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1. INTRODUCTION 

In this paper we will investigate vacuum structure of· the 

field model with the followi-~g. ~lassical Lagra:ngia~ 'density 

1 2 1 4 
L(x) = _2 ~(x)(o-m. )if>(x) ~ .. · 4 g tP (x) ( 1. 1) 

in space-time Rd for d=3 and 4. Here x=(x, t) .. The ·constant,s m2 

and g are positive. The dimensionless coupling, constant. 

g 
G 

(2mn)4:-ct 
'' 

is- a parameter of. the theory. 

In more than four dimensions :Ui.ere are ·rigorous. proofs •. of 

triviality of 4>4 theory.,- either non-interacting,or.else incon­

si.sterit11:21. :But in exactly four dimensionsr.the· proofs are 

incomplete/2~ . More . physical although a proximate appro~ch to 

the problem is .. provided· by variational .. estimations of an 

effective potential13- 8 ~· Unfortunately, usefuliness of. a· var.ia~ 

tiori.al approach in QFT ·is restricted by- some problems.5,(see 

Feunman' s paper in· ReL 3). The Hamil toniim of .the model ( 1.·1) 
! 

is not a well-defined operator in the Hilbert space for d>2 

because of the highest :order ultraviolet divergences. ·Hence, a 

procedure of variational estimation with the help of the trial 

wave functionals is_ not defined.· either19 ~ Another problem 

arises from impossibility of controlling the· approximation 

accuracy directly within the variational calculations
1101
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We follow the way which consists in apprecia"!=-ion,of pertur­

bative QFT, particularly, its renormalfzation (R} structure, 

as a kind of initial condition ... for strong coupling 

1 /11-13/ ' . th . . . prob em . Here we cont~nue e ~nvest~gat~ons, undertaken 

in Refs.12,13, where the phase structure of various scalar fi-
1 '>, 

eld models in R2 and R3 has been considered by the canonical 

transformation method . 
-"' ' . 

. ·· 
The essence ''of 'our approa-ch consists in combination of two 

powerful·. methods 'of. QFT - canonical transformations and .renor­

malization·group (RG). The idea of such a combination origina­

tes from the fundamental properties of the local QFT: existen­

ce of nonequivalent representations of canonical commutation 

relations_ (c.c.r.) and UV-divergences (e.g., -see Refs.14,.15 

and referent;:es therein). ·From 1a. physical viewpoint,. existence 

·of· rionequi valent. representations .• means that the ground state 

of· the Q~T-system ;is not unique. At the- same time; · vacuum 

. . instabi'lity. ~riginates from ·the radiative corrections. to. the 

physical' parameters • of'···· the- system. , .Renormal ization means 

·actually· an appreciation :of,· •leading · radiative cor.rections. 

Hence,·· the •R-structure- of !the .. theory; should, contain the main 

'(~t teast qualitative)•.information about·:its vacuum .. structure 

(see·also•Ref .16). ('>.:: 
'•"• C1 ' ~ ~ 

, According·.to this -i~tuitive: motivation;·· our .starting. points 

are ·;., .' ~ :\I ; :. ~ ,~ ~ 

* the· ·.phases appear. in .QFT ,as ~oneq~ivalent c.c.r. 

representations; :~n' f · ' '', ~ ; . : ~ : . 

.-·, -~ ,' ,.1- ' • 
!j:. -< 

2. 

* the renormalization struc:;ture .,of the t~eorrc con_~ainS., ,basic 

information about its phase structure. 

It is well-known how to construct an appropriate QFT-if re-· 
• ' •• I• 

normalized coupling .constant G is small . enough. 
. .. . .. :: :·; . :·I-;.,'·- v 

The standard 

canonical quantization in r;ep-r:esentation, given~ by the Fock 
( > . ' 

space of scalar particl~s withrenormalized mass. m, should_be 

performed. This is an "initial" . phase .. oC -.the model (1.1)' 

Having this in our .~ind, we want to know what is our. system. ~n 

· strong coupling reg~me, L e. for, large, G? We formulate the 

problem as follows 

What representation of c.c.r. is sui table- for <fifferent 

v':'-lues of G .and. what physical picture corresponds to ,this 

representation ? 
•1" '~ :·· 

Our approach consists in the following'steps. 
,. 

(1) We construct a canonically quantized theory in representa-

tion ~(iVing , .a suit.able physic:(il interpretation . for-· G«1. 

Renor:JI!CI.lization ~cheme should be fixed. It,means ,that • 

* .one-parameter class R .. of R-schemes is chosen; . 
• < • < < • • (IJ.l . ' . .. ...· ' < 

* renormalization scale ~ is fixed by the relation 

. m(~) 
' 

~ 
- c 

where m(~) is renormalized mass and C. is- a constimt. 
• ' '. - • -< - : • ,. ~ • 

{ 

._ £;.~ 

(2) We perform can!Jnical- _transformation of .the field·.-variables 

and get the.representation-with the new mass -of the field;and · 

nonzero vacuum condensate. :The canonical transformation.•should 

be introduced in such a· way that the total Hamiltonian. has·- a 

3 
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"correct" form' in ariy' rep~esemtati~n (r) 

· H = Hr. :j_• Hr· + Hr. , . .f. VEr' 
0 I ct 

Here Hr· ·is· the ·standard free Hamiltonian. 
0 
' ·• · r . • . t ·, • ' .. . 

Hamil ton~an HI conta~ns ··the f~eld operators 

( 1. 2) 

The interaction 
~ 1 ' 

i ri' degree mor~ 

than tw·o. ·The:' constant Er has a sense of vacuum energy 

density. The:counter...:term operator Hr· is definedby Hr and Hr 
ct 0 I 

and corresponds to the same R-scheme 'in all phases. 

We consider R-scheme being the same in two representations 

with different masses m and M if 

* the ··same. Rq.L> -class is used in both. re~resentations; 

* renormalizatiqn ·scales p. and·· .v in the first dand secon'd 

representations.obey the relation 

m. _M .;. 

=-p. v 
( 1. 3) 

(3) We• perform· classification of the phases and: choose 'i.l'ie' 

phase Sl:li table··f()r a given· value of: G.· There' are' two mutually 

additional principles for this choice.· i.. repre~eritation ( r)· is 

suitable,:.if . ' 

(o:) the .vacuum energy .density. Er is ·smaller, in this. repre-

sentation than in others; 

";! 

'I 
l 

.I 
.1 

1 

.. ( /3) an effective coupling is weaker in this repres'entatio1;1' · 

-than in.otherpossible representations. 

,Usually energy'criterion(o:) 'is:used in phase transition theo:... .. 

ry~ But one can· see that· in .. ·QFT the· principle ·([3) is prefe­

rable due to several reasons: Vacuum energy has no· any signi-

4 

! 

ficance from.a .physical viewpoint since it does not. contribute 

to the ·S-matrix elements;· We are unable. to get ari exact vacuum 

energy; hence we are forced to compare the lowest contribution 

to this. energy for different repres.entations. At the same 

time, it is natural to suppose that the large c~upling 

constant in the Hamiltonian (1.2) means that the representa-. 

tiori of c.c.r! connected with·Hr does n6t describe the real 
0 

physical .·states and can not be considered as a suitable 

representation for the total Hamiltonian. Incidentally, our· 

calculations'in Refs.12,13 show that the principles (a)~ (/3) 

do not contradict each.other. We will use the criterion (/3) in 

this paper and omit all vacuum energy counter-terms. 

Now we discuss briefly the contents of various sections of 

the· paper. 

In sect. 2 we consider three-dimensional model and 

show stability of our method under the choice of R-scheme 
" ·.~' . . . . 

in the initial representation at least in.superrenormalizable 

case. 

In sect. 3 we investigate the vacuum . structure -,of ·four­

dimensional cp
4 

theory. The simplest consideration is provided 

by mass-independent R-schemes. Although the , exact • form. of; RG-

functions 7 and f3 is unknown, ·m we can consider .all logical 

poss,ibilities and make; some conclusions ... Independenpy of. the 

form of ; and f3 the_ phase with broken symmetry is absent in m . . , .. 

- four~dimensional theory (at least for mass-independent R-
' • <o 

schemes). This result is completely different from the si tua-

5 



2 3 . . -
ion in R and R where the- phase 'with broken symmetry 

sts/ 12 • 13 ~ We shall discuss the reasons for• such difference. 

Simple assumption about .. the. ,form of exact. 7 -function 
m 

provides ·the existence 'of two symmetric phases with different 

masses m and M=t(g)m. Interaction, in phase with mass- M is-de­

fined by the effective coupling constant. G( g) which is small 
.J 

for large g. One can conclude that ( 1/>
4

) field system exists 
4 

in· symmetric phases with masses . m and M in weak and ; strong 

coupling .. regimes, respectively. Our consideration of•, four­

dimensional model is valid for any mass-independent R-scheme. 

The: question about its validity in a more general case is 

open. 

In sect.4 we consider some speculations concerning an 

asymptotically free case. 

2. THREE-DIMENSIONAL 1/>
4 

THEORY ·· ;;; . 

2~1 HAMILTONIAN (1/>
4

)
3 

,\·, 

IIere we· investigate: the R...:scheme· dependence of· tne results 

obtained in· our previous paper/ 1.3 _~. '' 

First; of all '~te represent our' problem in a form comzinient 

for thi's investigation. 

The model' is superrendrmalizable. A'· finite·· number of 

divergent' diagrams 'contribute to the mass 'renormalization 

6 
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j 

-(Fig.1). The renormalized.Lagrangian tooks.like 

1 2 : 1 4 
L = - 1/>( D - m ) ¢ - -· g 1/> 

R 2 B 4 

The bare mass has the form 

2 2 2 ma = m (~) + ~m (~) 
'·· 

,The dimensionless perturbation coupling constant 
'· '-

g 
G(~) 2mn[j:i). 

is a.parameter;of the,,model. 

The Hamil toni an density in representation> with, mass m( ~) 

looks like 

H=H +H +H 
0 I ct 

1 ( 2 2 2 2) H0 = 2 rr + (VI/>) + m (~)~ 

1 2 2 
H = -2 ~m (~)!/> 

ct 
., ~. ·, 

- (2. 1) 

H - i 4 
1- ,4 g 1/> 

~ ·:· 

The operators 1/> and rr obey the standard canonical co~mutation 

relations. It has been stressed 'in the 'introductio~ that R-

scheme should.be fixed in the initial representation.,(2.1). 
~ o ~ • • •. i <' • ,l .I •, j ~ .. ' 

This, represen;ta;tion is suitable for G(~)<<1. 

2.2 CANONICAL TRANSFORMATION 

To ,,investigate . strong_ coupling, r:e:g~me G( ~)>>1, ,we: perf()rm 

, canonical , transformation to_. the vc;triables · ~. II with. -:the. -new 

mass M=m(~)·t and vacuum condensate B=const 

/J. ( 1/> , rr ) . ~ ( ~ + B, II ) , (2.2) 

accompanied by_ the scale,transformation. 
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IJ. ~ v = IJ.•t 

to provide condition ( L 3) 

m(IJ.) M 
- =- .. 
IJ. v 

Transformation (2.2) can be written in an explicit form in 

terms of the creation and annihilation operators (Bogoliubov 
..-1 

canonical transformation, • see Refs. 14, 17). 

As a result, we get· the following representation for 

.Hamiltonian density: 

H = H' + H' + H' + H 
0 I ct 1 

H~= ~('rr2 + (V~)2 + M2~2 ) 

H'= ! ·g (~4 + 4B~3 
) I 4 . . 

H' = -2
1 8m2 (1J.·t)~2 + 8m2 (1J.·t)B~ , 

~t 

H
1
= ~(. m

2
(1J.•t) '+3gB

2
'- M2 )~2 

+ · (m
2

(1J.•t) + gB
2 )B~ 

To provide the correct form (1.2) of the' tot~l H~mi.itoriia~ we 

put H
1
=0 and get the following equations for parameters 8, t 

m2(1J.•t) + 3gB2 .- m
2

(1J.)t2= .0 .. 
. . . 

[ 
2 . 2 ]' B m ( IJ.•.t) + gB .. = 0 · 

(2.3) 

Eqs. (2.3) describe the phase s'tructure'of the model. The 'solu­

tion B*O ·corresponds .to 'the phase with'. broken symmetry under 

~-+-~. Symmetric phase is 'de'scribed by the· solution B=O'. 
'!. 

Details can be found in Ref.13. Here we restrict ourselves to 

the symmetric case 'and consider. the R....:scheme'. dependence of 

8 

! 
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Eqs.(2.3). They are reduced to the following equation fort in 

the symmetric case B=O 

n?(IJ.·t)=t2 
m2 ( IJ.) 

... 
(2.4) 

The model at hand is superrenormalizable and we are able to 

calculate the running mass m(IJ.·t) exactly using different R-

schemes. 

.. 

3.1. ZERO-MOMENTUM R-SCHEME WITH ARBITRARY "MASS" 1J. 

In this scheme mass counter-terms are given by diagrams 

(Fig.1) with zero external momentum and arbftrary '1mass".·IJ.' i'n 
. ,. , I .· : , , , 

• '• • 4 .•• ·. •· •' •. , 
propagators. This is one of the possible in' (¢ ) ~ · ways to 

introduce mass scale IJ.. Let us denote 

m
2 

= m2
(1J.) + om2(1J.) +om2(1J.) 

.B · · · ' a b·• ... 
(2.5) 

where counter-terms correspond to diagrams (a) and (b) in 

Fig.1. They can be easily calculated 

om2( IJ.) 
a 

-3gl'l < ll> ., . 8m2 < ll> =.3! g 2 L , . <·ll> 
reg b · reg 

with 
ro 

l'l 
reg 

1 

( 2rr) 2 regJ duu
2 

. 2 u +1J.2 

0 L' 

ro (2.6) 

L '1 • . I --- r · dt (4rr) 2 eg -- e-
3

1J.t 
' . t 

reg 

0 

An appropriateregula~iz~tion'should.be introduced here. 

9 



.. 
Let the initial-representation (2..1) be constructed within 

the usual zero momentum scheme. It corresponds.to a particular 

choi.ce of JL in Eq.(2..5) equal to renormalized mass m, i.e. the 

condition-

iii(m) = m (2..7) 

fixes .the standard zero-momentum scheme within R-class with 

' ..J 
arbitrary mass JL. 

Eq.(2..4) takes the form 
'··: 

·-2 
m (m·t) 

. 2 (2..8) --- = t 
2 m 

Using the R-invariance of bare mass and Eq.(2..7) as the initial 

cond~tion, we obtain 

.. 
m2 -3gll (m2

) + .6g2 E (m2
) = m2 

reg reg B 
(2..9) 

~ 2 • 
= m (JJ.) -gil .. (JJ.) + 6g E. (v.). 

·reg · reg 

Eq.(2..9) can be rewritten as· follows 

iii2 (v.) = m2 + 3g(ll (v.)-ll (m)) - 6g
2

(E (JJ.)-E· (m)) 
reg reg reg reg 

' ' 

Now we can remove regularization and· get the expres'sion for 

· running mass 

iii 2 (v.) = m2 [t + ~ G (1~~-) + ~ G
2 

ln( ~)] (2..10) 

here G=g/2.rrm. The function iii2 (v.)-is given in Fig.2.. 

Using Eq.(2..10) with v.=m•t in Eq.(2..8) we get the ~allowing 

equation for t 

10 
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·1 

'I 

i 

'I 
I 

t 
1 

~- ~ ~-' ~ i.·-

2 3 . ) t - 1 + 2 G(t:-1 3 2 

2 _G: ln(t):'·~ 0. .<2..11) 

Eq. (2..11) has two··solutions. The first .t=1··· corresponds .to .the 

,initial representation .. Another solution .t=t(G) describes the 

second symmetric represemta.tion .. In· particular,·.· one. can ·:find 

the asymptotics, 

t(G)- .. ( ~- G2 ln(G) r 
G =-G- 3 .. 

( 

. ' . -1/2 

err t(G) . G))l. 2 ln(G)] . << 1 , 

here Gerr(G) is the effective perturbation coupling constant 

in the pha~e with mass M=t(G)m. 

2..2.. DIMENSIONAL REGULARIZATION, MS-SCHEME 

Here we use the fo.llow.ing ;notation 

c = 3 - d a = g/2.rr 

m2 = m2
( /.l) + om2

·. + om
2 

B a· , b 
(2..12.) 

m(/.l) is a running mass in the MS-scheme. Standard calculations 

give the ~allowing resuft for the diagram (a) in Fig.1 
·, 

. om2 = -3g m( /.l) __ rr __ , .. 2.n/.l r(1-d/2.) · d/ 2 [ · . lc 
a ( 2.rr) d ni(/.l) .. . 

~-... 

Putting d=3 we get finit~ result 

om2 

a 
- '3 - 2 a m(/.l) ( 2.. 13,) ' 

II 



Such finiteness is the usual artefact ··of dimensional regulari-
, ' " . '' ' . . ' "' 

zation if. physical · dimen~ion. fs odd. That is 'why we includ~ 

finite contribution (2.13):.into the mass-renormalization. 

Calculation of the diagram (b) in Fig.-1 gives the .following 

result for:- zero external momentum .. 

:E = ~4 a 2 r .!._ + ln(4rr.11.
2
.) - '¥ + o(c) ·] .-.· (2.14) 

reg t C m2 (·Jl). E 

In the MS-scheme we should introduce into the counter-term 

only the divergent part of this expression 

2 

omb 
3 2 1 - a . -4 c 

(2.15) 

U~ing Eqs. (2.13) and (2.15) in Eq. (2.12) we get the following 

expression for .bare mass 
' 

2 2 . 3 . .3 . 2 1 
m

8
- = m (11.) + 2 a m(ll.) + 4 a c (2.16) 

Let us .go to a new scale v in Eq. (2.16). The following change 

should be done (e. g. Ref.18) 

g ~ gnew (~r . Cgnew c~o _ g J 
Using this substitution we get 

2 2( )'.. 3 ( ) 3 2 1··· . 3 2 (11.) m =m v +·-a mv +-a -+-a ln-
B · 2 new 4 new ·c 2 new 1J 

·.with the obvious condition 

m( v) I = m(ll.) 
V=ll 

(2.17) 

(2.18) 

~rom Eqs.(2.16) and ( 2. 17).), we get the. fol.iowing 'equation 

i 
2( . 3 m 11.) + 2 a m(ll) + ~ a2 .!. = 

4 c 

= m2(v) 3 + ~- a2 .!. + -~ a2 . ln(t) +. 2 an'ew m( v) 4 new C 2 ~ew 

12 

1 

? 
·1 

.1 

t 
i ,, 

l 

l 
I 

After removing regularization (c~O) we get the equation 

2 3 · 3 2 ·(v) 2 3 · · · · m (v) + 2 a m.(v) -:- 2 !X ln ii - .m (11.) - 2 a m(I.L) = 0. (2.19) 

Solution of Eq. (2.19), obeying the ·condition (2.18) looks ·l'ike 

m(v)= - m(11.) ~a +/[2m(~) + ~a r + 6a
2
ln(*) ~ (2.20) 

.<;..·· 

The function m(v) is shown in Fig.3. The point v
0 

.(m(v
0
)=0) is 

defined.by Eq.(2.20) as follows 

Putting 

equation 

1J 
.0 

1J=J1.•t 

11. exp {-
mtll) [ .m(i..L) + a J.} 

2 < 11. 
. 2a . 

and m(v)=m(ll.)•t in· Eq.(2.19) we 

. 2 ·' 3 3 2 
,_t , - 1 + 2 G(t;-1) - 2 G ln(t) = 0 

; 

obtain the 

(2.21) 

Here· G=a/m(J1.) .. One can -see. that. Eq.'.(2.21) coincides with 

Eq; (2.' 11) :· Thus, the function t( ·) turns out' to b~ the same >in 

both R-schemes, although the running ma'sses iii(v) and m( v)· are 

completely different functions (compare·Figs.2,3): 

3. 3 !HMENSIONAL REGULARIZATION, ZERO-MOMENTUM R-SCHEME 

~ \ 

Let us change substraction prescription for the diagram (b) 

in Fig.1. We introduce· into th.e ·counter-term om2 not onl; the 
b . 

.;;·~' 

p·ole_ part of expression (2.14) but·also·its finite terms. It 
~. ;. - '· 

is a kind of .zero-momentum scheme. Bare mass looks like 
. 

.--: .. : .... 

13 
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2 /\2 > 3 1\ 
m8=~ (~) + ~m(~)+ 

3 . 2 
+ 4 (X 

[ 

. . ( 2 ) 1:. · : · 4rr~ c- '1E + ln ~ 
.. , • , m .(~) 

+ 'a( c') ].' (2.22) 

Going in Eq.(2.22) to a new scale v ·in a standard way, 

the equation 
..J 

/\2 . . /\2 3 ( 1\ 1\ ) 3 2 ( v) m (v) - m (~) + ~ ex~ m(v) - m(~) - ~ ex ln i + (2.23) 

' ' . . -. C' , 3 2 m (~) v l 
+ 4 ex ln = 0 

~2-frl2(v) 

..,:. 
we get 

The last term in Eq.(2.23) originates from the last term in 
. . ' ,, • . 1\ ' 

Eq.(2.14). One can see that the running mass m(v) defined by 

.Eq.(2.23) ,differs from the masses iii( v), : and m(v) 

(see , Eqs. (2.10), (2.19)). .Nevertheless,· substitution v=~·t, 

-lrl( v) =lrl( ~) •t . in Eq. ( 2. 23) leads ,to an equation coinciding with· 

Eqs.(2.11),(2.21). ;·,.::· 

2 3 A 3 A2 t - 1 + ~ ~(t-1) ~ ~ ~ ln(t) = 0 

e = g/2rrlrl(~) 

The difference in the dimensionless coupling constant is not 

important since this constant is a free parameter of_the equa-

tion. 
' ; ' '- ... .17" f 

Calculations undertaken in. this section do not 'prove the 

scheme invariance of Eq.(2.4) but they give us enough 
;/,', 

experience to conclude that Eq;(2.4) is stable under the choi­

ce of R-scheme although running mass m(~·t) in (2.4) depends 

14 

t 
j' 
1 v 

'. ~·~ 

f 

I 
\ 

on R:-scheme very strongly. The same conclusion·· is· valid :for 

the case a;fo. We can s'ay ·that the res;_ri ts .·of 'Ref .13 shoulc 

hardly depend on R~scheme and,· hence, they should'reflect the 

real physical properties ·of q,4· field system in R3
" 

3. FOUR-DIMENSIONAL 1/>4-THEORY 

3.1 HAMILTONIAN (1/>4) 
A 

_,; 

- .. · 

The renormalized Lagr~~gian looks like 

LR(x) = ~ 1/J(x)( o- m2 (~) )1/J(x) 
1 4 4 g(~) 1/J (x) + (3.1) 

'+i(z
2
-1)<P<x)olfJ(x):- 4 o~2 0L) q,2 (x) -1(z~:....1} g(~.) q,

4
(x). 

We<omi t vacuum energy counter,--terms :in. ( 3. 1·). The R-scheme .. in 

(3.1)· should be fixed. In other: words, R(/..t·>-class· is, chosen 

and-ratio~m(~)/~ is fixed~ 

The Hamiltonian density has the form 

H = Ho +.HI + Hct 

where 

1 ( 2 2 . 2. '2)' H
0
= ~ rr • (Vf) + m (~)~/> H~= ~ g(~) 1/>4 (3.2) 

H' = ![(i- 1
·- 1) rr

2 
• cl .2 2 

( ) . 2 • 2 . '2 ] Z2~ 1 <Vf) + q, om (~) + · 

~ (zt'~ 1) g(J) 'q,4 

15' 



Here ¢=¢(x), rr=:rr(x). , 

canonical quantization means that the fields ¢,rr are opera­

tors:and obey the standard equal-:-:time commutation relations. 

Representation, (3. 2) is. suitable for weak coupling .regime 

g(J.t)<<1. Having th~s in our mind we will investigate the 

strong coupling limit g(J.t)>>1. 

_.) 

3.2. CANONICAL TRANSFORMATION 

Let us perform the following canonical transformation 

{~.rr} ---7 {z;
1

/
2 ~ + z;

1
/

2
- B , z~/2 II } ( 3. 3). 

Here ( ¢, rr) are the- field operators with mass m( J.t), (~.II) are 

the field opera~ors .with mass M=t·m(J,t), B is a constant having 

a sense· of vacuum condensate. ·According to the equivalence 

condition ( 1. 3) this canonical transformation should. be accom-,-

panied by. the scale transformation JL-W=JL·t. This is the ori:-

gin of the presence of finite renormalization· constant z -in 
. ~ 

(3.3). 

The total Hamiltonian density takes the following form in 

the new representation: 

H'= H' + H' + H' + H 
0 I ct• 1 

H~ = ~[ II2 + (~~)2 + M2~21 

H; =_ ~ ~~ v) . [ ~4 + 4B~3. ] 
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H' = !·[( z~- 1 :::.1) II2 -+' (z'--1 )(V~) 2 ·] + 
,., .. ct 2 2 _ 2 _ _ 

- ' .· ,·. ',,,';-'' 

~ ~2 '[ om
2
(v) + 3( z~ - 1 )g(v)B2 ] + 

~ (z~ - 1)g(v) ( ~4 + 4B~3 
) + 

'• " :-: _r \ 

[ om2(v) + ( z~ - 1)g(v)B
2
_ Ja~ 

1 ·c 2 - :; 2 2 J 2 H
1

_= ~ m (v) + 3g(v)B - M ~-

[m2(v) ·+ g(v)B
2 J B~ ·. 

h~~~ v=~;t,~M;~(~)~t. .;, 

(3.4) 

To provide the correct form (1 ~ 2) o:f''th.e total Hamiltonian 

we put ii =o~ or equivalently 1 . 

2 - ' 2' 2 2 
'"m (J,t•t) + 3g(J,t•t)B - m (J.t)t =· 0 ' 

. a[ m2 (J.t•t) +,g<,J.t•t)B2 J =:= :~. 
(3.5) 

The' quantities m{J~·t),. g(J,t·t) and m(J,t)i, 'g(g) are' connected by 

the scale .RG.:,;:transformation and m(J:i·t) and g(J.t't) can :l)e 

obtained from the RG-equations 

.\ ~f(J.t•t) = f3 (g(J.t·t) .m~~~t) ) 

(3.6) 

t 
2 ' 

dm (J.t•t) = -·-rm( g(~~t),m(,i•t) ') 
J,t•t 

m2 ( J,t•t) ,dt 

with the initlal'c~nditions 

m(J,t·t) m(J,t) for t = 1 

'g(J,t·t) = g(J,t) for t = 1 

17 



. Two possibilities foliow ... from the ~econd, Eq. (3. S)f 

(symmetric phase) and B~O·(broken symmetry phase): 

3.2. SYMMETRIC PHASE (B=O) 

B=O 

Putting B=O we get an equat1on for t in the symmetric phase 

= t:a ( 3. 7) 

We should note that 

m2 (J.L·t) 
m:a(.J.L) 

Eq. (3. 7) has the~same form as Eq.(2.4) for 

(¢
4

) • The renormalization group shows itself ina superrenor-
. 3 :·. ·' ·, ' ·. 

malizable three-dimensional case in the. simplest . form and we 

are able to solve (2.4) exactly for any R-scheme. The situa-

tion is quite different for four-dimensional model and our 

further .. · consideration is concentrated around RG-equations 

. (3. 6). We must choose certain R-scheme. We. will stress that we 

.. hav.e .. · not .... any general. proof of the scheme invariance of 
c-';--, 

Eqs.(3.5). At the same: time our calculations with ( 4> 4) in .. ' 3 

sect.2 allow to assume that Eqs.(3.5) should hardly depend,on 

the choice of the R-scheme. 

Eqs. (3. 6). take a simple form in any mass-independent 

R-scheme and can be easily solved as follows 

/· 

m2.(J.L·t) = m2 (J.L) exp 

g ( J.L• t) 

J dx 

g ( tll 

1 
i3[X) = In( t ) 
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rr:: :~~~) r 
~ ~ ' . 

g( J.Ll 

(3.8) 

Appreciation of the first Eq. (3. 8). in Eq. (3. 7) leads to '.the 
. ·, "'·· ·' :· ... , . ,... . . 

equation 

g!J.L·tl (x),,, .l dX ;,?C) = - In( t
2 

) (3.9) 

g ( J.Ll 

It is convenient to use the second Eq. (3. 8) in Ec{ (3~. 9). 'As 

a result, we obtain the following equations 

G 

2 + o (x) J dx 

g 

In( t.) 

(3(x} = o 

G 

= J .dx 
1 

i3[X) 

g 

where we denote g=g(J.L), G=g(J.L·t). 

(3.10) 

Eqs.(3.10) define the, 'symmetric representations of the 
. . . / 

model. Since exact function's o. ·and (3 ·are unknown, we have 
m. . 

nothing to do as to consicler all i~gical possibilities. 

Obviously, a trivial solution t=1, G=g exists for any om 

and (3. It corresponds to the initial· representation (3.2). 

The behaviour of o 
m 

and (3 at·small x can be c~lculated per-' 

turbatively. Integrand in the .first Eq,(3~t0) f~~ x~O behaves 

as follows 
2 +1- (X) 

F(x) = m 

(3rxr: :X~. 
2 

2 
(31q. 

(3.11) 

here a=3!x/(4rr) 2 , · (3
1
=3/2. It is known that the • (3-function 'is 

positive for xe(o,g*) where uv..:..fixed point g* may·be'finite or 

infinite. If the function F(x) ((3.11)) does n~t change sign 
i 
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in the interval (o, g*); then- Eqs. (3.10) have m1.ly trivial 

solution G:g, t=1. 

Another possibility is illustrated in . Flg. 4. The second 

solution of Eqs. (3.10) exi~ts if the function F(x) changes 

sign at any point g e(o,g*). Let us assume that such situation . c 

takes place. For example, let ~ =-ax, ~=bx2 (g*=ro) with a>O, 
"' , . m 

b>O. Eqs.(3.10) take the followihgform after integration 

.!. +! 
G g 

b•ln(t) 

~•ln(§.] = 0 2 " g 

.!. - 1 
g G 

Asymptotics of G(g) and t(g) in a strong coupling limit look 

like 

2 
G(g) ~ <<1 

9
- a•ln(g) 

-a/2b 

. ~. t(g) ~ g g- <<1 

This ·example illustrates 
. :' ~ '-~ ; '··- . the following general picture . 

The qualitative dependences G(g) and t(g) are given in Figs.S 

and 6, respectively. The effective,coupling constant G depends 

:·, 

20 

'. 
on·· g · oril y, · . moreover ,;. ~ ~ 

G ---t g * if g ~ 0 

G = g if g = g~ (3.12) 

G ---t 0 if g ~ g * 

and, since ~(x)>O, 

t(g) ---t 00 if g ~ 0 

t(g ) = 1 
· •. C 

(3.13) 

t(g) ~ 0 if g -~ g* 

From comparison of the coupling constants in (3.12) (see· 
• ' ' ' >; 

Introduction) we conclude that our system exists in the sym-. 

metric. pha~e with mass m(g) i.n the weak. coupling limit (g~O), 

but another symmetric phase with mass · M«m( g) and effective 
·, ·' 

coupling· constant G(g)«1 turns out to be suitable in the 
";• .. 

strong coupling 1 imi t- g~*. 
1 • ••'"'' tC, 

a phase transition A .kind of 

takes place at the point g=g .. 
. ' . ' . ' ' c. 

.,~ 

3.3. DYNAMICAL.SYMMETRY BREAKING (B*q) 

The Hamiltonian H' . in· (3:4) reflects the well-known fact 
c l :: ' .. · 

that the counter..,-terms .for cJ>
4 -model with ~pontaneous symmetry 

• (, J' "t 

breaking are defined. completely by. the counter-terms of the 
'.· •• • : ' > -.· •) ~ :.··~; ' \ •• ; '·,: • ' r; 

symmetric model (e. g. Ref .18) ~ Hence, .the .running mass. m(g•t) 

and coupling constant g(g•t) ·· in ·Eqs. (3. 5) are given by the 

same Eqs .( 3. 6) both for. B=O and B*O . 
. ·; :. ( 
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Eqs.(3.5) for B~O-can be easily rewritten as follows 

2 
B2 =- m (t.t•t) 

g(t.t•t) (3.14) 

2 2( t =-2 m t.t•t) 
2 m (t.t) 

Eqs. (3.14) have not a real solution since m2(t.t•t')>O Vg(t.t), t 
' . .J 

(at least within mass-independent R-schemes). We conclude that 

our system (3.1) have not a representation with B#O; and 
/ 

hence, dynamical symmetry'breaking is ~bsent in (¢4 ) 
. 4 

Thi's result diff~rs 1
from th~ situation in (¢4

) where the 
2,3 

c~'c. r. 'representation with a#:o exists, aH.hough phase trallsi-

ti.~~ ~ccompanied by symmetry breaking takes place only in 

<¢4
) 

112
' 
13 ~ We will st~ess that this ··difference originates 

; ·' ~ 2 

f~~m an essentially different behaviour of t:tie ·'running mass 
, . ~ . , . , .. 4 . . :4 ., ; . . :_ c~,. ~ : . , ! ~·. • ,.. _. : 

m(v) in (¢ ) 2 3 
and (¢ )

4
• One can see from Figs.2,3 that the-

' . 

re are such values of scale v that the running mass turns out 

to be negative for all considered R-schemes. Situation in R2 

is analogous. At the same time,· the running mass is positive 

in the four-dimensional case. 
·. ,.,, ' 

~' .< ', 

Absence· of symmetry breaking in (¢4
) is not in. contradic-

4 . . 

tion with the following heuristic cons.ideration. As B. Simon 

has noted in' Ref. 16, intuitively clear reas~~ for symmetry 

breaking in ( ¢ 4
) comes from normal operator 

. 2 ordering, in 

other words from the bubble diagram in Fig.1,a. Its contrfbu-
. ~ : 

tion ·changes a sign of the bare mass in the strong coupling 

limit. A contrary picture takes ~~~ce in C¢4
) sl~ce t·,;o 

3 
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.. , 

diagrams contribute' to m
8 

with different signs . (I:ig.1). The. 

bare mass turns out to ,be positive 'for large g and. symmetry 

breaking is absent. The situation in ( ¢ 4
) :is completely dif-

. "4' 

ferent since ,the bare· mass is represented by alternating 

series. This series may be positive for any value of g and the· 
) 

reason for appearance of the phase with broken symmetry may be 

absent at all. 
. . . . . 4 : 

We can . now compare the behaviour of• the ¢ -~ystems in 

space-time Rd for d=2,3 and 4 .. The.··situation is presented in 
. . 

Table 1 ·and reflects correlation between renormalizat.ion and 

phase structures. 

4. SPECULATIONS 

Let. us consider. a .toy theory- model (,1.'1). with·n~gative 

coupling constant g~ -g. Such model turns out to be asympto-

. /19/ . . . . . 
t1cally free . , One can see that the first Eq. (3.10) is not 

sensitive to the sign of the 13:-function. Hence, the re~ations 

(3.12) ·are not changed and, Fig. 5 keeps qualitative· validity. 
' ;' '. '. ': ' . ·. . "\ .. " ~· <: \ ) 

At the same time, the function t(g) is changed cardinally, as 

it follows from the second Eq.' (3; :io). We :have a 
. '' <' ' .. >· 

contrary to (3.13{ (compare' Figs. 6, 7) 

t(g) ----7 0 

t(g) ----7 00 

G -----+ g 

G -----+ 0 

* if g ---t 0 

if g ---t ,g* (4.1) 

picture 

Such a situation in the strong coupling regime g~* (here g* 

is an, infrared fixed point) has the following physical·inter-
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Table 1-- .: 

.. · G « 1 G » 1 

..- M2 2· 
R2 

2 ~-+ ~ ~4+ gB(g)~3 
2 m 2 g 4 SSB 

f- 2 tP + 4 tP 
.. R3 . ' 2 

~ ~2 + ~ ~4 . . 
.J 

g; ( tP2 - tP2· ) 2 M2 2 4 
R2 .I·· 

.. . 0 ' 2 ~ + ~ ~ + gB(g)~3 

2 SSB 
f- m 2 g 4 A = 2 tP + 4tP +m ~ ,p

3 

Ra. 
. 2 2 

~ ~2+ ~- ~4 
2 4 

'M2 2 :M:L N-l2 
2 ~ + 2 [ ~ + 

2 .N 
l I 

~ [ ~P 2 +. ~[Nf ~: + ~2 r + 2 I 
R2 

I 

g [ N 2 
- [ ,p2· J 

gB~ Cf~: H2 ] 4 I . l 
I . 

~ 

.. . SSB, ,. 
: 1---'-

R3 
M2 N N 2 

· [. 2 · g[ 2 J 2 ~ + 4 [ ~ I I . I ; . I . 

.. . 2' M
2 

2 •. 1 ' 4 m 2 1 4 
I 2 1P ~ Ji9tP 

2 ~ + ;jG (g)~ 
eff 

R4 
' :•:· 

., ( mass-independent if 3g E( 0 I g~): 2+;r =0; 
c m 

I 

R-schemes ) - - - - - - - - - - _, 
? ~f: Vge(o,g*) 2+;r >0 

m 
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o-e 
(a) (b) 

p.,_m P.a p. 

Flg.l 
Mass renormali~alion diagrams 

for (rp h 

Fig.2 
The running mass given by Eq.{2.10)., • 

I 

m(v) 

m(iL) 

00 v. p. II 

Fig.3 
The running mass given by Eq.{2.20) 

•I G(g) -------------;~ sr--- : 

g. 

I 
I 
I. 
I 
I, 
I' 
I 
I 
I 
I 
I 
I 
I 
I 

g• g 
Fig.6. A 

The effective coupling constant for (rp ), 
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I 
I 
I 
I 
I 
I 
I 
lg 
I 
I 
I 
I 
I 

-\ I 

I 
I 

x· 
Fig.4 

Possible behaviour of the integrand 
In the first Eq.{3.10) 

t(g) 

. 8• Fig.6 ,; g 
Ratio of masses in, symmetric phases 

. for (rp ), 



pretation·. Our system exists in a 'phase ,_with mass M=t(g)m » m; 

moreover, the interaction between particles is ·weak G( g) «1. 

Asymptotical relations (4.1) suggest that two-point Green's. 

function becomes entire in the limit g~* In other words, 

although an effective coupling is small and approaches zero in 

the limit g~*, a particle cannot be created because of the 

infinite value of its mass in this limit. This is a situation 
_.; 

of the so-called analytical confinement. 

This example illustrates a scenario of confinement which 

may. turn out to be reliable in physical asymptotically free 

models. 

t(g) 

. I 
I 
I 
I 
L 

go . 
g g 

Fig.7 
Ratio of masses for asymptotically free case 
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Etl>HMOB r.B., Hep;enbKo C .H. 
~a30BaH CTPYKTypa Tpex~ H 

~ ,~,4 
qeTwpexMepuo~ ~ TeopHH nonH 

PeJ!<HM CHnbHOH CBH3H g ¢4 TeopHH 
sper.i'euu·Rd npu d =·3,4 »ccnep;y~TCH Ml 

. KHX npeo6pa3oBaHHH H peuopMrpynnw. rr, 
· ODHCbiBaeT CHMMeTpHQHYIO OTHOCHTenbHO l 

CHCTeMy .KaK DpH Manoli, TaK H DPH 6on: 
3H g. Cpasueuue co cnyqaeM d = 2 yK; 
rq~e BnH.fiHHe CTPY~Typbl nepeuopMHPOBKH 
BYIO CTPYKTypy, 

.• } f 

Pa6oTa nwnonueua B fla6opaTopHH Te< 
·arnm. 

llp~npHHT O?'Le.ttHH_enuoro HHCTHTyTa .R,ttepHLix uc 

I 

Efim~v G: V. , Nede lko S. N .' 
Phase Structuie of Three-
arid Four-Dimensional.· ¢4 Field Theoq 

"'. .... ' 

.Strong coupling regime of g ¢4 thee 
Rd for d = 3,4 is investigated by the 
nical transformations and renormaliu . . 
shown that the model describes a syst 
transformation ¢-+.:_ rp both. at small ar 
constant g • Comparison \-lith the ca~ 
crucial influence nf the renormaliz~t 
the'thenry ori its phase. structure. 

, The investigation has been perforn 
·tor~ of Theoretical Physics, JINR. 
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