quantities. . . . . ..; . ·. • . . . . 

In conclusion of this section we bring the explicit form of the invariants Icb)(J) , Pc(2)(J) . 
and I 0(4)(J) in terms of just introduced_ electrical field Ei( z) and magnetic field Hi( z) as 
well as the dual electromagnetic fields F±( z) . These invariants can be calculated without a 
big effort: . ' ' 

Poc2J(J) ~Ei(z) E;(z)+ e:o H'(z) H;(~) ~ 2 [;i(z) Fl{z) +F~{~) F;'f{z)), 
Pc(2)(J) = 2Ei(z) Jf;(z) = ±2y'i0 [F:i,(z) Fl{z) - F~(z) F;"(z)], 
Io(4)(J) = ~ [Ei(z)E;(z) + e:o Hi(z) H;(:z:) ]2

- e0 [Ei(z)H;(z) ]2 := 

= 4 [F:i,(z) Fl{z) ][!"~(:z:) Fl(z)]. ·· . · 

(34) 

Other inv~riarits which can be constructedfrom.the vectors Ei(z), Hi(z) and Fj,(i) are 
model dependent (i. e. they depend on an arbitrary constant vector nt .iri "R.4 ) and th~refore' 
they have not a real' physical meaning. ' · . · ' · : ... -

Thus, the six-component bivector field in "R.4 can be covariantly described either by means 
of two mutually dual vector electromagnetic fields or by means of a real vector electrical. 
field and a real pseudovector magnetic field which are perpendicular .to an arbitrary. chosen 
constant vector. For the real space-time it means that we are always able to s~bstitute a six­
component skew-s~metric field J;;( z) by means ~f a complex vector electromagnetic fleld 
F;±(z) with the doubled real part equa.I to vector electrical field and the doubled imaginary 
part· equal to pseudovect~r magnetic field which have to fulfil, a. condition of orthogonality·· 
to an arbitrary chosen constant four-dimensional vector nt .. 

4 DUAL SYMMETRY IN 'R4 'AND MAXWELL'S 
' 

EQUATIONS· 

Let us imagine we know (almost) nothing about electromagnetic field in real four~dimensional 
space-time. We shall use cmly the dual symmetry in 7?.4 and some theoretical reasons in 
order to postulate a system of equations for .;, bivector field which then will be analyzed 
and interpreted with regard to the real circumstances in space-time with an electromagnetic 
field. 

Let a real contravariant bivector J'k( z) = - Jki( z) be given in 7?.4 • Thi~ bivector will be 
called the skew-symmetric tensor of electromagnetic field in given four-dimensional space. · 
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We know that in any four-dimensional space with the metric g;1c the so-called "dual" con- · 
travari~nt bivector }ilc( z) and two dual contravariant bivectors J';( z) can be strictly deter­
mined. If we differentiate a bivector Jik(z) in 7?.4 with respect to 2<; we shall always obtain 
a v~ctor. Conseque~tly, the differentiation oftwo dualbivectorsj'f(z) with respectto zi 
leads to two different vectors i.i(z) which we shall call dual cu~rents: . 

. 8;j'f(z) = iHz) (35) 

where the notation a; means th~ differentiation ~ith respect to a coordinate z; in 7?.4 • Now 
we postulate two equations (35) as the fundamental equations for a six-component skew­
symmetric tensor .field in "R.4 • Note that further differentiation of the equations {35)' with 
respect to zk gives zero identically inasmuch the differential operator 8;81c and_ bivectors 
j'f(z) have the different permutation symmetry. Therefore we have two local conservation 
laws for the dual currents: 

8~ci4(z) = 0 (36) 

which m~ans that. the dual currents /±:( 2:) fulfil the equations of continuity automatically. 
It is known a bivector i~ "R.4 has six independent components and, thus, for a determination 
of such bi~ector we need six independent, equations. The system ofeight equations (35) and 
two coupling's (36) represents a set of completely c~nsistent conditions: for determination of 
a bivector in "R.4 • · ~ · .· · . , . . , · . . 

· Ifwe now apply the covariant modelfor the bivectors J';(z) intr~duced earlier .which 
operates with the twodualvector elect~omagnetic fields Fj,{ z) the system of equations (35) 
'can be rewritten in the form: . 

·I .· . 
n-1 n; 8 FP(z) -8 pi (z). ::r:: -··-1- n-1 eipqr n° a F±(z) ~ ;·; (z) (37) 

0 0 p ± 0 ± T re;:- 0 . : p q r ± 
• . • • 'yvO ·' 

0 ' ' ' • • • •' ' H C ' • ~ ', r• 

where we introduced a notation ao for differentiation with respect to z,i along the direction 
n~: ao = n0

1 (n~ Bp)· Multiplying both sides ~f equations (37) by th~ covariant vector n? 
and ~aking account of the relation of orthogonality of veCtors n~ and Fj,( z) we immediately 
find two eq~atioris: · . ; . 

BpFi(z) = p~(z) · (38) 

where we introduced two inv~riantqmmtities ~~(z) = ~01}1{z)n? w~ichcan be r~garded 
as the (scalar) densities of dual charges. Note two equations (38) are :a direct consequence 
of the equations (37) and they expres.s the fact that' the 4-divergen~~ of the dual vector 
electromagnetic fields Fj,( z) equals to the density of dt;al charges. Usi¥g the equations (38) 
we elm rewrite the equations (37) in a slightly different form: ! 

BoF:i:(z) ±Fa ~iJ1 gip epq .. n~ a· FJ(z) = -ji{z) + niJ1 ~~(z) nt. (39) 
·. . . . ·. . I . 

Now a contraction ofboth si~es of equations (39) with the covariant vector nf gives an 
identity (i. e. it defines densities of dual charges). We can consider [eight equations (39) 
togeth~r with two equations (couplings) _(38) a covariant system of Mfcwell's.equations for 
two dual vector ele~tromagnetic fields F±(z) based on the dual symm~try in 7?.4 ~ 
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Taking h~lf of the sum and. difference of two equations (39} as well as two eqilations (38} 
we can write Maxwell's equations as a system of eight covariant equations for a real four-· 
dimensional electrical field Ei( x j. and a real fo~r-dimension~l magnetic field Hi( x) with two 

couplings: · 

80 Ei(x)+ n01 eipq•n~89H,(x) 
= -:-~ [i~(x) +j~(x)l + 

Fa .[aoHi(x) +eon01 eipq•n~89E,(x) · .= 
= ~ [ii(x) - j~(x) J + 

8;fJi( X) 
.,re;a;Hi(~) 

1 -1 
2 no [Pt(x) + p0(x)] n~, 

1 -1 [ +c > . - c > 1 i 2 no Po x -:- Po x no , 
~ (pt{x) + p0(x)] ," . 

~ [Pt(x) - piJ(x)] . 

. (40) 

If in lieu or' dual currents ii(x) and densities of dual charges p~(x) we introduce (real). 
electrical current ilei(x), (real) magnetic current itm)(x), (real) density of electric~l charges 

p~·l(x) and (real) density of. magnetic charges p~ml(x) in the system of equations ( 40) by 

means of the followi~g simple relations: · ' · 

' il.)(x)· =! [iHx) +j~(x)], 
yeo ilm)(x} ~ ~ [i~(x) - j~(x)], 

P~·lcx) =! 

Fa P~m)(x) = ~ 
[P:(x) + p~- (x)], 
~o (X) - Po (X)] ; 

we obtain M~well's equations in coVariant form with the real q\lantitiesonly: 

. 80 Ei(x) + n01 eipq• n~ 89H,(x) 
8;Ei(x) 

8oHi(x) + E:o ni)1 eipq• n~ BqE.(x) 

8;Hi(x) 

· · ) 1 (e) "· · ' · 
= -i(.J(x +no Po (x)n0, 
= p~•'(x), • ' " 

•i • { } . + -1 (m)( ), . i 
. J(m) x no Po x no , 

· ;/ p~ml(x). 

(41) 

Thus, the set of covariant Maxwell's equations (35) and (36) for .two dual bivector fields 
ff(x) in 7?} is equivalent to eight covariant equations ( 41) for a 'real four-dimeu'sional vector 
electrical field Ei( x) which 4-divergence is equal to density of electrical charges ~nd a real 
four-dimensional pseudovector magnetic field Hi(x) which 4-divergenceis equal to density of 
magnetic charges. We would like to note thr~e important features of the Maxwell's equations 
in the form ( 41 ). First, it is a completely covariantform ofthese equations obviously invariant 

. under transformations conserving the constant metric tenso:.: 9ik. in 'R-
4 

, i. e. under the six~ 
parametrical tr~nsformations with transformation matrix ti(u) which fulfills the conditions: 

gpq = t~(u) t;(u) 9ik; to(u) = det I ti(u) I = ±1, 

where an argument u stands for a set of six group parameters of proper continuous group.· 
Second, the covariance of the Maxwell's equations in the dual vector form (39) and in real 
two-vector form {41) can be reached by a cost of the introduCtion of an arbitrary constant 
vector n~ which determines ~ fixed direction in:'R-4

• In general, dual currents ji(x) are 
the fmir-dimensional vectors and the densities of dual charges represent a scalar product 

,_.14 
"' ... 

~ ., 
~ . 

of dual currents and an arbitr~ry constant vector in 'R-4 • These densities are the invariant 
quantities which represent no fourth components of appropriate dual currents. Third, on the 
right side of the Maxwell's equations in a covariant form (41) besides the electrical currents 
and charges the magnetic currents and charges present. The presence of magnetic currents 
and charges in the equations ( 41) is directly due to a possibility to introduce the dual tensors 

. of electromagnetic field with different dualities in 'R-4 • ' . ' 

If now we consider real space-time 8 the Maxwell's equations in the form (41) with 
e0 = -i represent 'a covariant form of Maxwell's equations based on the dual symme­

. try in Minkowski's space. In additi~n, if we even fix the ar~itrary constant vector n~ along 
the time-axis, i. e. we choose it as a unit vector in space-time in the form (0, 0, 0, 1), we 
lose 4-covariance ofthese equations since we p'ass in 'R-4 to thre~-dimensional quantities and 
receive the MaxweU's equations which are close to usual Maxwell's equations . In the end 
wefind.fori =a (a,f3,"f = l,2,3; e"'/37 =: e"'/374 ; eap7 = -e"'P7;E"'(x) = £"'(z,t) = 
-£ .. (z,t); H"'(x) = 1i"'(z,t) = -1ia(z,t)) a system of (non-cov'ariant) equations: 

c()18t£~(z, t) ·- (;afh 8111i..,(~. t) 
, · a .. £.;,(z,t) 

c()1 8t1i"'(~;t) +e"'P7 a11't:,(z,t) 

a .. 1i~(z,t) 

:-ifl(z~ t), 
Po· (z,t)' . 

i(;,.J(z, t), 
(m)(~ t) . . .Po x, , 

(42) 

. and, fori= 4, we have two additionahelations-~hich determine the densities of electrical 
and magnetic. charges as the forth components of appropriate currents: 

•4 · c~ t·.> - <·lc~·t> · ·4 .-.<· ~ t> ·_ <,.;Jc· ~ t) · 
1(e) x, . =Po, x, ' . 1(m) x, = Po x, • . 

From the form~ae (42) we see that we hav~ derived slightly different system of Maxwell's 
equations in co~parison with the usual sy~tem of Maxwell's equations (1). This· differ­
ence consi~ts in the presence of magnetic curr~nt i(;..)(z, t) and density of magnetic charge 

p~ml(z, t) if the du~l currentsj~(z: t). and j~(z, t)· are not identically equal. The Maxwell's 
equations with magnetic currents and charges in''the form (42) can be met ~n literature 
devoted to the problem of symmetry of Maxwell's equations under the change of electrical 
and magnetic items (fields, currents arid charges) whatleads to a hypothesis of magnetic 
monopole [14]. Deriving the Maxwell's equations i~ 'R-4 on the base of dual symmetry we 
have transparently shown that if a magnetic monop'ole exists in the nature then its existence 
i~ due to dual symmetry of real space-time understood in the sense of this paper. 

We return again:to the system of general Maxwell's equations (41) in order to derive 
still fe~ known formulae in a covariant form. ·As a matter of principle having the Maxwell's 
equations in symmetric~ covariant form ( 41). one can take a. handbook of electromagnetic 
field theory and try to rewrite large majority of formulae. where electrical and magnetic 
fields ar~· present~d in the more "symmetrical" form. Here we show o~ljr an explicit· form 
of the energy-momentum tensor of electromagnetic field expressed in terms of electrical and 

8 We suppose the diagonalization of the metric tensor gil for space-time is carried out in such a way that 
the signature of four-dimensional space'is {-1,-1,-1,+1), c0 = -1, :c4 = c0 t. · 
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magnetic fields. Multiplying the first relation in.(41) by E;(x) and ihe third one by e:0. H;(x) 
a conservation law can be found: · 

80 t"o(x) -eo 8;P•(:) ='= -i[.)(x) E;(x) +'ilml(x)H;(x) · {43) 

where the so-called densi~y of energy of electromagnetic field t"o(x) as an invariant was in~ 
traduced: 

tO(x) =! [Ei(x) E;(x) -:- E:o H•(x) H;(x) 1 = 2FJ:{x) F;'f(x) .(44) 

as well as Poynting's vect~r ofelectro~agnetic field P•(x) as a four-dimensional vector in 
1?.4 which is perpendicular tri vectors. n~ ,· E•(xJ and H•(x) wasdefined: . ·· .. 

P i( ) -1 ipqT' o E ( ) H. ( ) - :~::· 1 ~ -1 ipqT' o FT( ) p±( ) . X =no e np qX rX = iE:oy.E:ono,e.: np q X. r X. . {45) 

The square of Poynting's vector P~(x) is ~n i~variant too and it can be easil; calculated. 
The following result can be obtaimid: · · 

P~(x) = gu, p•(x)Pk(x) =eo { [E'{:z:) E;{x) 1 [H•(x) H;{:z:) 1- [E•(:z:) H;(x) 12 
}. · 

• ~, I 

By means of just introduced density.of e~ergy of electromagnetic field {44) a~d four-· 
dimensional Poynting'_s vector( 45) the invariant of the fourth order I 0c4){!) can be rewritten· 
in an attractive form: · . . . . . . . ' · . · 

1'0(4){!) =£~{x)+P'(x)P;{:z:). · {46) 

. We have clarified that the vectors of electrical and magnetic fields ·are model dependent 
·. quantities and thus the invariant ( 44) being the density of energy of electromagnetic field 

is model dependent, too, since it can not be expressed in terms of the invariants ofthe 
second rank Pac2){f) and T;(2){f) .. On the other hand, the dimensionality _o( the in\rariant 
of the fourth order (46) is square of the density of energY of electromagnetic field and it is 
model independent. Therefore we cim ~ccept a quantity e0 ( :z:) which is equal sq~are r<?ot of. 
invariant I

0
(
4
){f) : · · · · · '' " · · 

. •. eo{:z:) = Vt"J(:z:)+P•(:z:)_P;(:z:) (47) 

in the capacity-of suitable density of energy of electromagnetic field which can really be 
measured. We would like note that in the.case £~(x) :::P P~{:z:) the. relation {47) is reduced 
to the usua.lly accepted expression for the density of energy of electromagnetic field ( 44). · 

As it is known the traceless symmetrical contravariant energy-momentum tensor of elec­
tro'magnetic field Tik(J) which.'can be expressed in terms of a skew-symmetric tensor of 
electromag~etic field fpq(x) has the form [91: · 

Tik(/) = ...,. [f'P(x) gpq Jqk(;) +! IJ(2)(J) g'k], gpq Tpq(f) := 0. . (48) . 

Using three-vector model for the tensor electromagnetic field jii(:z:) from previous sections 
the energycmomentum tensor Tik(J) can be easily rewritten in a covariant form in terms of 
electrical and magnetic fields: . . . . . , . 

Tik(J) = E•(x) Ek(x) - e:0 H•(x) Hk(x)-
-E:o n;1 [n~ pk(x) + n~ pi(:z:)]-: t"o(x)(gik - 2n;2n~ n~ ). {49) 

... I 
~-· 

' \ 

If we calculate the determinant of the contravariant matrix ( 49) we find the simple relation: 
. . 

To(!) = det I Tik(J) I = I~(4){f) . · 
• ' r 

(50) 

On the base of the·relation ·(50) we ar~ able to give another interpretation of the in~riant 
of the fo~rthorder introduced in (11). This invariant is equal to the determinant of the 
energy-momentum tensor of electromagnetic field Tik(J) . The relation {50) gives a warrant 
to consider the quaniity ( 4 7) as a density of energy of electromagnetic field. It is int~resting 
to calculate a~ inverse {covariant) tensor 'ii~c{f) to the tensor of energy-momentum of elec­
tromagnetic field Tik(J) . This inverse tensor can be obtained af~er not very. complicated 
calculations: 

'ii~e{f) = [:ro(4){f) r1 
{ E;(:z:) E~e(:z:) :_eo H;(:z:) H~c(:z:)- . 

-eo n01 [n? P~e(i) + n~ P;(:z:) 1- t"o(x) (gilc - 2n02n? n~)} := 

=- [:ro(4)u> r~ [f•p<x> gpq Jq"<x> :t-! Pac2M> g.,. I. . ._ . -

(51) 

· One can check easily that the inverse tens9r 'ii;(f) really fulfills a relation of o~thogonality: 
'ii~e(f) Ti"(J) = 5f . 9 . Note an interesting relation between these tensors: 

'ti~c{f) = [:ro(4><J) r1 
g;p 9/cq Tpq(f) = [Ioc4>{f) r

1

'n~{f), 
Tik(J) = Io(~){f) giP lq Tpq(!) ,;, Io(4){f) 'fi"(J) , / 

which is an example of the fact that the raising or lowering the indices of a t~nsor by means 
.of metric tensor and by ~ea~s of completely antisymmetricai tensors are not quite equivalent .. 
operations. , ; · · . ' 

We will not continue with listing the- covariant formulae which can be written on. the 
base of the covariant three-vector model of the bivector of electroniag~etic field in 'R-4 • We 
would only like to stress that a gen~ral appro~ch to the four~dimens1onal spaces allows a 
new approach to many ~ld and well-known physical problems. We ~ust not reject such an 
approach only because of its mathematical base which at present does not provide enough 
physi~l eff~cts and results. Our real physical world is only one of the manifold .of abstract 
mathematical worlds. 

5 CONCLUDING REMARKS 

We will discuss shortly the obtained result~. First; we have shown that a special symmetry 
exists.for skew-sYm.metnc tensors in any four-dimensional metric spac;e which is connected 
with the concept of duality. In each four-dimensional· metric space an operator of duality 
can- be. strictly mathematica.lly introduced and two different dual bi~ector fields. with the 
different dualities· which are determined as the eigenvalues of the oper~tor of duality ca~ be 

9The orthogonality of tensors Tj1(!) and T;1(!) expressed by means of tensors of electromagnetic field 
'J'k(z) and /;k(z) .. can be checked directly, too, if we use the Hamilton-Cayley's eq'!-ation (10) for a bivector 
fuW~~- ' 
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built up from any real bivector field. The duality can be regarded as a kind of "higher" or 
"internal" symmetry in any 7<.4 • In general, from the theoretical point of view we cannot and 
should not ignore the dual sym~etry in the physical theories formulated in four-dimensional 
spaces. Proceeding from the dual symmetry in 7<.4 on~ can write the Maxwell's equations 
in a four-dimensional space with arbitrary signature. These· Maxwell's equations· can be 
formulated too in another equivalent form co~nected with the existence of a covariant three­
vector model for the six-component bivector in four-dimensional-space. For the description 
of a bivedor (electromagnetic) field in 7<.4 we can use either dual vecto~ electromagnetic_ 
fields or a vector electrical field aird a pseudovect~r magnetic field together with an arbitrary 
constant vector. We have shown that the equations first written by J. C .. Maxwell represent 
only one possibility from a nu"wber of covari~nt equation~ which can be._derived _in 7<.4 • 

Nevertheless, the Maxwell's equations are true as before;·however,·there are no reasons to 
fix the four-dimensional constant ~ector along the time axis. The act~al role of an arbitrary. 
constant (unit) vector which was introduced into theory is not quite clear. This vector is··, 

. constant' in respect to electromagnetic field but it possibly "can be fixed by means of other 
physical conditions introduced into a theory formulated in n~. It should be stressed that . 
from this point of view the electrical a~d magnetic fields, as well' as some other' quantities 
(like Poynting's vector) are secondary quantities (concepts) which are model dependent what 
proves their dependence on aD: arbitrary constant four-dimensional vector determining a fixed 
direction in 7<.4 • Thus, the vector electrical and magnetic fields have an auxiliary sense only. 
Really measured quantities can be only the invariants built- up from the primary bivectors 
(which can be expressed, of course, in terms of the components of the dualbivectors or the 
electrical and magnetic fields) and not all the invariants which can be built up from electrical 
and magnetic fields· are really measurable .. We would like to· emphasize a methodological 
aspect of applied method of consid~ration offour-dimensional spaces. The unified approach 
to different four-dimensi~nal spaces allows to use strictly the tensor calcul~s from the very 
beginning up to the final results. In addition, such approach gives a possibility to discover 
new connections between quantities which do not seem to be linked (like the connection 
between the square root of sign of determinant of a metric i~ 7<.4 and a dual unit). The 
simultaneous consideration of fo~r~dimensional spaces with.different signatures leads to the 
field of dual numbers and allows to introduce the dual qu?-ntities into theory in a very natural 
way. It is qUite probable that the dual numbers pl~y more sign:ific~t role in physics then we 
suppose· nowadays. Perhaps all this article could seem too techrucal or even formal, which is 
true in a sense, howe~er without overconiing ~orne technical problems· we .will' never be able 
to construct a more general theory then current theories. We should not be indifferent to the 
chos~n xiiathem~tical method sine~ differeitt. mathematical methods are not quite equivalent 
from the point of vi~w of their rel~tiori .. to the general'theory ~s· well as'physical reality. . 

At this p~int everybody who has read this. article will 'expect a plentiful discus~ion of 
physical-consequences of the formUlation of theMaxw~ll's equations based ~n the concept 
of duality in 7<.4 ~. Actually eno;mo~s number 'cif questi~ns can b~ raised. Especially, one can 
lookfor the reasons why the dual currentsj~(:z:) andj~(:z:) have to be equal quantities in real 
space-time-in order to obtain the usual Maxwell's equations (~thout ~agrietic ·cur.rents:~nd. 
charges) or what consequences follow for the existence of a magl!-etic monopole in-~onnection 
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with 'the dual symmetry' of space-time understood in the sense of this article. However, 
· at the present stage we are not to be able to answer to arisen problems correctly. ·If we 
propose that dual currents j~(:z:) an~ j~(:z:) in real space-time are identically equal we 
_have to find an additional symmetry which causes this equality. We are not able to show 
. such additional.symmetry at present. If the difference of dual cu·rrents j~(:z:) and j~(:z:) is 
1 small (almost negligible) we shoUld show the order of this difference which is impossible to 
be done without the 'consideration of geometry of group space of an appropriate group of 
transformations where the dual symmetry can be completely realized. Thus, in connection to 
this we avoid raising ~f abundant discussion about three-vector covariant form of Maxwell's 
equations here considered since it is probably still early. First of all we wanted to show 
a mathematical possibility of a co.:ariant formulation of Maxwell's equations in any four­
dimensional metric space. Up to this point we have used no physics in deduction of obtained 
equations, no experimental facts for ihe formulation ~f the Maxwell's equations with ·the 
dual symmetry:. The primary base of all reasoning~ was symmetry and tensor calculus and 
ihe only criteriiln, of corre~tn,ess of all the formulae was a "mathematical beauty'~. We would 

.not like to break this criterion introducing the physical proposals into particular theory since 
we have equally regarded real·space-time (Minkowski's space) with other four-dimensional 
.Euclidean:· and 'pseudo-Euclidean spaces which differ by a set of topologically sig~ificant 
invariants. We did not co~cern another possibility of the use of the dual symmetry in 7<.4 

here: Namely, it is necessary to consider the geometry of group space of a sixcparametrical 
gr~u·p oftransformations of an arbitrary four-dimensional homogeneous quadric as well as the' 
geometry .of ,group space' of a ten~parametrical group of in variance of an interval (square of 

. distance between two points) in'R.4 . (a generalized Poincare group in'R.4 with any signature) 
'where the· .answers to many key questions are hidden. We would like to pay attention to 
the fact that. the large majority of group spaces is not point-like manifolds. where a point 
i~ determined by a contravariant vector. The g~oup parameter~ of most continuous groups 
stand for tensors which represent differentgeometrical objects. The simplest generalization 
of the vect_or are multi vectors. and it seems we do not fully realize 'the role of multivectors 
(especially bivecto-rs} in physi~al theories at present. All these questions merit a separate ' 
con~ideration because the problems are essential and rather complicated .. Several papers 
devoted-to the geometry of ~he group spaces of some physically interesting continuous groups 
operating in the four-dimensional spaces will be published before long elsewhere. On the base 
of the results concerning geometry of group spaces in 7<.4 we shall returri to the discussion of . 
'the system of Maxwell's equations with th~ dual sym~etry in the f~rms (35), {39) and {41). 
After this we will b~. able to·predict some physically measurable effects or at least to give a 
;ecipe where to search such effects. We are firmly con~inced that the duality defined in this 
paper by means of a strictly determined operator in 7<.4 will have a rich physical meaning. 
Duality is an addi~icmal s_ymmet..:y ip eaeh four:dimensional metric space and we have t~ 

.... ~ake·aeco)j-nt.of-ihls ~a co~:&ervi~g !'good .quan~UJll number" for·appropriate skew-symmetric 
-~ .·.:: · qu~tities~: A:t the piesent levt{6f inve~tigat.i?ns :we sJ!ould be content with a possibility to 

·- _;.rewrite all th~: handb(}oks of electromagnetic' field theor-y· in a slightly more "symmetrical" 
--(covariant) fC3rm. .. ... · . . .- · ' . 
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