


1 INTRODUCTION

‘ leferent four-drmensxona.l metric spa.ces are of grea.t 1mportance in theoretlcal physlcs The
real: physlcal processes occur in: four-dimensional space-time and- therefore, naturally; the
most important physical theories - special and general theory of relativity and electromag-

- netic field theory - use: Minskowski’s space as a fundamental four-dimensional manifold for

" the description of physical phenomena. The four-dimensional Etclidean space has an appro-
_priate place in theoretical physics, too, since €. g. the hidden symmetry of threevdrmensrona.l ‘
hydrogen atom is connected with this space [1]. i S e .

It is impossible to i imagine a description of the physlca.l rea.hty Wlthout the rntroductlon

~.of a coordinate system in a space of-certain dimensionality. An’ mvanant introduction of

a coordmate system into a manifold is a really very essential problem. We know that a
g descnptxon of physical reality cannot (and must not) depend on the chosen coordinate system

" but we'do not always realize an elementary fact that each mtroductron of a-coordinate

:»system within given space means the introduction of a symmetry into a problem a.lthough R

- . the connection of different coordinate’ systems W1th an appropriate symmetry is well-known :
and qmte a number of investigations devoted to this topic:is carried ot at present (e. g

" [2]). ‘Among the different coordinate systems an exceptlona.l tole belongs to the orthogonal
~systems of coordinates the skll.lful application of which substantially simplifies the solution-
- of ‘most particular- physical problems. The orthogonalization (generally diagonalization)
" of different quantities in physics ‘has not only advantages but ‘at: least also one"essential

drawback. Each diagonalization means simultaneously a transition mto particular coordinate - - -

~system: (or bas1s) and, thus, the operation: contra.dlcts a (w1dely understood) principle of
o5 relat1v1ty in a manifold. We are going to showin tlus paper an advantage of an approach when®
*_we do not diagonalize a constant metric tensor in the four-dimensional space from the very
- beginning but when we carry out its dlagona.hza.tlon in the ﬁnal formulae. If the symmetry of
a physical problem is obvious and known or can be obtained on the basis of an analysis of this

problem by means of exact mathematical methods and techniques it is the first step to its

- successful solution.: If the symmetry of the problem under consideration is unknown we still -

‘use'a coordmate system for descnptlon of the different physrca.l items.! In this case we very o

. often'solve a problem which has one type of symmetry by means of a coordmate system with

quite a different kind of symmetry, and naturally, we meet insuperable dlfﬁcultres Therefore - S

it is extremely important to find out a symmetry of the problem. before an introduction of-

" any coordrnate :system within a spa.ce From this point of view it is till more important

to discover all the possible symmetrxes of a space in which we ha.ve entered no coordinate -
fjsystems (perhaps except an affine’ coordinate system) Such symmetnes are mherent to the .
-space itself and we have to take account of them from the very begmmng, i. e. before the -

consideration of the symmetry connected with the tra.nsformatlon of the chosen coordinate

. ~-system._Such symmetries exist at least for certain spaces. A separate paper ‘will be soon
devoted to an invariant introduction of a coordma.te system in'three- a.nd four-dimensional -
- ’metnc spaces with arbitrary signature. In this paper we would like to pay attentlon to'the’

symmetry of four-drmensxonal metnc spaces which exists rndependent of the presence ¢ of a
coordlnate system .
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All the real even- drmensronal metnc spaces possess an addrtronal symmetry for the mul- p

tivectors a rank of which equals to half of the dimensionality of the given space. Here we

shall concern such a symmetry for antlsymmetnca.l doubly contravariant or doubly covari-: -
ant tensors (so-called bivectors) in real four-dimensional spaces. ‘This symmetry is known in ~

physrcs as the dual symmetry or, simply, the duality. The term “duality” can be only seldom

met in theories formulated in a four-dimensional. space and it should be noted that’ many o
physicists do not give proper consideration to this kind of symmetry By the way, the most
famous monographs on ﬁeld theory do not even mentron a concept of duahty in space—trme‘

(e- g-[3])-

All the four-drmensronal metric spaces have a! specrﬁc feature connected W1th the pos— .
sibility to introduce the concept of duality in these spaces. Note should be taken the fact -
that the concept of duality introduced in the articles. and-monographs is rather formal and"

different (e. g. [4]): It is connected with specific aims' -which a particular physical problem

brings in the process of its solution as well as ‘with not fully understanding the duality in -
four-dimensional spaces. Here we will give no attempt at’ comparing different deterrmnatrons
of the duahty in physics. At the end of this article it will be clear why it has no sense to do
so. Maybe from the methodologlcal point of v1ew the best  way to start an mvestrgatlon of
duality in the even-dimensional metric spaces is to consider the symmetry in two-dimensional -,
spaces.- However, the two-dimensional spaces seem to be rather simple and no theory of real X :

physrcal meaning can be constructed there. We would like only to.note that the existence

of spinors in two- dimensional spaces is directly due to the dual symmetry of these spaces.”,
We prefer to begin the study of duality in four- dlmensmnal spaces first of.all in connectlon:
with an existence of a suitable physical theory based on ‘a skew-symmetric. tensor -of the: =
second rank to which the dual symmetry can be apphed Such theory is a well-known theory' -
of electromagnetic field in real space-time which uses the skew—symmetrlc tensor of electro-) v
magnetic field as a fundamental mathematrca.l ob_]ect for the descnptlon of electromagnetlc :

phenomena in nature, . - : 5 : : : :
- The modern theoretical physrcs ca.nnot e)ust w1thout the system of Ma.xwel.l’s equatrons

for electromagnetic field which was formulated by.their author.more then a hundred years .
ago (exactly in 1861, [5]). These equations originated as a result of the careful analysis and -
generalization of many experimental facts. They first of all generalized the Faraday’s inves- . -
txgatrons We shall use here the Maxwell’s equatrons for a three-dimensional electrical field.
£(Z,t)and a three-dimensional. ‘magnetic field H(Z, t)in the presence of electrrcal currents

](:c t) and electncal charges with.the density po(:: t) in the form
: rot'H(a: t) —-‘co‘a, (:c t) '\ (z t),: IR R
e R dva(z t)/'ﬁ'po(ap:‘t),gk“_ R
rotS(c ) +elaH(EY) = 0,
LT drv'H(z t) = 0, PR

R

Where co is velocrty of hght in vacuum: and 6, is denvatlve w1th respect to trme coordrnate :

Equations (1) are assumed t6.be always true in physies.; . ..

.Besides a number of appllcatlons of the MaxWell’s equatrons in physics and technology

the umque dxstmctlon of them is; the1r r1ch symmetryrto which. has been paid; attentlon

o

by many mathematrcrans and theoretlcal physrcrsts a long time. ago. Already Heaviside ~
“observed a symmietry of the Maxwell’s: equatrons in vacuum ( (z t) = 0 pa(z t) )

under a substltutlon 6]:

(::: t) - :I:'H(a: t), 4 (z t) - 428(:: t)

The generahzatlon of this symmetry to one-parametncal transformatrons of the type

e

S(a: t) : icos9£(::: t) + smﬂ'H(a: t),
- H(Z, t) - —srnBS(z t) + cosB'H(:c ),

" has been dlscovered by Rarmch and Larmor {7] However the most mterestmg symmetr v of
‘the Maxwell’s equations is their i invariance under the Lorentz transformatrons if we conslder ’
“time ¢ and three-dimensional Euclidean space in whxch a pomt is determined by the vector

Z as one four-dimensional manifold [8]. The Lorentz invariance of the Maxwell’s equatronsy‘

_can be demonstrated in a better way if we rewrite the Maxwell’s equatlons (1) through a
7 skew- -symmetric tensor of the electromagnetlc field Fi*(Z,t) = —F*(Z,t) the components :
o ;,:jof which can be expressed by means of a three—dlmenswnal (vector) electrical field S(z t)and

a three—drmensronal (pseudovector) magnetic ﬁeld H(Z,t) on the base of a correspondence -

(z, =1,2,3,4 zt = cat,: dlagonahzed metric of space—txmeg,k ._( -1, —-1 =1,+1)):

'U:JV fa b

Bl U iz gyftg gﬁzt; fjfﬁ‘
g zt S0 =H(E, HER e
2 ]:’(zht) = HZ(z t) = ) : 0 T 83(1: t) 4’4' (2) .

*f“=t>:—€%5t> =B 0

S el 1f we deﬁne six components of the tensor of electromagnetrc ﬁela .7:"‘(::: t) in'the followrng‘f .
F:‘ way (gaﬁ _( 1 _1 ""1)7 { 1ﬁv77 . 1 2 3) :

f""(= t) *e""’gmﬁ(z t), fﬂ(z :)-— sa( , ) ”

- “where e“"" is three drmensronal completely antrsymmetrlc contravarrant tensor wrth compo-f

nents equal to 1-or —1 depending on the par1ty of the permutatlon of its'indices or to 0 if its

‘two or more indices are coincided. In the previous formitlae we have accepted the convention
‘about summation through the identical upper (contravarrant) and lower:(covariant) greek -
“indices from'1 to 3:In further formulae the summation through identical latin indices will -

be always implied ‘from 1 to~ 4. Note that the operatlon of correspondence (2) between a

“‘bivector in four- d1mensxonal space-time and two three-dimensional vectors of electrrcal and
g ‘magnetre fields'is a strongly non-covariant transformatron

It is;a generally known, fact that by means of the correspondence (2) the Ma.xwell’
equatrons (1) canbe: rewrltten in an: equlvalent and covarrant form (e 8- [9]) Ao .

2t),. aP"( 1) =0 o (3)"
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where .7-'"(1: t) is" so-called “dual” tensor of the electromagnetrc field ! whichis usually:
defined by .means of a’ completely antisymetric tensor of the fourth rank e (whlch is
deﬁned analogously to ‘the completely a.ntxsymmetnca.l tensor in three-djmenslonal spa.ce) in W

the followmg way: ‘ : RN
]:u(z t) =1 ex.ﬂcl glm. gzn-’F’" (1: t) o . ; (4)

There is another type of symmetry of the Maxwell’s equa.tlons wluch is connected with =

the conformal transformations im spa.ce-txme [10] We are not gomg to consider here all the
known kinds of symmetry of the Maxwell's equatxons .
devoted to this problem (e. g. [11]). Nevertheless in this paper. we shall rega.rd a kind of

symmetry of Maxwell's equations which is connected with the’ concept of duality in four- =
dimensional metric spaces. Stnctly speakmg, based on ‘the exact definition of duahty asa "
constant operator we shall derive the Maxwell’s equa.tlons in‘a cova.rla.nt form 1n the four- “ e

dlmenslonal space mth an a.rbltrary sxgnature

2 A CONCEPT OF DUALITY IN FOUR-DIMEN—'N

SIONAL METRIC SPACES

In this section we shall try to exclude any. arbltranness in the deﬁmtlon of duahty insofar

as we shall define the duahty by’ means of an operator which alwa.ys e)usts in-each four- :

dimensional metric space In order to- use_ the tensor, calculus widely we can not restrict

our considerations to a particular four-dlmensxonal space like the Minkowski’s space which-
is extremely xnterestmg from the p01nt of ma.ny phys:ca.l applications." Genera]ly, we shall -
regarda real four-dxmensxonal space 'R_4 in which an arbitrary constant covariant’ symmet-
a.nd where a point in an affine coordma.te system
is determined by a contravariant vectorz® (i ‘= 1,2,3 ,4). At thls stage we shall not be =~
The time coordma.te :
can be introduced in the final formulae puttmg e. gzt = co t. We' shall not even suppose -

-rical metric tensor g, = gi; is given
interested in the presence of time in the set of four coordlna.tes z

that the metric tensor g;x has a diagonalized form. It can always be done since the diag-
onalization of a real symmeirical matrix is a well-known procedure in algebra.” We would

like to stress that it is extremely effective if the operation of dla.gonahza.tlon is carried out
in the final formulae. We only suppose ‘that the metnc tensor gi is not singular, i. e. the " K
determinant g, of the metric matrix g;;: is not equal to zero (go = det |'gix | #£0). We shall =
strictly distinguish the upper (contravariant) and lower (covariant) indices of all the quanti-
ties which will appear in the following formulae. In addition, throughout this paper we shall

successively mark any invariant or constant quantity. by means of an ‘index. ¢ naught” whlch
can be placed up or down depending on the free spot at a tensor qua.nt:ty (e g- n0 mea.ns a

1We have written the word “dual” in this sentence in quotatlon marks It was especxally done and we call :

a tensor of the type determined in (4) as a so-called “dual” tensor of the electromagnetic field throughout the -

whole this paper. It is due to a possibility to introduce the dua.hty in four-drmenslonal spaces as a strictly

defined operator what will be carried out in the next section. After such new definition of dua.hty we shall g

be :ble to construct the skew-symmetric tensors with certain value of the duality.
As a matter of fact the restriction of metric tensor o be constant is not obligatory. -~

There are monographs especially -

-

: mvanants of the same order we shall number them by numerals'1,2,"

constant contravarxant vector, n? is a covariant. consta.nt vector) If we have two (or more) ;

. as a contravariant ’
vector in an abstract space (ina mamfold) and an order of mvarxants will be placed into
parenthesis next to the index “naught”(e. g. Iy f) and 13(,)( f) are two different invariants

. of the second order which can be constructed from a tensor quantity “f”). Furthermore, the
. invariant expressions will be often located i in’parenthesis or square brackets. Wlthout any

misunderstanding the (scalar) quantities with the index “naught” can be raised to power.
Thus, all the formulae of this article will have strictly tensor form and they will consist of

‘ dlﬂ'erent invariants and tensors of different ranks. We suppose a reader is acquainted with
the tensor calculus and theory of 1nva.nants even though in the scope of the presently already ) ’

classical monographs [12].- ,
The square of distance I3(<, y) between two points W1th the aﬂine coordma.tes :c a.nd ¥
in 'R_“\ is deterrmned by means of a usual way : : : :

lé(z,y)—g,k (= — )(z v ) i : (7"")

LI we cons1der an a.rbltra.ry centered affine tra.nsformatlon (a.n aﬂinor) .A 1n"'R_“" which -
- changes the coordmates of that space in the followmg way: o RN
=Aw,~ A?,Awi—& A ®H#1#0 - (6).

, 'where .A" is an inverse affinor to the affinor .A’ then the metnC g.k changes as a doubly
: cova.nant tensor a.ccordmg to the formula.e ~ T

g:k—Al’Akgpq’ gpq “A' A"g,k, " 9o :A(z,g(', AT (7)

, "It s obwous tha.t the square of dxsta.nce between two pomts inR* wntten in the form (5)"

isan (a.bsolute) invariant. The determmant of a mattix is always an (rela.tlve) invariant as
E well Moreover, the quantity o ‘which equals to the sign of the determlnant of metrxc tensor.
g conserves under the transformatlons (6) since the followmg rela.tlon takes pla.ce

; b k:' B ’k .
Eo—-golgol =g A} |90A(21l _golgol €. ! o : ®

Thus any tra.nsformatlon in 'R_4 (1nclud1ng a dla.gonahza.tlon of g,k ) cannot cha.nge the sign

of determinant of a ‘metric of given space ‘and o Tepresents a discrete invariant.  This discrete -

cA - “invariant is of great importance for the correct introduction of the concept of duality in R*.

" Let a real skew-symmetric covariant (or contravariant) tensor. of the second rank (so-

~ called bivector) fij(z) be given in the considered real four-dimensional metric space R
. Aswe regard the metric space the constant metric tensor (more prec1sely the inverse metric
" ‘tensor gi* whlch fulfills the relation of orthogonality: gi gt =8 ) allows to carry out the

operation of rajsing of any cova.na.nt indices for a tensor determined i m R4 .Thus,in R* a
“contravariant bivector f‘-’(z) can be bmlt up from the glven cova.rxant bivector f.,(:c)

N ﬁmfﬁde»mm—wwﬂm;'Tp\ ®
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what is a Well known fact. The sxx-component covariant blvector f,k(a:) can be consldered .

. an (covariant) antisymmetrical matrix in R*.. Each matrix in R4 fulfills an appropna.te
' Hamrlton-Ca.yley s equatron [12] Thxs equatron for a blvector f,;,(:c) in ’R‘ has the form

Tol@) 97 fal2) 5 fulz) 0 fu(e) +Ié(z)(f) f.p(z) 7 fule) tai fo(z)y.k =0 (10)

where the follow1ng three mvanants were 1ntroduced

0(2)(f) =3 gp' 9ququ(2) f"(’:) ’
@(f) =17 fuul2) fr(=),

oz '(4')- “Wew'f.,p(x)f»q(z)fc,(z)fd.(;) ey
S - _,l ¢ f.. (z)f,,,(z)] :ZEWD [13(2)(1,)] >0 NN e
B 7 'JH —lg"l : 6”” ' evkt = lgo |2 €ihlc &

The 1nvana.nt fo(:c) in matnx equatlon (10) represents a deterrmnaut of antlsymmetncal“” _
matrix fix(z). From the set of invariants in (11) an Jmportant mvanant of the fourth order S

Zo(4)(f) can be constructed namely:

() —l{lrs(,)(f)r' 50[13(2)(1')]’} it g ',‘(121)

The meamng of thxs mvanant w1]l be d]scussed later R SO B
It is generally known that especially in R* one can raise (or lower) the 1nd1ces of a skeW-

symmetric covariant (or contravariant) tensor of the second rank by means of the completely i

antisymmetrical contravariant (or covariant) tensor of the fourth rank ¢'7¥ (or €ja). The :
second way of raising (or lowering) the indices of bivectors in R4 leads to so-called “dua.l” i

contravar1a.nt (or cova.r1a.nt) a.ntrsymmetncal tensors of the second rank f” (a:) (or f,, (a:) ) 3

f'J(z) - %e'ﬂ" f“(z) =je G g f""'(”) "“ ) g'k 9" Ehtmn f"' (2) ot .
flJ(z) =3 Eijkl .f“(z) = % €5kl gkm ng fmn(z) = E €0 g1k “gjt eklmn fm (2)

‘In the formulae (13) we have used the relatlons from the appendrx of the’ report [13] between - S B
the camponents of a cova.nant metric tensor g;; aud lnverse (contravarlant) metnc tensor g” B

3There is a third way of raising the indices ofa covanant blvectcr f._, (::) in RA by means of two completely .

skew—symmetrxc contravanant tensors, namely

Fi@) = 1)) ‘""’ce"""fap(t)th(=)fcr(=), e

w};cre fo(z)is the’ detenmnant of the covariant bivector fii(z) defined in (11). The contravana.nt blvector S
Ji¥(x) -represents the so-called inverse bivector to the covariant bivector fik(z) which fulfills a relation of ’

orthogonality: fi(z) fi*(x) = &7 . There is a simple direct coupling-between an mverse bivector fi(z) as

wellas a so-called “dua.l" bwector f‘-”(:) intreduced in (13):. B R

o N - ,'-.-‘— B ‘ fJ(::) \/fn(I f"(a;)

(13)

Note the operators
“(e: g..for the Mmkowskrs space with the sxgnature (—1,-1,~1,41)). Using the formulae
(14) one can ea.srly check tha.t the tensors ,

: apphca.tlon of the operator of duahty 'D" gwes

| 3
. . 2

" We bnng here four such rela.trons thhout any deductron :

g Ca‘bcd go = € ijk gai Gbj-Gek 9dl 5 ) ‘
g? = (4!)“1 Ca&d 7kl Gai gb; Gek Gd1 o
IJ ——(3|g ) labc ergapgbqgcr, I ) (14)
:l:\/ETeawg" kd =;:I: 10 uktgkgbl_ , :

r,>

NZ(+) and NZ (=)

In ’R" one.can a.lways deﬁne two constant mlpotent operators

" which represent (constant) rruxed tensors of the fourth rank with the antlsymmetncal doubly
cova.rrant and-doubly contravanant 1nd1ces (so called blaﬁinors) by the following way:.

NE() = NP(E) = -NJ(3) = -NF(E) =} (5 £ Ve e s"), s

» where’6m =88~ 6;-’ 8- is so-called genera.hzed Kronecker s symbol of the second order.

7H(+) and Nm( ): become complexly conjugated ones for gp" = —1 ; :’

(:l:) fulfil the relatlons L '. . ’
4 N”(i)N”(i) —N"’( ), ‘N"“(i)N"’@) =N (16)

From the ﬁrst formula in, (16) il follows that the operators
quantrtres c - :
Now for any ‘real covarlant b1vector f,,(a:) in R" _one can deﬁne two new covanant

(:t) are really mlpotent

/ brvectors f,J (z) by means of_|ust 1ntroduced blafﬁnors G(E):

fie) = (i)fm(x), ()—g"‘g”f*(z) : (17)

'From the exphc1t form of blaﬁinors (:l:) in (15) the followmg relatrons can be found

B HE = B@, TR B
F@) - £ £ e cim 97 ¢ fmn(z)— r g,kg,xf“( ), ---v-b‘(.wl

and; thus the so-called  “dual”:bivector f'-’(a:) 1ntroduced before can be expressed in terms

~ of the brvectors I (z) and f (a:) Two nilpotent operators N"q(:l:) allow.to build up a
(constant) tensor operator D2 in each real four-drmensronal metric space R‘ which has the

ij
form

qu DQP' 'DQP .;_ __DP? NP‘!(_*_) _NPQ( ) =

= ‘/;9 e.,kzg ™ g'e ‘— ’\/IT Pt g g,. o

e (19).

Y,V'Ve shall call the operator 'D” deﬁned in (19) an operator of duahty in R‘ As it is seen
. from.the deﬁmtxon (19) the opera.tor of duality in real R* can be real or pure 1mag1nary :
\ quantlty dependrng on the sign of the determ.mant of the (real) metric tensor gi, . We make

sure that a'discrete affine mva.rrant £q in R4 plays an exceptlona.l role Moreover, the double '
1 qu Dkl 1 [ (+) .

iy

M=) [th N:;(;)] s



- '

and, consequently, the elgenva.lues of thls opera.tor can be equa.l to +1 only Indeed lf wc’
7 (19) we are convmced .

act on the bivectors f #(z) by means of the opera.tor of dua.lxty
by virtue of the relations (16) tha.t an equa.tron can be written as:

D Fi(e) = £ f¥(e) . P ) (20

The equation (20) can be rega.rded asan ergenvalue problem for the operator of duality on the
‘space of skew-symmetric functions in R* . We see the bivectors f5(z) constructed before by

means of two biaffinors AZ(+) from a given bivector fii(z) are just the “eigenfunctions” of
the operator of duality DY with the exgenvalue§ equa.l to£1 respcctlvely Therefore, strictly
speaking, we will be nght if we call bivectors f (z) ‘as “genuine” dual bivectors with the
certain valueés of duality in R*. Other deﬁmtlons of the “dual” bivectors in R* -which can
- be met in the hterature (like the relatlon (13)) are fully arbitrary inasmuch they use no'strict

‘, definition of an operator of duality a.nd such “dua.l” bivectors are not the eigenfunctions of
an operator in R*. Nevertheless, We give an expression of the ‘dual bivectors f(z) kere as ;
a linear combination of the 1mtla.l b1vector f.,(z) ‘and the so- ca.lled “dual”- blvector f,,(z) £

in R4 whrch has the form

The 1n1t1a.l blvector f.,(z) was 1ntroduced as rea.l quantlty a.nd 1t follows from the deﬁmtlon' L
of so-called “dual” bivector f,,(z) thatitisa real quantity too. As seen from the formula.e‘ R
~ (17) and (21) the dual bivectors fi(z) are dual quantities w1th dual umt equa.l to ,/ Lo

The dual blvectors _f,J (=) ha.ve rea.l ‘and dual parts whlch are equa.l to:

Re fcf(z) =1 f'J(z) ’ D“ (z) = :h 50 fu(z)

4 It is useful to bnng up all the possrble mvana.nts whlch can be bmlt up &om dua.l b1vectors”t‘ :

fi(=)- It follows from the rela.tlons T N PR S ST :

1o "(iw:;'(;) - ; Nm"(iw,s"(:p) =0

‘that the mvanants constructed from b1vectors of dxﬁ'erent duallty are 1dent1ca.]ly equa.l to ,:f

Z€ero:
(z) =1 cukl

Lt gi o) i) f,f,(z) =o.

*We understand a dual number z as'a number of the type z=a+eyb where a pair of numbers a and L

belongs to the field of real numbers and € represents a dual unit a square of which is a real number. The
dual conjugated number z* to a dual number z is a dual number 2* = a—eg b, (2*)* = z. The product of a
dual number z and a dual conjugated number z* is a real number zz* =a®—e}}? whichis a posrtlve realf .

number for €3 < 0 or any real number for el >0. Thei lnverse dual number Z to a dual number z is the ‘dual >
number z = (z z*)72z* which fulfills the relation 2z = 1, a? —e2 b? 3 0. The special case of dual numbers

with eg = i is field of complex numbers. If we accept \/ep as a dua.l unit in R* and decide to use the field
of dual numbers in the theory we should omit to mark the dual quantities by the symbols “+” realmng that
for each dual quantity (i. e. for a quantity marked by a symbol #47) exists the dual conjugated quantity

(i- e. a quantity marked by a symbol “~"." In connection with an absence of wide application of the field -

of dual numbers in mathematics and physxcs (in contrast to the field of complex numbers) we conserve the
symbols “1+” in all the dual qua.ntxtres . R S :

N -

~

>As a result of non comphca.ted ca.lcula.tlons we have:

a tra.nsforma.tlon in an abstract two- dxmens1ona.l space built. on two coordma.tes >
5 and 1 1 Baf)- A hlgher symmetry in the space of bivectors in' RY ‘can be studxed which is:
s connected with an‘invariance of invariant Ty 4)( f) under. tra.nsformatrons in two-dxmens1ona.l

;The xnvana.nts 1'(}(2)( f) and 13(2)( f) from (11) can be s1mply expressed in terms of new
" invariants T (f* ) and I35)(f*) which are deﬁned in an analogous ways oo /

Ti(£*) = 3 a* 0% f5@) fi(o), 2 O(z)(f*)=~e"”ﬂf(=)fﬁ(2) (2

S

ol

,.— [ °(2)(f) + \/T) o(z)(f)]
i Iveo [ou)(f)i s 0(,)(f)]

I&(z)(fi)

(23)
o(z)(f ) S

a

o Note the invariants Ig(z)( f*) and Ig(z)( f*) are hnearly dependent as seemg £rom the formula.
) (23) a.nd the rela.tlon takes pla.ce ’ : o

. o(z)(f ) = \/— o(z)(f ) 4’_«>(t24) :

and therefore only fwo invatiantd from the set (23) are 1ndependent (e g 1nva.na.nt o(2) ( e
and invariant T3 (f7))- In a.ddxtron, an 1nvana.nt of the fourth order 10(4)( f%) built up
- from invariants I oL 1= ) and 13(2)( FE)is 1dent1cally equal to zero because of the relation .
(24) The 1nvana.nt of the fourth order 10(4)( f). deﬁned in (12) can be wntten by means of ;

mva.na.nts (22) as well SR ‘ :

0(4)(f) =: o(z)(f*)fé(z)(f*) = ir?o o(z)(f*)lg(z)(f*) (25)

, If we regard the invariants Ig(z)( f) and Iz f) in the definition of 1nvana.nt 10(4)( f ) in (12) )
- as doubled coordinates in a two-dimensional space we can observe that 10(4)( f) represents

a quadnc in tha.t spa.ce Wlth a dxa.gonal metric tensor 'gap (A B = -1, 2) in the form:

he use of the dua.l b1vectors f (z) 1nstead of the 1mt1a.l blvector f,,(z) in 'R‘ 1nduces
Ty ()

space mentioned above but such investigation is fully out of frame of this paper.

Thereby we have shown that in any real four-dxmensrona.l metric space where a co-
variant (or” contravana.nt) bivector is given one can build up two dxﬁ'erent bivectors each of
which j possesses a certain value of duality. The duahty defined in the way above is based ',

“oma possrblllty to introduce special operators with certain transformation properties in any

real four-dimensional metric space and, thus, the duality can'be rega.rded as an additional

' symmetry for the bivectors whlch already exists in each Rt From the physical point of view .
_the concept of duality a.llows to introduce two sets of qua.ntltles whlch differ in the discrete :

(quantum) number connected with the opera.tor of duality in any theory formula.ted in ’R4

i
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and based on a skew-symn;letric ﬁeld'('like the electromagnetlc ﬁeld) .The dn'ax.lity’in't'onr'- B

dimensional spaces is a kind of . panty for skew-symmetnc tensors.

. represents an additional symmetry of any four-dlmensronal metric space and we should not "
ignore this symmetry in the physical theories formulated in R*. In'the next sectrons we
apply the results obtained above to the formulation of the covariant Ma.xwell’s equatrons in
R* with arbitrary non-dlagonahzed constant metric (not only in Mrnkowskx s space)

3 A COVARIANT TI—[R.EE-VECTOR MODEL FOR
BIVECTORS IN ’R,4

[

As we have shown in the prev10us sectlon the concept of duahty can be stnctly 1ntroduced in .

any four- d:mensmna.l metric space. Let a skew-symmetnc tensor of electromagnetrc field 5
- exist in R* . Besides. this let an arbitrary constant contravanant vector ' be chosen in the"
consrdered real four-dimensional space (n2 = gi ni nk = nn} ). ¢ Now using the constant’ -

vector nf, the constant : metnc tensor gu . and the completely skew-symmetnc tensor €iikl
one can form a (real) vector Ei(z) and a (real) pseudovector Hi(z) from each (real) brvector :

: f,,(::) The vectors E'(::) and H'(:c) have the followmg expllcxt form
E.(”) = "0 g'J f,k(:ﬂ) no )

UH ka(x) "’l v, .

E (::) = gu EJ(;,;) = no fu(z') n(; R ‘,Akt

(.’:) = gu

(26)

H'(::) (27)

(T') =3 50 nO elel f’k(:) nv

The deﬁmtlon of Vectors E'(;:) and Hl(x) is made 1n SuCh a way that bOth these VCCtOIS . ',

are perpendxcula.r to the arbltrary consta.nt vector 11lJ in R“

-

B < He) s =0 f

Two relatlons in (28) represent two couphngs to wh1ch the four-dlmensronal vectors E'(:c)
and Hi(z) automatlcally obey, and, thus, each of four-component vectors E‘(:r,) and Hi(z)
‘has really three 1ndependent components only. ' As a-result’ of ‘the transformations (26)::
and (27) six independent components of a bivector f.,(::) in R‘ _can be substituted by
. three independent components of a four-dimensional vector E'(:c) and three 1ndependent
-components of a four- dimensional pseudovector Hi(z). e
~ The explicit form of the bivector fp(z) expressed through the vectors E'(::) and H '(1:)
canb be found easlly by calculatmg the cxpressron )

euuH (2)nb = 3 &7 fm(z)n n —no fu(x) +n°E (x) —n°E(z) |

- ‘ .
In this section and further on we shall use “the tenmnology ﬁom electromagnetlc field theory for the
quantxtxes connected with a brvector in 'li’.4 in splte of the fact that we do not consxder lect t ﬁ d
in real space-time only. o ’°magne X "'l
6
- Wn:lhout loss of any genera.hty the vectot n} can be chosen as an unit vector pnttmg nd= 1. We do not
e_,sIltlc sullmplxﬁcatmn in order to conserve the homogeneity of all the formulae. . :
would be. more correct to introduce the notation E*(z, n) for electrical field and the notation H '(:: n)-.
’

~for magnetlc field in order to st
ress the depend
o magnitic i vedm 'y ,e ependence of electrlcal and magnetlc ﬁelds on an a.rbrtrary constant

‘The dual symmetry

}‘ (28) - |

: :f,,(:c) in R exists: oo 0T

“to'it.

“The repeated apphcatlon of the operatlon (31) to the formulae (30) leads to the transforma-

‘-J

' '- where = 6” 6"' +8% &% +6” 8%y is s the generahzed Kronecker s symbol of the third order..

It is clear that the followmg (exactly covanant) three- vector model ofa covanant blvector

@) =it [E(x)n —E(x)n +e.,uH(x)no] "(2‘9)

"Note the fact’ of the linear dependence “of the bivector f;j(z) on the vectors E (::) H'(::)

and ng'nd in the model (29) as well as ‘the strictly covariant form of this relation. Thus, if .-

- we want to construct-a (vector) model for a bivector in R* correctly based on a set of four-

dimensional vectors conserving the covariant form of all the formulae we have to use three
vectors in R‘ : one vector 1s arbltrary constant and two varlable vectors are perpendlcular )

As we have mentroned before besides the covanant blvector f,_7 (::) in R‘ one can consider -
the contravarrant bivector f(z) as well as the so-called “dual” contravariant bivector fi(z).

‘and the so-called “dual” covariant blvector fis(z). These bivectors can be expressed in terms -
: of the vectors E'(:c) H‘(::) and ni too. In the end the following relations can be derived:

n;.

f "(x)
f"(l)
fu("’) =

[E'(::) ny = b-’(:c) nd + €0 e'-”‘t H;,(:c) ] ]
[H'(::) no ‘— H-’(::) 'no ‘-7“ E;,(::) ny ]
[H (z)n? — H; (::) n? + €0 e.,u E (z) no]

ll

g0

v

R From the formulae (30) 1t is obvious. that the transxtlon from the blvector f‘-’(:c) to’.
" ‘the so- called “dual” blvector f‘-’(::) in’ terms of the fields E'(z) and H‘(:c) means the’

. transformatron

E'(r) - H‘(I) H'(I) — €0 E'(z) (31) 3

tron of the mrtral brvectors IS P

 filz) — e f"(z) f"(z) — €0 f"(:)

J To reach the 1n1t1a1 bivectors we have to apply the transformations (31) tw1ce more. Such

’transformatrons of the bivectors in RY seem'to be very compllcated and obv1ously do not '
reﬂect a genume " symmetry in a four- dimensional space.
Havmg the ‘explicit form of a bivector f"(:c) and so—called “dual” bivector f'-’(:c) in

" terms of the fields- Ei(z) and H(z) one'can wrrte the explxcxt form of the“genume” dual

brvectors fi (::) They have the form: - "

e = [Fi(:)no\—Fi(:)no" L ""'F*(x)nz]é » lf(32)
g NE() [Frieyng - Fi@)np | =2t NE() FEE)E,

where we introdiiced two mutually dual (vector) electromagnetic ﬁelds Fi(z) mstead of the ‘
(real) electrrcal ﬁeld E'(::) and the (real) magnetlc field Hi(z) in the followmg way
Fie) =1 [E'(x) £l H(e)| = 1) e = e 6

11



As seen from the formulae (32) and (33) the transrtron fi (z) — f; (=) meais the transfor. -
mation Fi(z) - Fi(z). and vice versa, i. e. the change of duality of primary dual bivectors’
fJ(z) induces the dual conjugation in dual vector electromagnetlc fields Fi(z). Once more -

we would like to emphasize the exceptlonal role of the square root of the drscrete mvanant

€0 . As a matter of fact the square root of sign of the determinant 'of metric in R* represents ‘
a dual unit in the theory.: Thereby we have found an application of dual numbers (more
prec1sely dual quantities) in'a theory formulated in R* .- If we consider a non-diagonalized '
metric in R* the general approach to’ thls space demonstrated here automatlca.lly leads to .

the dual quantities. B

In conclusion of this section we bring the exphc:t form of the jnvatiants Ig(z)( f) 2 ( f) -
and Zy)(f) in terms of just introduced electrical field Ei(z) and magnetic field H‘(z) as ’
well as the dual electromagnetlc ﬁelds Fi(z) These 1nvar1ants can be ca.lculated wrthout al S

blg eﬂ'ort

Tiy(f) = E'(:) Bia) + e H'(z) H, (z) =2 [F;(z) F*(z) +F (z) F*(z)]
T2(f) = 2E (<) Hi(z) = £2./60 [Fi(=z) Fi(z) ~ Fi(z) FF (z)]
Ty (f) = } [Bi(2) Bi(z) +eo Hi(z) Hi(=) | — &0 [E‘(z)H(z)] =
i) _4[&(:) F*(z)] [F@ )] i

Other invariants whxch can be constructed from the vectors E‘(z) H'(:c) and Fi(z) are
model dependent (i. e. they depend on an arb1trary constant vector no ‘in ’R.“ ) and therefore oy

they have not a real physical meaning.

Thus, the six-component bivector field i in 7'(’.4 can be covarlantly descrlbed e1ther by means s
of two mutually dual vector electromagnetlc fields or ‘by means of a real vector electrical -

field and a real pseudovector magnetic field which are perpendicular to an arbrtrary chosen

constant vector. For the real space-time it means that we are always able to substltute a six-. o

component skew-symmetric field f;;(z) by means of a complex. vector electromagnetlc field

F#(z) with the doubled real part equal to vector electrrcal field and the doubled 1maglnary:'.;j g
part equal to pseudovector magnetic field Wluch have to fulfil a condrtron of orthogonahty S

to an arbrtrary chosen constant four—drmensronal vector no

R

4 DUAL SYMMETRY IN R4 ‘A’ND MAXWELL’S

N EQUATIONS

Let us imagine we know (almost) nothlng about electromagnetlc field in real four-drmensronal e
space-time. We shall use only the dual symmetry in R*-and some theoretical reasons in "
order to postulate a system of equatlons for a bivector field which then will be analyzed

and interpreted with regard to the real crrcumstances in space—tlme wrth an electromaguetlc o

field.

called the skew-symmetnc tensor of electromagnetxc field in given four-dxmenswual space

}A112r1’£. o . : ’; s e

L respect to z

7 laws for the dual currents

-~ We can rewnte the equatlons (37) ina shghtly different form: -

Let a real contravariant blvector fik(z) = —f’“(z) be givenin ’R“ Thrs blvector Wlll be -

- We know that in any four-dlmensxonal space with- the metric g.;. the so- called “dual” con- -
- travariant bivector F*(z) and two dual contravariant bivectors f (z) can be strictly deter-
. mined. If we drﬂ'erentlate a bivector f*(z) in R* with respect to z* we shall always obtaxn‘

a vector. Consequently, the differentiation of two dual bivectors f3 (z) with respect to z*

leads to two drﬂ'erent vectors J:t (z) which we sha.ll call dual curreuts

) S =k ey

where the notatlon 3 means the drﬂ'erentlatlon W1th respect toa coordmate z' in ’R“ Now
we postulate two equations (35) as the fundamental equations for a srx—componeut skew-
symmetric tensor field in R*. Note that further differentiation of the equations (35) with
k gives zero 1dent1cally inasmuch the differential operator 8;0r and: bivectors
fi¥(z) have the different permutatlon symmetry Therefore we have two loca.l couservatlon

a,,,i(z) =0 s P S E L (386)

Whrch means that the dual currents ]i(z) fulfil the equatlons of contlnmty automatlca.lly ,
o Ts known a bivector i 1n R* has six mdependent components and, thus, for a determination
 of such bivector we need six 1ndependent equatlons The system of elght equations (35) and’
~ 7 two couphngs (36) represents a set of completely consxstent condrtlons for determ.matron of

a bivector in R*%. , o :
~If we now apply the covanant model for the b1vectors (z) 1ntroduced earher Whrch

’operates with the two. dual vector electroma.gnetrc ﬁelds Fi(z) the system of equatlons (35)
" _‘can be rewrltten 1n the form s : g

I R l ,,\

g nan;(z) —BoFi(z) :F 1 girar ng &,Ft (z) i ]i(z) _f (37)'

=L

R Ve { .

where we 1ntroduced a notatlon 30 for dlﬂ'erentlatlon w1th respect to z! along the direction
180 = ny" (nd 8,). Multiplying both sides of equations (37) by the covariant vector n

V.and taking account of the’ relatlon of orthogonahty of vectors no and Fi(z) we 1mmed1ately

o W
:/‘ N

ﬁnd two equatlons

8,F}(z) = s} (z) (38).'

Pos
i

‘ Where we 1ntroduced two lnvanant qua.ntltles 'po (::) = n Ji (z) n° wh1ch can’ be regarded

as the (scalar) densities of dual charges. Note two equatlons (38) are a direct. consequence

- of the equations (37) and they express the fact that the 4- d1vergence of the dual vector

electromaguetlc fields Fi () equals to the density of dual charges Usmg the equatrons (38)
5 l |
BoFi(:c) :l: ,/so ng! 9 P e,q,., nd B'Fi(z) = —Ji(z) + no po (z) n‘ 8 (39),

»'Now a contractlon of both sides of equatrons (39) w1th the covanant vector nf glves an‘

identity (i: e. it defines densities of dual charges). We can consider : leight equations (39)
together with two equations (couplmgs) (38) a covariant system of Maxwell’s equations for

K two dual vector electromagnetlc fields F. i(z) based on the dual symmetry in R*.

= ‘\‘\,,v. l
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Takmg half of the sum and drﬁ'erence of two equatrons (39) as well as two equatrons (38)
we can write Maxwell’s equations as a system of eight covanant equations for a real four-

dlmenswnal electrrcal field Ei(z). and areal four-drmensronal magnetlc ﬁeld H '(::) wrth two

couplings: i —
BOE'(:B) + nEl e"’q' °6 H (::) = ) ,
=——heyu(o +-moVﬂo+%@ﬂw,v,
Je? [30 (=) +Eon e?rn QE(z) | = - e 5:,11(40) '

[J+(=) —f @]t
8 E'(::)

\/EO—BH(;:) =

bun—%eﬂ%,
Po (“") +p5(=) |5 :
(1") - Po (z)

Crale nate NIH

R

~ L F

electrrcal current ](e)(::) (real) magnetic current J(m)(:l:) (real) density of electrrcal charges_

(:)(z) and (real) density of ‘magnetic charges p((, )(::) in the system of equatrons (40) by B

means of the followrng simple relatlons o R D i ’/ ‘
e [J+(=) 5 (z)} e = { )+ P5(=)]
w%mnw (@) - iL@)], w% Rnfé 3(2) = po(2)

‘we obta.rn Ma.xwell’s equatlons in covarrant form wrth the real quantltres only“:* E L

~Il‘

. an [l

‘ —J<,>(=) +n5 ,,g )(z) mh *, &
o BB pz), - a1
i ‘ ) ( )
aoH'(z) + co ng! €7 1 ;0 0 8, E, (;r,) ]( )(z) +n0 o (z) ng’ v
= aHv)# ) xﬁ#wuu

BOE'(::) + r;—l ipar °3H(z)

lI“II

e

Thus the set of covanant Maxwell’s equatlons (35) and (36) for. two dual bivector. ﬁelds
fik(z) in R* is equivalent to elght covariant equatlons (41) for a Teal four-drmensronal vector o
electrical field E'(z) which 4- drvergence is equal to density of electrical charges and a real "

four-dimensional pseudovector magnetic field H ‘(z) which 4- drvergence is equal to denslty of
magnetic charges We would like to note three important features of the Ma.xwell’s equat1ons

in the form (41). First,itisa completely covanant form of these equatlons obkusly invariant

under transformatlons conservmg the constant metric tensor gik” in “RA .-l under the six-

parametncal transformatlons with transformatlon matnx t (u) Wthh fulﬁlls the condrtrons

S 9pe ”t‘(u)t"(u)g.:.,' to(u) det|t;(u)|_¢1

where an argument u stands for a set of six group parameters of proper contmuous group :
Second, the covanance of the Maxwell’s equatlons in'the dual vector form (39) and in real’.
two—vector form (41) can be reached by a cost of the ‘introduction of an arbitrary constant : -,

vector n},” which determines a fixed direction in’ ‘R4 . In general, dual currents ji(z) are
the foir-dimensional vectors and the densrtles of dual charges represent a scalar product

14

L

If in. heu of dual currents Ji(:l',) and densities of dual charges Po (z) we mtroduce (real) :

- ;of dual currents and an arbrtrary constant vector i in R‘ ‘These densities are the invariant
* quantities which represent no fourth components of appropriate dual currents. Third, on ‘the

tight side of the Maxwell’s equatrons in a covariant form (41) besides the electrical currents
and charges the magnetic currents and charges present. The presence of magnetic currents

" and charges in the equations (41) is directly due to a possibility to mtroduce the dual tensors
crof electromagnetrc field with different dualities in R*. :

*If now we consider real space-time ® the Maxwell’s equatlons in the form (41) with
€o = —1 represent a covariant form of Maxwell’s equations based on the dual symme-‘

“try in Minkowski’s space.. In addrtron, if we even fix the arbxtrary constant vector ny along

the time-axs, i. e. we choose it'as a unit vector in space-time in the form' (0,0,0,1), we

“lose 4-covariance of these equatrons since we pass in R* to three-dimensional quantities and
‘ ,recerve the Maxwell’s equatlons which are: close to usual Maxwell’s equations . In the end

‘we find for i = a (a,8,7 ='1,2, 3; eof7 = eh1e apy = —e°P7; E(z) = E%(%, t) =
—E (:: t) H"(::) —’H"(:: t) = —-'H (:: t)) a system of (non-covanant) equatrons
S 'agsa(z £) = o 5D = '—Jﬁ &1, -
" : L BEEY) = pNEY,
‘afH"(z ) rer e = gm@Ey, o W)
AHEY = (m)(s ‘t)'," R

-

: 'iand for i=4, we have two addrtronal relatrons wluch determme the densrtxes of electncal
L and magnetrc charges as the forth components of approprrate currents:

J(,)(z t) = 4 >(= B, J(m)(z t) = ;ao”’(z ).

’» From the formulae (42) we see that we have derwed sllghtly drfferent system of Maxwell’
! ‘equatlons in companson wrth the usual system of Maxwell’s equations (1)." This’ differ-

ence consrsts in ‘the presence of magnetlc current J(m)(:l: t) and denslty of magnetxc charge

('")(:v t)if the dual currents J+(:|: t) and j© (%, t) are not identically equal. The Maxwell’s
. .equations with’ magnetic currents and charges in*the form (42) can be met in literature

devoted to the problem of symmetry ‘of Maxwell’s equatrons under the change of electrical

‘and magnetic items (fields, currents and’ charges) what leads to a hypothesxs 'of magnetic

monopole [14]. .Deriving the Maxwell’s equations in R* on the’ base of dual symmetry we
have transparently shown that ifa magnetrc monopole exists in the nature then its exrstence

1s due to dual symmetry of real space—trme understood in the sense ‘of this paper.

" We return again-to the system of general Maxwell’s equations’ (41) in order to denve
still few known formulae in-a covariant form. As a matter of principle having the Maxwell’s

equatrons in symmetncal covariant form (41) one can take a handbook of electromagnetic

field theory and try to rewrite large maJonty of formulae where electrical and magnetic
fields are presented in the more “symmetrical” form.' Here we show only an explicit form

i “of the energy momentum tensor of electromagnetlc field exprased in terms of electrical and

'8We suppose the diagonalization of the metric tensor gix for space—tlme is carried out in such a way that
the srgnature of four-dimensional space is (—1,~1,—-1,41), g0 = -1, z* = cot.
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rnagnetlc ﬁelds Mu.ltlplymg the first relatlon in, (41) by E (::) and the tthd one by €0 H (z)
a conservatlon law can be found: ; ) o .

3050(::) - cu 3'P (::) = -—J(z)(:) E; (:e) +J(m)(:) H (::) : (43)

where the so- ce.lled densxty of energy of electromagnetlc ﬁeld Ea(z) as'an mvanant was'in-
troduced:
&(z) =3 [E'(z) E(=) —€ H‘(z) H(z)l = 2Fi(='=) F*(z) (44)
as well as Poynting’s vector of electromagnetlc field Pi(z) as a four-dimensional vector m
RS Wthh is perpendxcular to vectors no . E'(z’f and H '(:c) was deﬁned ' ‘

'P‘(:c) =nglePT n° E (z) H (:c) = :l:1 €0 ‘/eTnu e“"" n° F*(z) Fi(:c) » (45) ’

The square of Poyntmg s vector 'Po (:c) 1s an mvanant too and 1t can be easxly calculated
The followmg result can be obta.med ‘ : .

Ps(=) = gin 7"(3) 7”‘(3) ‘fn{[F (z)E(z)HH‘(z)H (z)l -[E'(Z)H (z)l }

By means of _|ust lntroduced den51ty of energy of electromagnetlc field - (44) and four- f :
dimensional Poynting’s vector (45) the invariant of the fourth order In( 4)( f ) can be rewntten L

m an attractxve form:

7 1nva.r1ant To)( f)

measured. We would like note that in the case £3(z) > Pi(=) the relation (47) is reduced
to the usually accepted expression for the density of energy. of electromagnetrc field (44). -

Asit is known the traceless symmetncal contravariant energy-momentum tensor of elec-
tromagnetic field T%( f) which- can be expressed in‘terms of a skew-symmetnc tensor of o

electromagnetlc field qu(:c) has the form [9] i
TR(f) == [f"’(z)ypq f”‘(z) +1 u(z)(f)y B

the energy-momentum tensor T"‘( f) can be ea.srly rewntten ina covanant form in terms of
-~ electrical and magnetlc ﬁelds : '

| T"‘(f) - B¥(3) E"(z) — €0 H'(z)H*(z)—. |
—eong? [noP"(z) +n:; P-(z)] - Eo(e) (g™ = 2n5%nf ")

~16

R o(4)(f) —52($)+'P'(=)7’($) ANCTI T (46)a ‘
:We have clanﬁed that the vectors of electrical and magnetlc fields ‘are model dependent

" quantities and thus the mvanant (44) being the density of energy of electromagnetic field . -
is ‘model dependent too, since‘it can not be expressed in terms of the invariants of the .
second rank Z3.,(f) and u(2)( - ‘On the other hand, the dlmensmnallty of the invariant . -
of the fourth order (46) is square of the dens1ty of energy of electromagnetlc field and itis

_ model independent. Thereiore we can accept a quantxty ea(z) wluch is equal square root of -

ez —Js:(z)w(zw(z) Y

in the capacxty of suitable density of energy of electromagnetxc ﬁeld whxch can really be -

yqu”(f) =o. (48)«‘

Using three~vector model for the tensor electromagnetlc ﬁeld f‘-’ (:c) from prev10us sectlons :

iy (49) ’

S

N

If we ca.lculate the deternunant of the contravanant matnx (49) we find the srmple relatxon

i

T(f) = detIT"'(f) 1 =L e

: On the base oi the- relahon (50) we are . able to glve another mterpretatxon of the invariant
of the fourth order mtroduced in (11). This invariant is equal to the determinant of the
; _energy-momentum tensor of electromagnetlc field T"‘( f).. The relation (50) gives a warrant

to consider the qua.ntrty (47)-as a density of energy of electromagnetic field. It is interesting

to calculate an inverse (covariant) tensor Tix(f) to the tensor of erergy-momentum of elec-
tromagnetic field T”'( f) ThlS mverse tensor can be obtamed after not very, comphcated

- ca.lculatlons

Tk(f) = [r.,m(f)] {E (z) B(e) —eo H(x) Hi(z)—

o ,—Eonn

"w;.g-—[zo(r)(f)] [f-p(z)g”" fa(=) +3 Ié(z)(f)g.;.]

e

n(f) = [r.,m(f)] ' Gip Oha :m(f) = [Io(r)<f)] Tk(f), =
T'k(f) = n(4)(f)9 g""T (f) = u(4)(f)T (f) v

12 Pu(2) + 08 Pu(e) ] — Eul) (6" — 2ng7n tng)iz (51“)'

One can check easﬂy that the inverse tensor 7506 really fulfills a relatlon of orthogonahty
. ka( f ) T”‘( f) = 6‘7 e Note an mterestmg relatlon between these tensors: R

- whlch is an example of the fact that the rarsmg or lowenng the lndlces of a tensor by means-
" of metric tensor and by means of completely antlsymmetncal tensors are not qmte eqmvalent .
‘operatlons ; i : S s :

"We will not contmue Wlth hstmg the covanant formulae Wluch can be wntten on. the‘

'base of the covanant three—vector model of the bivector of electromagnetlc field in RE. We
“would only like to ‘'stress that a general approach to the four-dimensional spaces allows a
. ’. ‘new approach to many old and well-known physical problems. We must not reject such an
" approach only because of its mathematical base which at present does not provide enough .
" 'physical effects and results. Our rea.l physmal world i is only one of the mamfold of abstract .
‘ mathematlcal Worlds ‘, S : ; ‘ |

5 CONCLUDING REMARKS

’ We w111 dlscuss shortly the obtained results Flrst we have shown that a spec,lal symmetry ‘

exists for skew-symmetric tensors in any four-dxmensronal metric space ‘which is connected

l"W1th the concept of duality. Ineach four—drmensronal metric space an operator of duahty
;can be strictly mathematically introduced and two different dual blvector fields with the

dlfferent duahtles whxch are determmed as the elgenvalues of the operator of duallty can be

9The orthogonality of tensors T3%( f) and Tix(f) expressed by means of tensors of electromagnetlc field

' F*(z) and f.g(:) can be checked duectly, too, if we use the Ha.rmlton-Cayley s equatlon (10) for a brvector
’ f.g(:) in R‘ ) . . <

|
!



_ space-time'in order to obtain the usual Maxwell’s equations (Wrthout magnetlc currents’ and B
charges) or what consequences follow for the existence of a magnetrc monopole in- connectlon

bmlt up from any real brvector ﬁeld The duahty can be regarded asa klnd of “hrgher or
“internal” symmetry in any R*. In general, from the theoretical point of view we cannot and -

should not ignore the dual symmetry in the physical theories formulated in four-dimensional " =

spaces.’ Proceeding from the dual symmetry in RE one can writé the Maxwell’s equations™

in a four-dimensional space Wrth a.rbrtrary signature. " These' Maxwell’s equations' can be

formulated too in another eqmvalent form connected with the ex:stence of a’‘covariant three--

vector model for the six-component bivector in four-dJmenslonal space. For the description
of a bivector (electromagnetrc) field in R* we can use éither dual vector electromagnetic

fields or a vector electrical field ard a pseudovector magnetic field together with an‘arbitrary '
constant vector. We have shown that the equations first written by J. C. Maxwell represent

only one possibility from a ‘number of covariant equations which’ can be derived i in R*.

Nevertheless, the Ma.xwell’s equatlons are true as before, however, there are no reasons to.
" fix the four-dimensional constant vector along the time axis. The a.ctual role of an arbrtrary e
~constant (umt) vector which was introduced into. theory is ‘not quite clear. This vector is ~
constant in respect to electromagnetrc field but it possibly can be fixed by means of other
physrca.l conditions introduced into a theory formulated in R%. Tt should be stressed that’
from this pornt of view the electrical and magnetic fields as well as'some other quantities ;
(like Poynting’s vector) are secondary quantities (concepts) whrch are model dependent what .
.proves their dependence on'an arbrtra.ry constant four-dimensional vector determining a fixed - '
direction in R*. Thus, the vector electrical and magnetic fields have an ‘auxiliary sense only.:

Really measured quantrtres can be only the invariants built- up from the primary bivectors

(which can be expressed, of course, ia terms of the components of the dual bivectors or the
electrical and ma.gnetrc fields) and not all the invariants which can be built up from electrical
and magnetic fields are really- measurable. ‘We would like to’ emphasrze a methodologlcal: ’
aspect of applied method of consrderatron of four-dimensional spaces. The unified approach

. to dJﬂ'erent four-dimensional spaces allows to use ‘strictly the tensor calculus from the very.
begrnnmg up to the final results. In addrtron, such approach gives a possibility to discover

new. connections between quantrtres which do not seem to be linked (like the connection

between the’ square Toot of sign of determrnant of a‘metric in R* and- a dual umt) The
_simultaneous consrderatron of four-dimensional spaces with’ dlfferent srgnatures leads to the -
field of dual numbers and allows to introduce the dual quant1t1es into theory in a very natural”
way. It is quite probable that the dual numbers play more srgnlﬁcant role in physics then we’
suppose nowadays Perhaps all this artrcle could seem too technical or even formal, ‘whichis
true in a sense, however without overcoming some technical problems we wrll never be able
to construct a more genera.l theory then current theories. We should not. be indifferent to the‘, ‘
chosen mathematrca.l method smce deferent mathematrcal methods are not qu1te eqmva.lent B

from the pornt of view of their relatron to the general theory as well as physrcal reahty

At thrs point everybody who has read th.rs article will* expect a plentrful dlSCuSSlOll of ‘.
physical consequences of the formulatron of the Ma.xwell’s equatrons based on the concept
of duality in R, Actua.lly enormous number of questlons can be raised. Especrally, one can’

look for the reasons why the dual currents ji (z) and i (=) ‘have to be equal quantities in real

v

-

'~ with the dual symmetry of space—tlme understood in the sense of this artrcle However,‘

~at the present stage we are not to be able to answer to atisen problems correctly. -If-we
‘propose that dual currents 74(2) ‘and ji(z). in real, space-time are identically equal we

: ‘have to find an additional symmetry which causes this equality. We are not able to show

such additional ‘symmetry at present. If the difference of dual cutrents j +(z) and ji(z) is’

: ,;‘ small (almost neghgrble) we should show the order of this difference which is impossible to
 be done without the consideration of geometry of group space of an appropriate group of

transformations where the dual symmetry can be completely realized. Thus, in connection to

‘- this we avoid raising of abundant discussion about three-vector covariant form of Maxwell’s
: equatlons here consrdered since it is probably still early First of all we wanted to show
" a mathematrcal possrbrhty of a covariant formulation of Maxwell’s equations in any four-

d1mensronal metric space. Up to this point we have used no physics in deduction of obtained
Aequatlons, no experimental facts. for the formulation of the Maxwell’ s equations with the

- dual symmetry: The primary base of all reasonings was symmetry and tensor calculus and

“the only crrterlon of correctness of all the formulae was a “mathematical beauty We would

,:cnot like to break thrs criterion 1ntroduc1ng the physical proposa.ls 1nto particular theory since

we have equally regarded real space—trme (Minkowski’s space) with other four- d1mensrona.l
‘Euclidean”and 'pseudo- Euchdean spaces which differ by a set of topologrca.lly srgnlﬁcant

i invariants, We did not concern another possrbllrty of the use of the dual symmetry in R*
’ here N amely, itis necessary to-consider the geometry of group spaceof a srx—parametrrcal

gloup of transformations of an ‘arbitrary four- dlmensmnal homogeneous quadric as well as the-

: " geometry of group space of a ten-parametncal group of invariance of an interval (square of

* distance between two pornts) inR* (a generahzed Poincaré group in R* with any signature)
“where the answers to many key questions'are hidden. We would like to pay attention to ‘

 the fact that the large majority of group spaces is not point-like manifolds where a point
Vs determmed by a contravariant vector. The group parameters of most continuoius groups

“stand for tensors wh1ch represent different geometrical objects. The srmplest generahzatron
of the vector are multivectors and it seems we do not fully realize the role of multivectors

' (especrally b1vectors) in physrcal theorres at present All these questions merit a separatei

consideration because'the problems are essentral and rather complicated. - Several papers

§ dévoted to the geometry of the group spaces of some physrcally interesting continuous groups

operating in the four-dimensional spaces will be published before long elsewhere. On the base
of the results concerning geometry of group spaces in R* we shall return to the discussion of
‘the system of Maxwell’s equations with the dual symmetry in the forms (35), (39) and (41).
After this we will be able to'predict some physrcally ‘measurable effects or at least to give a

recipe where to search such effects. We are firmly’ convmced that the duality defined in this
- paper hy means of a strictly determined operator in R* will have a rich physical meaning.

‘ Duahty is an addltronal symmetry in each four- diménsional metri¢ space and we have to
. take: accotmt ofit-as a conserving ! good quantun number” for-appropriate skew-symmetric

: quantrtres. At the present level 6f investigations we should be content with a possibility to
= rewnte all the: handbooks of electromagnetrc ﬁeld theory in a shghtly more symmetncal"
(covarra.nt) form -
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