


1 Introductlon Fa

The application of the quantum-ﬁeld theory (QFT) method mcludmg‘
a renormahzatlon group. techmque (RG), to hydrodynamlcs has shown
the ablhty of QFT to describe genera.l physical laws of the isotropic tur-

- bulence. - ThlB a.pproach has been ‘successfully used for the: theoretrcnl .

Aexplanatlon of the phenomenologlca.l Kolmogorov power la.w [1 2].. Fur-
: thermore, the theoretical estimation - 3, 4, 5] of Kolmogorov constant -
was done. The RG techmque has also been a.pphed to find the critical
mdexes of composlte operators presented m energy-momentum conserva-
. tion laws for the turbulent hqllld [6], in a passive admixture problem [7]
~and in stochastlc magnetlc hydrodynaxmcs (MHD) [8]. The influence of -
“ 'the &msotropy on the- turbulent current in - above mentloned framework‘
“was. recently studled [9, 10] L ;
" In this paper the. RG technlque in the quantum ﬁeld model of gy—‘ §
“rotroplc MHD is, used. The results obtamed for ordinary MHD [g] are -
wgenerahzed to. the ca.se of the. gyrotroplc medlum The we]l known,g :
- stochastic model of the sta.tlona.ry isotropic turbulence for the incom-
~ pressible, medmm Wyld:model (WM) [11] is. consldered as a starting
. point. It is expressed in terms of the Na.vrer—Stokes equatlon for, the .
_ velocity field and the. equatlon for ‘magnetic field driven by Gaussian .

‘random forces w1th given 2 X 2 matnx D of the hydrodynaunc, magnetic . -
* ‘and mlxed noise correlators The forces srmula.te the stochastlclty of the: .

. medmm The concrete form of D i i8 to be chose.on' the’ ‘basis of certmn; \
' phenomenologlcal conceptlons oi' the mterna.l turbulence mecha.msm
. In ref. [8] the multrphca.txve renormahza.blhty of the qu&ntum ﬁeld :
MHD has been proved for the general form of this. matrix. It provided
the posslblhty to apply the whole standard RG technlque and to study .

an asymptotlc beha.vrour oi' the theory. The existence of two infrared-:

stable fixed pomts ‘was estabhshed These pomts induce the existence of .

“two cntlca.l regimes: the trivial magnetxc Tegime a.nd the kmetxc one (the i
later:is of the Kolomogorov type) L «
~ The main problem of stochastic turbulence is an mfrared one. It o
. consists in the existence of infrared smgula.ntles in series of a perturbatrve
theory for the correlation functions in the case of the physlcnl energy
pumping. The direct summation of this smgula.ntles 1s not a trivial
problem This situation has its counterpart in the cntlca.l phenomena
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’ty.he'o‘ry. It coula b§ sélvéd by rounidabout and well‘:"k;ﬂow'xi"’Waj"’ usngG :

technique.in both cases.

- There is ‘an addition’gliprdblerﬁ:iﬁ'the gyrotrépig MHD tﬁé msta.bﬂ.
ity of the theory, induced by the exponential increasing of the magnetic-

_ fluctuations in the large scales range(see e.g. [12]).  The elimination of

 this instability leads to the formation of large-scale magnetic field. Thls S

type of the hydrodynamic energy transfer to the magnetic energy, by

the instability mechanism, is called a turbulent dynamo. The removal
 of the instability in quantum field gyrotropic MHD can be achieved by =

‘means of a nice and very well known spontaneous symrmetry breaking .
chan ' ‘mag- '

mechanism with'the follOwing; creation of ]ifdr_hdgéiiéo;usj station Iy mag-.

. netic field. The special case, when only the hydrodynamlc noise doesnot i
* vanish, was shown in [13] and the results of the RG analysis for the or-
dinary MHD [8] were used. In this particular casq,jonly‘f‘,];e"li‘(oh.zrxpgorov‘ i
 critical regime is presented in ordinary MHD, and the gyrotropic MED
" is not different from the ordinary one in meaning of critical behaviour.

‘Thus; the spo_ht#nédus creation of ‘;hag'hetic field igfa property ofcntlcal o

Kolmogorov regime. = -

“The critical properties of the gyrotropic MHD are not known in the
" case of the arbitrary noise matrix D: To provide the multiplicative renor- - i
" malizability and consequent application of RG ‘td'b’éy'ngé&es‘s”ar‘ly to gxﬁgqq e
~ the theory by means of the extra dissipative terms with-a nev‘vv.“gylfqt‘r‘qp?g L
- Prandt! numbers. Therefore; also a critical beh&vidpf”df this gyrqtropu;;,,"‘ i
- MHD is more complicated. Apriori, the existence of the former stable =
- regime of the Kolmogorov type is not clear. If it-is existed, the answer
" to the question about the attractive region of such Tegime is necessary.
' In one-loop approximation, the existence of the critical regi@gg'p}gl'l-
“tioned above for ordinary MHD are“also demonstrated’ mgyrotroplc o
" 'MHD.VThe*larﬁge range’ of the physically allowed ‘quantities of :\t‘]‘ile gy-
" rotropic Prandt] numbers is from the atiractive region of the Kolmogorov
regime. It was established solving a Gell-Mann-Low equations for the in- -

variant charges.

| 2 The formulation of the problem

 Theinteraction of electrically neutral conductive turbulent medium (with
the unitary magnetic permeability ) with the magnetic field is described

~ by the MHAD equations driven by random forces. These equations for the

incompressible medium have the following form (see,ie. [8]): = .+

where V; = 8, + () is a covariant derivative. The first equation s the -
known Navier-Stokes equation for transverse velocity field ¢(z) = pi(x, t)
~with the ag']ditionplwlibhlinea;'{:@qtributioh of the Lorentz force (the lon- .-
gitudinal contribution is ascribed to pressure p)-The second equation for

-magnetic field §(z) = 6;(x, ) (it is connected with magnetic induction B

by the relation 6; = B;/\/Ang, where pis a medium density) follows from

the Maxwell ‘equations for continuous medium. The magnetic diffuse
coefficient v’ coincides with the coefficient of molecular viscosity. in the

o Vil = VA (00)e+FP

dimensionality. Further, the relation v’ = uv is used with dimensionless
inverse magnetic Prandtl number (PN)w. =~ .
The random forces are assumed to have a Gaussian distribution with
' <'F >=0 and given 2 x 2 matrix of the noise correlators D =< FF >.
The matrix elements are: the hydrodynamic 'D*® noise, the magnetic -
D% one and the mixed D** one. They simulate the specific form of the
energy pumping into system, which compensates the dissipative losses. -
'On the one hand, the symmetries of the system restrict the form of noises,
and, on the other hand, these noises make the possibility ‘of statistical
imulation of some symmetry breaking, for example, the ';féﬂex'symmetry.'

. Théi-eforé,‘tlie form of “tlfie equations for the ordma.ry and gyrotropic *

MHD is the same.’ The difference is only in the form of the noises (this -
formwill beso lnter). e (e
* The problem (2) is equivalent to quantum theory with a double num-

.- berof the fields ® = ¢, 6, ¢, ¢’ in accordance to the general theorem of
| - stochastic quantization (2]. The corresponding action take the following

form:
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Herea.fter in: the slm.lla.rly expresslons, the mtegratlon over x, t an,d the
traces over the vector mdexes are 1mphed The auxrha.ry fields ¢, 0’ have

the same tensor structure as the fields ¢, 0, i.e. they are vectorial and

“transversal. As it is usually in QFT, the ‘action (3) is considered” t,o ’be
unrenormalized with the bare constants marked by the subscript ”0”
The basic obJects of the study are the Green functrons of the. ﬁelds ¥

“or the correlation functrons and response functions in the tenmnology

“of the original problem (2) They can be determmed\by vmeans “of the
generatmg functronal G . S

e = / D@ezp[s«b) +A<I>1 j’:fj'; @

Here, D<I> denotes the functrona.l measure of the mtegra.tlon over the ﬁelds o |
- P w1th all normahzatron coeﬂicrents The Green functlons are the func—

ol
tlona.l derivatives with respect’ to an external sources A = A'P Ao A'P A
ie. they are the functrona.l a.veraged values of the correspondmg number
of the fields ¢ with a welght ezp[S($)]- The eqmva.lence of (2) and. QFT

(3) means, that Green functions determmed by (4), are equaled to corre- |

| lation ones, obta.med 1mmed1a.tely by the averaging of the solution. of the

g equations (2) wrth a werght e:z:p[——F D~'F] over. the externa.l random

forces ‘

The Feynman dragra.mma.tlc expanslon of the Green functrons 1s con-;

g lmes in the dmgra.ms) A=K can be obtamed from the squared part

: ~of the action $9K4. "The exphcrt form of the matrix A is given in ap-
: pendrx Ifor the extended theory. The non-squared terms in .(3) generate :

the vertexes m the dragrams After the symmetnzatron we  have: v

90'(903)40 = %%v"ax%w ' 90 (93)9 = <P.vux€ 0: |

§'(p0)0 - 6'(00)p = 0.5;40, 1
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o v.,z = z(kz&, + k,6il): v.,z = z(k Sl ~ Iczb'zs) (5)

Now, we choice the concrete form of the noxse matnx Din the momentum-f
frequency (k, w) representation. These noises are transversa.l for the in-
compressible liquid. The action (3) must be a scalar in the ordma.ry

o (non-gyrotroprc) MHD The field pisa vector, f-a pseudovector, there-

fore the noises DW and D% are the tensors, i.e. they are proportrona.l
to’ transverse projector P, = 6, ~ kik, [k (k =| k [), and the noise D¢
18 a pseudotensor "There is only one transverse pseudotensor of second
rank - ‘the trace e.,zkz/k (e.,z - full antxsymmetnc tensor of third rank ) .
, The action for gyrotropic MHD can possess a scalar terms as well as

a pseudosca.la.r ones. Hence, the tensor structure of all noises is a lmea.r_,}
combination of both tensor and pseudotensor The correlators have s".
followmg form: - ‘ - e e

s Dgw _— govs k4—2u-25P1 Doo - goV3 k4-2u—2acP2 ‘ .

Lo e DW _ gousk4—2n—(l+a)cps - ', L (6) |
Here, e = P., +zpe.,zk1/ k wrth some new dlmensronless rea.l pa.rameters
p= pl,pg, Ps, satisfying the condrtron | P |< 1,03 <|'pip2 | ‘Simultane-
ously, the standard scalar parts (8] of the noises are explicitly written in
(6).. The constants do, go, g0 play a role of the bare coupling ones, 2uis.
the dLmensron of the space k. (we shall be interested by the case 2i =3, -
at: last), a, € are free parameters of the theory ‘The value ¢ = ‘2 corre- -
sponds to the Kolmogorov energy pumping from infra-red region of the -

. small momentums k. Notlce, that the | pa.rameter € is independent on the :

dimension of the ¢ space. In dimensional ; regulanzatron, which we use, it
plays the same role as’ the analogical one in known (4-— e) Wllson scheme o

14]

3 Renormalization .

As usually, we solve the mrtra.l mfra.red problem for the}physrcsl value - |

- e=2by transfer to the region of such va.lues €, where the ultraviolet di-

vergences (UD) appear. For the value ¢ = 0 (the limited case) the theory -

- is.becoming logarithmic one (the bare coupling constans are becommg \

dxmenslonless) In this case the power of the UD is mdependent on the
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' order of the diagrammatic expansion and these UD ‘can be ehmmated

by some of the procedures of the ultraviolet renormalization. After that,

the RG technique can be apphed a.nd ‘the return to the former physlca.l .
value of the parameter ¢ is possrble In drmensronal regulanzatron the -
UD manifest themselves like the poles of . They can be eliminated by P
the addition of the appropriated counterterms to the ”intermediate” ac- ‘-
tion, which could be obtained by the replacement of the bare parametersf

eo in (3) to renormalized ones e: eg — eM?%, where d.; is the scaling di-
mension eg (see later), M is a scale setting parameter The counterterms’ =

are. formed of the superficial UD, which are presented to one—partrcle

@

~ irreducible (1-PI) Green i'unctlons [15] 1If these counterterms have the = L

same form as the terms of action (3), the uD can be eliminated by re-j"‘ﬂ
definition the parameters of the original QFT. The theory 18 becomrng“'

multiplicatively renormalizable.
The classification of the UD by power countmg is possible. MHD is

a double scaling theory. All para.meters and fields have a momentum d?, -
frequency d and total d = dP + 2a¥ sca.hng dimensions [8] They are

’ shown in table

' fTable

-lmm-mm 9,95 9”5 U, o, po_ L;;}'
; 2p+1 10 2ae (1+ae e I s
& 1' 5| 1» 0 — —

2p-—‘ 1 O J:

- 'The scaling dimensiOnahty of Nq,-partlcles 1-PI Green function T lS I

“dp=2u+2— Ngdg, Nods = N,d, +Npad +Nada + Ng:dg:

"The superficial UD are slmple polynoms of the momentum and the fre- ;f:
quency. The power of these polynoms is determined by the formal ultraf
_ violet index of the divergence § (UI). In the logaritmic theory (dg =0 -

for all gy) it takes place § = dp. Hf § > 0 the diagramm possesses the UD.
In this theory the "real” UI §' = 6 —

6

Ny — Ngi is used too [2]. It shows,‘ e
that the real power of the divergence of the diagrams with external fields o
¢’ ,9’ is always less then the formal one. ‘It should be noted, that 1-PI -

Green functlons wrth N Na = O are equa.l to zero [2]
The followmg 1-PI Green functlons can posses the superﬁcra.l UD

<> <88> <<p9> <9’<p—> (6 26'_1)

A",a<go<p<p> <<p’€€> <<p<p€> <€’<p9> <g’gg>
‘ (5_15-0) ,,,,, B

In the ordma.ry MHD only the 1 PI Green functrons < go {7 > < 9’9 > :
and the vertex < ¢'66 > possess the UD [8]. The’ correspondmg coun:
terterms are: ~ vo'Agp, u9’ Ap and <p' (969) Other Green functions have; “
not. the UD due to Gahlehan invariance (GI), reflex symmetry a.nd the\
property ‘of the transverse of antisymetric vertex (5) (TV) kit =07
In gyrotroprc MHD the reﬂex symmetry is broken, therefore, the UD

‘ ean be presented in 1 PI Green functrons with’ odd sum of the extema.lk.

ﬁelds 6,6". The vertexes < <p<p9 >, < 060 > do not possess ‘the UD

due to the same reasons - GI and PTV. Thus, UD’ remam only in ‘Green

functlons <. <p’9 >, < H'go > and generate the’ counterterms ~ ucp’AG
v’ A(p The terms of such form aren’t presented in the former action (3)..

“For this r reason, 1t is necessary to conslder the’ extended theory with' the :
' addrtrona.l cross dlssrpa.trve terms va’A@ wuﬁ'A:p We wr]] call anew

tota.lly dunenslonless parameters v, w as the inverse gyrotroprc magnetrc"“

. (Prandtl numbers (GPN) 'To determine the physlca.l region of the value
of both GPN and PN to solve the lmeanzed equations MHD (2) without
'external forces. These equatrons wrth cross dlssrpatwe ‘terms ha.ve the A

followmgvectorform T TP S R T RN S
0 =70, w‘h‘erje‘«‘qsa(%g‘;,) LT G B

The solution is (in the momentum-time representation):r ey

050 = eap(-0t4()

' The physrcal solutrons must be attenuated thus the real parts oi' the ‘
,ergenvalues (EV) of the matrix & must be posrtlve The physical region of

PN and GPN can be determined from this condition. The EV are equal
to (1 + u)(l + \/1 —4(u-— vw)/(l + u)7/2 In the general case they are

7



complex. If simultaneously, u > —1,u > vw, vw > — (1 - u)2/4 then
the EV are real and positive. - The correspondlng solutrons are clean-

. attenuated. The oscillated and attenuated’ solutrons are obtamed for the

"cweu> -1 and vw < —(1 - u)*/4.
T Itis necessary to emphasize a following comment. “The orders Of

usmg dimensional regularization are only a set of some formal' rules, '

‘ . allowrng to simplify strongly the analysis of critical behaviour of the the-
““ory. There aren’t the counterterms with dimensional parameters because
the parameters of ultraviolet cutoﬁ"s type A are absent. However, these

'mfrared-slgmﬁcant couterterms can appear in ordinary scheme with cut-

- off (for examples, the counterterm A%¢? i in the ¢* theory) The ‘initial
" action must possess the correspondmg mass terms The renormahzed
' fcoefﬁcrents at these terms must turn into zero in the critical reglme The
dimensional scheme 1gnores both the terms of the initial action and cor-
’ respondmg counter terms. This procedure is. selfconslstent and provrdes
the correct results for the anomalous dmensrons In the gyrotroplc MHD
the Green functlons < 6’ 8 >, < 6'p > (in case 2;1 = 3) also ] possess the
: i'drvergences of such type The correspondmg counterterms have the form
xAB’rotG, xAB’rotcp In one-loop approximation x = X19 + X29' + x3g

X= X9+ X29’ + xag "The numerical coefﬁcrents depend on the param— w8

“eter u, v, ., The ﬁrst rotor term generates the mstablhty “of the' theory
, Therefore, lts duect insertion into the action (3) is not allowed. This term

can’ be ehrmna.ted in a.nother way using the mecha.nlsm of the sponta.neous
symmetry- brea.kmg [13]. On the other hand, 1t can not be done for the

‘ arbrtraryconstantsg,g,g ,butonlylncaselfg =g" —v'—w-Oand
‘g,u# 0. Later. we. ~will see, that it corresponds to Kolmogorov reglme

" That way we are interested in this regime. It can be ‘easily see, that

X = 0 in this case. It means, that the second rotor term is also absented.
Note, that the last term doesn’t generate the instability.

4 RG analysrs

In thrs section the extended gyrotroprc MHD with the cross dlssrpatrve
" terms is consldered The correspondmg actlon SG has the followmg form

SG(Q) S(Q) + voVofp'Ae + onoe'A‘P ,7 , (7) S

‘ for the ﬂ-functlons

_ that the theory is ﬁve-charged \

- Here, S(<I>) is the initial action Q). A]l UD can be ehmma.ted usmg
- five mdependent renormahzatlon constants Z., 1=1:..5 We obtsm the

renormalized, actlon T o

- \ IDW 9"‘D3091;A' \"jDPGQI"» H’Dﬂ"sp’ "
5%@) = ;f et
‘ @ [—-0:90 + ZluAgo + Z,uugo'AH (goa)tp + 23(90)0] +

0~046 + Zyuv A9 + waVH'Acp (v9)0+(68)¢] - (8 )f

Here’ DR denotes the renormahzed noises.” The action (8) is. connected,
with’ unrenorma.hzed one (7) by the formulae of the multiplicative reno-
malization: SZ(®,e) = S9(Zs,e0), where: Zy are the renormahzatlon
constants of the fields qS The renormahzed para.meters e a.re rela.ted to
the bare ones; «

go = gM ‘Z %= g’M 2“29' o= g”M(”“)‘Zg"

' po-p foraﬂ P;' Vo-—-VZ uo-uZ vo—-vZ wo--wZ (9)

", = 27 z,, ..z1 Zs z¢. z-Sle’a S
=% Z. z-lz2 Z, = z-lz4 ,za _z—xzs.j;
:Zv - Z ; -1 Zs = Z 3112 (10)

The RG-functrons - ﬂ-functlons and the anomalous dlmenslons of the
"‘ﬁelds To a.nd the para.meters 'yc can be expressed by the renormahsatlon

constants ‘Z: R Foo ws ey _
Yao = DulnZasy By =Pug 9=0,0'" wv,w (11)

Here Dy = ME: 357 |eo denotes the denva.tlve with respect to the parameter

.M atthe ﬁxed values of the bare parameters o. Later one will be used the

similar operation Dy = M 5 |., at the fixed values of the renormahzed
parameters e. Using (9), (10) (11) we obtain the- following expression

o g(—ﬁe + 371) ﬂg: = g ( —2a¢ + 371 )
ﬂ = g (-—e —ae+3y=1/2%) fu=uln - 'rz) >
e = v('Yl - Y+ 1/273) Bu = w('n - s + 'Y) (12)

'5R.eplac1ng g K— a(gg’)llz one can see;- that §; = 0: It means. that a isn’t

a charge but only an arbitrary parameter Tts value isn’t fixed. It follows

. PR
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5 One-loop approx1mat10n

In thxs sectmn the constants Z and RG-functlons are calculated in one—“ '

loop approxrmatmn ‘We use the minimal subtractlon scheme, where the
constants Z possess on.ly the poles over the parameter €.

The correspondmg Feynman graphs of the 1-PI Green functlons <
oo >, < 90 >, < 08 >, <0y >, are shown in" ﬁgl Twenty four

graphs are corresponded to-the 1-PI vertex < <p’€€ >, Six typical Feyn-
man graphs are shown in fig.2. The remaining graphs can. be obta.med"‘

by -all permutatlons of the ﬁelds in the mternal lmes :

' ! e /_\ IK_\I A:+s " . ’
o o e ¢ et g ge e g~
TP e ve W oe 08
H (" 4
S

Flgure 1

The calculatlons of the smgular parts of the graphs g;ve the fo]]owmg'

expresmons for constants Z

, 1/2
z,-‘=1-,4,.19?‘— ,,.,:"1—2,4-33&9—‘9—’)—— =15 (13)

¥ (14 a)e

where g, = g/B, g = g"/B B= 2u(2p + 2)(4"")“1‘(#) (r - gamm&-»» e

functlon) ‘The coefficients A depend on the space dlmenslon, PNu,v,w
and are written in ‘Appendix II. RG-functlons %=
'can be determined from the relation: .

= (B0 + PO + ﬂ..B BB “(1‘4)

10

'Dyan (1. =1...5)

. ﬂm

€ m\ /cbs l_.“.‘G cb\ ,‘

N Jo =\

| /ms.‘

Figure 2:

For one—loop calculations of these functions it'is necessary to set ﬂg, zy‘
—ngla ﬂg) o~ —235923 ﬂu = ﬂo = ﬁqd ~ 0 mn (14) We obtam :

Y= 2[14:191 + Aﬂgﬁ + Au3a(9192)1I2] SRR (15)

‘The subétitﬁﬁo‘n.(ls) mtO (12) gives ﬂ-functlons s

= gi[—2¢+ 6A1191 + 6A1292 + 6A1sa(glgz) w2
. Bn. = ga[~2ae+ 2(3An — Au)a1 +2(3A1; — A_,,,,)g2 o
o 42(3Ays — Aol
Bu = u[2(An — An)gr + 2(A1z — An)ga + 2(A13 - Azs)a(mga)ll 2]
= -v[(2A11 —2A,+ As1)gi + (2412=2A + Asz)gz '

+(2A13 2A43 + A88)0(9192) 12]

h ﬂw = w[(2A11 - 2A51 - Asl)gl + (2A12 2A52 - 'A32)gg

+(2A13 — 2453 — Asa)a(glgﬁ)”z] o (16)

11
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. The final goal of RG ana.lysrs is in the estabhshment of the asymptotlc
behavior of the theory The. renormahzed Green {unctlons satrsfy ‘the
bamc RG equatron

DM+Zﬁgt g U'Yl'a +7P'N +70‘N0']val— 0 i (17) )

i=1

where g = 61,92, 4,v,w and WN are the connected Green functions .

The general solution of (17) is the arbitrary function of the first integrals
- invariant charges (IC) ; and invariant variable z, which corresponds to

the vanable z=wfvM? They satrs{y ‘the followmg equations:

A = o 9*(s> = g‘.fff o ay
O e Aei=r 09

12

Kolmogorov type. -

0 -] K - kinetic  regime
1 aM - magnetrc regime "

|’|u’l-| ™Y ﬂlu[ TTTIRY T T T~ T T

10" 10 ‘, 103
Frgure4

where s= p/M Forma.lly, the asymptotxc behavrour of the Green func-
tions may be inferred finding the fixed point al, ‘which is'the solution of *
the equations .f,,(¢°) = 0..From (16) we obtain five complicated alge-
braic equatlons with two arbrtrary para.metem a, o " The fixed points g}
are m{rared-stable, 11' the matrix [/ /Bg,. lg=ge 15" posrtlvely determined.
There are two infrared-stable fixed points: the Gaussian g} = 0 (lt is st&-’
ble if a < 1.16) and nontrivial g; = 2¢/9, u= 1393, g2 =u=v = w=0"
(it is stable if a >.0.25). Note, that they coincide with fixed points
(the magnetic and krnetrc) earlier found in ordmary MHD The kinetic -
fixed point provrdes the exmtence of asymptotxc critical regrme of the”
- We numerically solved Ge]l-Mann-Low equatrons (18) {or the various
initial va.lues of the mva.nant chargea .. It provides the possibility to

- analyse the attracting regions-of-infrared fixed points. The initial- val-

ues of g1, g; are unknown, but initial values of u > 1 for the realistic /
medium, and the values of v, w are hmrted by the values u. In particular

13



case, the attra.ctmg regimes are shown in ﬁg 3, fig4in the plane GPN
w, v for several values gi, g2, u and o The curve' w = % limits the

region of physical values GPN from the top, K, M. denote kmetlc and

magnetic attracting region, respectively. The region X is limited by the
curve wy = u and dashed lines, which depend on the initial values of the
g1y 92, u and the values of the arbitrary parameters «, a. The 1-,2-,3-
dashed lines in fig.3 correspond to the untlal value g, = 0.45, g2 = §;

=0.1,g2=01; g1 = 045, g2 = 0. 1] respectively. Analogously, the
same marked daahed lines on fig.2 correepond toa=1la=0,a=-1
If wv > u or w > u for the small values v then the solutions of (18) (the

phase trejectonee) tend to the infinity. These pictures are not signifi-

cantly affected by the changes in the wide range of the values g1, 92, ¥
and . Therefore, the large part of the GPN physrca.l reglon lies in the
attracting region of lcmetlc ﬁxed point. :

On the bmc of ell obtamed reaults we can conclude, that the Kol- |

mogorov critical regime is realized in gyrotropic MHD for the general
case of the arbitrary matrix of noise correlators. That way, the expla-
nation of the generation of homogeneous magnetic field by means of the

spontaneous symmetry breaking mechamsm earher accomphshed in pa.—_

per [13] is suitable to thrs case a8 well

R

‘ One of the a.uthors (M Hnatxch) is grateful to Prof B. Kopehovrchf
for hosplta.hty at JINR, where this paper was ﬁmshed He would like
also to express hrs thenk to M. Altamky for the great help in preparatlong'f ’

kof the paper.

Appendlx I

The propagators of the extended theory have the followmg form

AW = MR A""' = LR A"" = -SR A*"" = —VR (20), .
RTVT (21){

A'P L RTMT AO'G — RTLT Ae‘p =1—RT54‘ Ap'e

'A'v'v“ RT(D“""MMT D""’MVT D"“’VMT+D“VVT)
A% = RRT(D**SST - D¥'LTS — D LST + D*LLT)
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A¥" = RRT(- D"’"MST +: D""MLT + D"“’VST D‘”VLT) t
A% = RRT(-D**SMT + D¥SVT + D""LMT + D”LVT), (22)
where '

=(ILM-SV)y? V=wk® S=wrk®
L=—iw+vk® M=—iw+uvk’

The superscript' “T” denotes the operation of the exchange w — —w and °

k — —k. The propagators (20) are retarded, (21) - advanced, and both

are proportional to the transverse projector Pi,. The propagators (22)
are proportxona.l to the mixed transverse pro_]ector P., The A" v A""‘" :

- AP AT ape equa.led to zero.

(4 Appendrx II

4;1— 2 2;1

_A¥1?, = P (u +u -—2uvw—'u.w +. 2)+ P 2t2( + \
: 2“—u w? +u? = 2uvw — duw’ + 207w + 200° — w?).
i Alé ’=k 4“ (uv +u—v‘r-’ 2vw+l)+ : 2“(1121)2
Az = 4t2 T4g2t2 T U
u? + 4uv? +2uvw 2u= 2v%w - 2v2w2+v —1)
A= -— — —
13 = 23t7 ( uv+vw+vw w)+22t2( Wy —
34y + ww + uvw® + Juw — wo? —vw? fw) -
Ay = 237t [( " — 2)(—u Syt ow= w2)+u +u—vw wz]
Cout2 .
Ap = T [( u— 2)(—u—-v +vw—1)—u+v +vw—l]

15



4 =

Ags =

An =

A42' =

Ay = 52;'; [(2pf2)(uv +w) ;—'uv'-?- w]

stz(u +3u +3uP fu—u?? —3u vw — 2uw -

uv® — 4uvw — 3uw? + o° w+3vw +3vw - vw+wt - w?)

‘_@(_ua_*_ —3u?— 3u+u vw + Juv? +4uvw+uw -
ot —3vw 3vw +20 - vw +3vw+w-—l) :

.93t2(—u v — 2u? v+u w+uv +

2uv’w + uvw? — uv + 2uw — v w—2pw2—w3+w)

Y _ o3
4st2v[(# 2)( uv+uw+2uw vw? w)

2p(uv+uw 2uw+vw -ws)]+ (uv+uw—;"

23t2
2uw + 2u? v3w + 3u vwz—uzv - 5u? w+4uv w+
8uvw? — 2uw — 2v°u? — 4%y° —20w +vw w3)

4st2 [(4p —2)(2uv—v —v w+v—w)—

2p(2uv+'v —vw—v—-uw)+

75 3t2 (2u® v+u

vw+5uv+uw 8uvlw — 4uvw? +2uv+2v w+
4030w 4 v° + 20208 — 302 w— 2vw? — v — w)

- 2m [ = 2)(=? 4 we? —u+w’)-v |

2p(—u —uv’ +u+ v+ 2

(—ut —uav -

stz
u® +2uvw+uw + u? - 2uvw — 2uvuw? -—uv -
»2uvw+u7{-2 w? + 2vuw® + w?)
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—

- 2p)(2p+ Qu

e (2 2u)@u+ 2
52 — : 2
’ s tw

A L n2(2—- )2 +2)u. .
g3 =

sitw -

Here, s =14+ u, t = u ~vw.
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