


K 1 Introductlon S

; ,l"Nonlinear W algebras‘ since their discovery in quantum conformal field theory by A. Zamo-_
- lodchikov ' [1]; received much attention. Recently, it has been found that these algebras have

-7 interesting 1mpl1cat1ons ‘at the classical level as” the .symmetry algebras [of some: field- theory -
'models: -the systems of free d =2 bosonrc fields [2, 3], Toda lattices [4], ‘the supersymmetrlc o
<~ extensions of the latter, etc. The gauging of these classical Wy ‘symmetries ‘and their various™ !

** " linear limiting cases, siich as Weo' and wes, has been performed[2 5]"and some ‘steps towards "

: understandmg their geometric origin have been done [6]. For a déeper insight into the structure -
-:of W-gravities, W-strings and related theories (both already known and yet to be constructed) .

Uit seems very urgent to fully reveal from’ drfferent points of view, the' geometry behind W "
: symmetrles - s g
.7¢..The most natural way to understand the geometry of some symmetry group-G. is to con-

-'s1der it as a group of transformations acting in'the coset-space. G/H" with a properly chosen -

stability subgloup H: This is a starting point of the famous nonlinear reahzat10n method [7]. -,

"“In- this method, the coset’ space coordinates (or, at least, a part of them) are 1dent1ﬁed wrthf_ ,

: 'fk'jthe goldstone fields, thus giving a clear geometrlc meaning to these fields. The group transfor-, -

e mations of the latter ‘acquire a transparent geometric interpretation as isometries of the coset, -
anrfold (linear or nonlinear, depending on whether the corresponding generators belong to oo

" the stability subgroup or to the coset). Deﬁnlng the relevant left-invariant Cartan forms, one:
““may. construct-out of them all the tensor obj ject. characterizing the intrinsic geometry of given :
~ group:. curvatures, torsions, complex structures, etc.: The 1nvar1ant ‘actions are also built from‘, :
.these basic covariant quantities, . /.- 7. . A SR : < .

% icase of ﬁmte-dlmensronal groups G and H, where they have been. successfully used, e.g., for
: constructmg nonlinear sigma models . Their. appllcat1ons to lnﬁnlte-drmensronal symmetries:;

ordmary gauge theories were ‘interpreted as nonlinear real1zat10ns .of gauge groups viewed as
some abstract groups with an infinite number of generators. In the papers of two of us (E.L
& $.K) [9] 2 nonlinear realization of Virasoro symmetry:(to be more precise; of its centerless

> Nonlinear realizations defined in accordance w1th the prescrlptlons of [7] work nlcely in the.f .

started with the articles of V. Ogievetsky and one of the present; authors (E.L) [8] in.which: : .

~contact subsymmetry) has been constructed for the first time. Later we treated along the same e

. *.-line various super-Virasoro symmetries [10]. Recently, the nonlmea.r realization techmques were

i applied for the geometric understandmg of field realrzat1ons of Wi and Woo symmetrIes [3,11}. f o

<7+ In the present paper we suggest a new general geometrrc set- up for classrcal Wn symme-l .
5 tnes, based on their nonlmear realrzatrons We address here the simplest. case N =3, however,
* no pr1nc1pal d1fficult1es ‘are seen in extendmg our approach to other algebras and superalge—""

:bras of this kind. The bas1c ‘trick “allowing us to apply the standard. nonlmear realrzat1onw» )

~'scheme to the nonlinear algebras of the type WN cons1sts in replacmg them by, some abstract -

':": 1nﬁn1te—d1mens1onal linear W type algebras' (Wg in: what follows) which: arise ‘if one treats as | o
" independent all the composite higher spin generators appearing in the commutators of the basic ~ =

g .. Wa'generators. We construct a nonlinear realization of W§° symmetry (to be more precise, of .
“..its two commuting d = 2 light-cone + and — copies) in its certain- infinite-dimensional coset’ .
“i space and demonstrate that after imposing the inverse Higgs effect [8] covariant constraints we
7 "are left with two essential goldstone fields on which the original symmetry is realized precisely -
.- as W3 symmetry on the sl3 Toda lattice fields. Thus the Toda realization of Wi is recovered
in-a’pure geometric way. as a _Eartrcular coset, rea.hzatron of some lmear symmetry with an -
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- infinite number of h1gher spin genera.tors The sly Toda. lattlce equatlons get an 1nte1estmg
" geometric interpretation in this approach as the conditions which single out (together with
the inverse Higgs effect constraints) a two-dimensional fully geodesic subspace in the original
infinite-dimensional coset space. This subspace is intimately related to the group SL(3, R), be-

ing a special coset manifold of the latter. The corresponding algebra sl (3, R) is hidden in Wj'as"

a factor algebra of one of its 1nﬁn1te-d1men51onal subalgebras. A zero-curvature represeutatlon

for the sl3 Toda la.ttlce equa.tlons on this sl(3 R) algebra naturally emerges in the appxoach -

: 'proposed DT ’ : S ook

2 Prellmmarles. nonlmear reallzatlons of W2 symmetry ‘

‘ Ha.vmg in mmd tha.t the present pa.per a.ctua.lly promotes the results of [9] to ‘the case of W3,

~it is.useful to review here i in brief main features of nonlmea.r rea.llzatrons of Vlrasom (Wz) .

5 symmetry AR : : .

“We consxdered in [9] two mutually commutlng coples of an 1nﬁmte-d1mensxonal gloup of

.tra.nsformatlons generated by the trunca.ted centerless set of d=2 Vna.soro generators

L_,, Lo, Ll,Lg, il @ 1)

o 'We have 1dent1ﬁed the d 2 Minkiowski llght “cone coordlnates :L+, T~ w1th the par ametexs of A
- the coset of this group’ over its infinite-dimensional subgroup H generated by two copies of the
generator sets {Lo, L;,... L,,..} and found that the left action of the original group on this -
““coset yields just the standard d=2 conforma.l coordlnate transformatlons (w1th the parametexs' s

' _nonsmgula.r a.t zE=10)--

nb;];':yézi‘;
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: Thus these tra.nsforma.tlons appea.r ina pure geometrlc way ‘as’ left shlfts on'a two-pa.lametuc =
" coset of d' =2 conformal group. Further, one may extend the set of the coset generators by
mcludlng into it the sum of genera.tors Ly ‘from two commut1ng copies (the difference of these”
+"generators should be pla.ced into the stability subgroup-as it generates linear d = 2 Lorentz -

50(1,1) transforma.tlons) If we treat the corresponding coset parameter asad=2 goldstone:' :

.+ field, u(z z~), we immediately obtain'that the left action of the confor mal group on tlns ncw' :

" coset ma.nlfold mduces for u(z+ :z: -) the follow1ng tra.nsformatlons &

) where the first two p1eces are due to the coordmate transformatxons (2 2) “This transformatlon ,. B
_law-is recognized as that of d'= 2 dilaton (or, in’ other words of d =2 Liouville field). " So,- :
“the conformal transformation of this field also has a ‘clear geometrrc 1nterp1etat10n ‘within the "
“nonlinear reallza.tlon in’question as a coordma.te tra.nsforma.tlon in'an extended coset manifold.”

Some subtleties come out when one tries to construct the Cartan forms on these cosets.

- Because of the speaﬁc structure of the commuta.tlon rela.tlons of Vlrasmo algebra the standard A :

“Later on, the relevance of tlns subgroup for the classmal Virasoro d.= 2 gravxty has been pomted out by' BN

UK. Schoutens and A. Sevrm and J. van Holten [12]

**(’ . Zlﬂii "“ (22)5:!?,

,,’-;5’.‘(5).'? —A+3+u(x) EN o :z:)+ (a+A++a_ ) o (2',3')‘
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plocedure of [ ] in this case falls to give reasonable covanant ob]ects and one is led to seel\

for a way out. Paradoxically, the simplest and most suggestne decision is to add to the above
three coset generators an infinite set of the remammg ones, leaving in H only. the d = 2 Lorentz

" generator [9]. The transformation properties of %, u(x) do not change and at the same tlme:

we become able to define an infinite set of well-behaved covariant Cartan forms on the d = 2
conformal group, ‘entirely following the procedure of [7}: ‘As a cost, we gain an infinite number
of new goldstone fields. These, however, are redundant, in the sense that all can be eliminated

in terms of u(z) and its derlvatlves by putting certain projections of the relevant Ca.rtan forms- .

equal to zero: This manifestly cmanant procedure of getting rid of the superfluous goldstone

-~ fields is called inverse Higgs effect [8] and it is widely applied now in nonlinear realizations
of space~t1mc symmetries. In [9] we have found that in the Virasoro case this effect can be

cxtended so as to yield a dynamics for the essential coset palametex u(x): by i imposing some’
additional covariant’ constmmts on the Cartan’ founs we were able to obtam for u(x) either free.
or Liouville equatlons L S o :

()+() u(l)—O or 0+() 11(1)-—11176'2"(‘) L : (2.4)- :

. “which so tumed out to be mtlmatelv 1elated to the intrinsic geometn “of classxcal Vnasoxo’

symmetry. - These equations, together’ with the kinematic Higgs eflect constraints, have been

_shown’ to play a role of the conditions singling out’ certain- fully gcodes1c ﬁmte-(lunen510na1
subspaces (E3/S0(1, 1) and. qO(l 2)/50(1, 1)) in the infinite-dimensional coset mamfold we
~started with.

"Classical W5 symmetry.is a nonlinear extension of Virasoro sy mmctl) by a new mﬁmte set

*of the spin 3 generators and it has a natural realization on two'd = 2 fields described either

by the free action or by that of sl; Toda lattice {2, 4]: With this in mind, we may guess that,

. having somehow generalized the above scheme to tlle W; case, we might rederive these theories -
and the corrcspondmg realizations of W5 in a pure geometric way. This is indeed: 56 and our,” -

- further incentive here will be to prove this. It is useful first to recall some basic facts about” le;
Toda lattice and the couespondmg classu‘al leallzatlon of W : :

3 sl Toda latt‘iycélf’and.its 'Wg invaria’n'ce' -

. Let us begln by wutmg dowu the actlon of sl3 Toda lattlce -

5=1 / i (52- “0+u+ 50- ¢a+¢+”" ""“*””mez '“"W)) ‘;57(‘35)‘,
and tlle correspondlng cquatlbns of motlon for two scaldl fields u(x v ) ¢(r+, @ ) |
L g 7 ‘ 6+3__u i_‘ n‘:] _?(,‘+\(‘¢) 122‘1_2("_‘,/.5“ ’- g (3.2)&’..
3+(';‘_.¢ ;’= ﬁ%(,ﬁ"Z(“fﬂ"'),—l:_—f\/%ﬁ;_zll";}/w) - |

*. 2As was recently noticed [11], analogous difficulties appear when considering finite-dimensional coset spaces -
of the W, type symmetries.; Moreover, these are present already at the elementary level of nonhnear reall/atmn

" of the 4D conformal group bO(d 2) in ‘Minkowski space regarded as a coset spacc of b0(4 2).



Asis shown in [4] the system (3 2) is 1nvar1ant under conformal transformatlons genera.ted by‘ :

. the sress- tensor T("zl 3

and under the transformatxons generated by the spin.3 current J( 3)
-2J<-3) = a3¢+ 82¢3u +3 (au)za¢ + 2(3u)28¢ - -(a¢)3 e f (3.4)

- The conformal transforma.tlon of u(z)is glven by eq (2 3) whlle 8( :z:) is transformed only due
’to conformal shxfts of its a.rguments :

6¢(x> —A+a+¢<x)—A a_¢(a:) i “(‘:}s.s)_f* :

The spm 3 transformatxons are a bxt more complrcated

o
I
Il

- ,‘?¢;1=_-l» i n_ 'au+a(2(au)2 2(a¢)2 v (?Zu)

~+ The L1e bracket of two such’ transformatlons ylelds a conformal transformation and a new spln

4 transformatlon wh1ch looks as the conformal one w1th ﬁeld dependent parameters [

l5an 6412] = 6A

W=l Gald + 8axa2 ((6u)2+ (001" + 0 ) Lgen RIER)

Thrs group “structureis’ typlcal for W, symmetry [1] Note ‘an 1mp01tant dlstmctron of (3 7).
: from the Lie bracket structure of what is called classical W3 symmetry in [5] It consists it the ;-
presence of ordinary d =2 conformal transformations on the right-hand side of (3.7): As we.

:shall see, the nonlinear realization of just this type of Wy leads to a nontrivial output.

In contrast to (2. 3); (3. .5), the Wy transformations: (3.6) contain' higher derivatives on the " o

" fields, s0° they cannot be rmmedlately interpreted as resulting from some coset, manifold real-

ization of Wy, Moreover, in view of nonlinear. character of W algebra, one may wonder how

“.the very notion of such realizations, well defined in'the case of symmetries with ordinary, linear

algebras, could be extended to the present case. In order to answer all these questlons let us -

: 1nspect in more detall the structure of Ws.:

: 4" From W3 to W3

: The most general class1cal nonllneal W3 algebra is the class1ca.l verslon of Zamolodchlkov s W3
B [13] : R : .

EAR A o1 T’(m)

’(z'—’-‘z) (z——:z:)2 z-z

< ~T('z')T(¥,) -

:’From now on.we omit the Lorentz mdrceﬁ {:l:} in the currents keepmg in mmd a full symmetry between :

the {+} and { } branches.

AN

-—2T( 2)_'_-(3 ) _-(645) -—(’)2 S (3}.3)’ :

“‘—~a'6¢+a(02¢+43u6¢)> o e

- .,;_,i: ._._...:_.:...! e

IR

T(z)J(;S

(z=2)2" 2~z (41) .
Vw' N ‘zllz : - % N B 15T(I) lsTl(I) 9T/I( )+48A(I)
B e L P Tl Fr iy e
. ;%TI”(.’E)-'I-%AI(I) A
(z—2) '

where‘ the Qperator A(z) is defined as a square of T(z):

AMz) =T(2)T(z) . I (4.2)
" The operator product expansrons (4 1) amount to the followmg commutation relatrons - }’
[Lm Lm] = (Tl - m)Ln+m E(n - n)6ﬂ+m.0 St e L
lLﬂ’Jm] (211 b m)Jn+m ! . = R : . (43) :
2% B g s
lJm Jm] _—(n - m)An+m - 2 2 m [(n + m)2 _'2‘"'"7' - 4} Lﬂ+7ﬁ -

f‘;lg(" ~4)(n* = Dnpymo’ o
,wrhere i ‘

Ln f—":/da:;lz‘;"."'lT(a:)y , ,._/d:r:z:"“J(:z: . /dxz"+3A(:z: ZL’“”" e (4 4) .

- rl“he algebra generated by the sl; Toda lattice currents (3 3),(3.4) w1th respect to the Porsson.‘

brackets (between the canonical fields ii(z) = 7u(z) and ¢(z) = y¢(z)) s just (4.3) with -
» Ce=3y . o - {4.5)

The fields u(:z:) $(z) are inert under the action of central charge, hence, 50 far as the group B

; var1at10ns (2 3) (3 5),(3. 6) are. concerned the algebra (4 3) is reduced to.

leLml (n - )Ln+m o [L,,,Jm] (2n _m)Jﬂ+m “ - « “ i R (46) '
[J",Jm] = v-———(n - m)A,,+m - —(n - m) [(n + m)2 — gnm 4] Ln+m .

Nonetheless we cannot completely put the central charge equal to zero when we consrder the

realization of W; on'the ﬁelds ThlS srtuatlon becomes more clear lf we consrder for example

the followrng commutator

[L,.,A,,,] =(3n - m)A,.+,,, 4 (n —n) Loy g s (4. 7

Tt is easy to check that the last term in the right hand side of (4 7) does not drop from the

algebra and so the presence of the central charge in the W; algebra (4 3) is crucial for our
consideration,” In other words, we may put central charge equal to zero only when it acts :
dlrectly on'the fields (because 1t does not produce any symmetry), however should keep it in’
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higher-spin algebra W3°

the places ‘where it enters as a structure constant; i.e. the commutators mvolvmg the spin 4

“ generator A, (4.7) and the higher spin composite generators .

Let us forget for a moment about any relation of the algebra (4. 3) to Toda Iattrce and regard

it as some abstract nonlinear algebra completely defined by the commutation’ relations (4.3) -

and the bilinear relation (4.4).

As was already mentioned, the nonlinear realrzatron techmques we intend to apply to the Ws

symmetry have been worked out in [7] for symmetries based on Lie algebras, i.e. lincar algebras.

" How to generalize these techniques to symmetrres with nonlinear algebras? Our proposal is to

treat all the composite higher-spin generators appearing in the enveloping algebra of (4.3)
as independent ones.

Weo'= (L, Juy Amy ondSy .}, §=5.6,... (4.8)

in which the commutation relations between generators of the lowest spins (2 and 3) are given

* by (4.3) and all the remaining relations involving the higher-spin-generators Ay, ...J3,... are

computed proceeding from these basic relations and the quadratic relation (4.4).: In principle,
any commutator can be computed in this way and a generic form of higher-order commutators
can’ be indicated. " For our purpose it is of no need to know.the detailed structure of these
commutators We only note that the central charge ¢ appears in the r.h.s. of these commutators
as a structure constant multiplying the lower spin generators.

Surprrsmgly, in spite of seemingly complicated structure of such a huge algebra it is rather :
easy to single out its some important subalgebras.” Of major relevance for our purpose is the.. \

following mﬁnrte-drmensronal subalgebra which is the genuine generalization of the truncated

: Vrrasoro algebra (2.1) "

S R ‘_L_,l","La“fL;' L
TN I R R0 SUSEN SURN AR S
A A A Ao A A,

(49)

: 'We call it W§° ere in the case of (2 1), the central charge drops from those commutatmn

relations of Wi°. in: which it is present on its own. - However,. it retains in the hlgher spin

" commutation relatrons as the structure constant..To avoid a misunderstanding, let’ us point
out-that the higher-spin  generators in" (4. 9), when’ trea.ted as composite, still belong to the
enveloping algebra of the whole W; which involves the generators with all negative and positive -

" conformal dimensions. Nevertheless itisa s1mple exercrse to verrfy that the generators (4 9)

“ indeed form a closed set.

As opposed to the algeb\ra (2 1) whrch contams the nontrrvral ﬁmte-drmensronal subalgebra

sl(2 'R) = {L_}, Lo, L}, no finite-dimensional subalgebras with more than'one'J generator' '
exist in (4.9). A curious fact which, to our knowledge, was never mentioned in literature, is as_
kfollows Let us consider the rnﬁnrte-drmensronal “triangular”subalgebra W, in W :

B Ly Lo L
. Jp Joyndo 2 Ja
»_A—s ‘A‘-z i/\—r Ao AL Ar A

In other words, one replaces (4.3) by some linear infinite- drmensronal ,

‘ (;1.10)‘(

R

"~ algebra [14].
‘»rnﬁnrte—drmensronal ideal including all the generators in-(4. 10) except for those present in the .
first two lines is the algebra sl(3, R)

_ with'the d = 2 coordinates =*
- to the first- three generators

(dots mean higher-spin generators wrth proper .ndrces) whrch is a sort of tlre s0 called wedge
Then it is straightforward to check that the.factor algebra of (4.10) over an -

f WA‘/{A-S, Sy S Y~ sl(3, R) (4 1)
Finally, we would like to note that the version of classical Ws symmetry treated in [5] can’

be obtained from (4. 3) by a kind of contraction with ¢as the contraction parameter. Irideed,

let us rescale the geuerators Juas Jy = ¢12], and then let ¢ go to zero. lt is easy to see that

no smgularrtles in ¢ appear at any step and (4.3) go over in this lrmrt to
) [Lna Lml =
[Jm Jm] = ;

(0= ) Lngm s Ly Io) -.(Zn—m)J,,+,,. R THL N

1 .
,—:2‘(" 'v"nl)An+m
This algebra seems to be 1ot too interesting for constructing a nonlinear realization because all :*

its generators, begmmrrg with those 'of spin 3, and the higher spin ones (treated inthe above
spirit, as independent ) formn an infinite-dimensional ideal in it.. The corresponding factor-algebra: "’

“." is just the centerless Virasoro algebra (2.1). Respectively, the aforementioned finite-dimensional * -

factor-algebra 31(3 R) degenelates in the limit ¢ =0 into its contractlon of the tvpe dlscussed'

“in [5]

5 N onlinear realizations of W
‘Having replaced W3 by a linear algebra Wg2, e are ready to construct a nonlinear iealrzatrorl .

i “of the latter along the lines of (91, followmg the generrc plescrrptrons of [7] and emplovmg tlre
Jinverse Higgs effect [8].

- By reasonings of mmlmalrty and for the correspondence ‘with the nonlmear realrzatron of

~ Virasoro group'[9] we limit ourselves to the truncated algebra Wg° (4.9). Like in the Virasoro .
" case, in order to have’ manifest d =2 Lorentz symrnetry we start with the product of- t\vo :
. commutrng copres of the PV°° symmetry groups S

C +x‘ - i ‘,,(5"1)

,:As a r\ext step we nee(l to clroose an approprrate coset of C’ wlnch is actually 1educed to clroosmg k

the stability subgroup H. We have checked that, in contrast to the Virasoro casey no finite-
dimensional cosets analogous to those discussed in Sect.2,can be found in G. So, ceven before

- constructing Cartan forms, in the present case one is forced to deal with infinite- (lnnerrsronal( -
-~ coset manifolds.

Fortunately, it is not so difficult as it could seem. For the (mrexpon(lence .
with the Virasoro case [9] the cosct should include the generators L*,, L+ Ly, LE, .I%, ..,

and the Lrouvrlle field u(x) being pc\ramtters corresponding’
Also, lravmg as a goal to eventually cone to sl3-Toda lattice,

we need to reserve a place for the second Toda field: ¢(x) as the coset parameter: The only

/. appropriate genera.tors havmg zero conl'ornral dimension are J§, so we are led to include their

linear combination into the set of the coset generatots. ‘Finally, it would be desuabl( to place * -
all higher- spms generators into the stabllrty subgroup and in wlrat follows not to care about '

: them

T



All these wrshes are met w1th the ch01ce of the followmg two—palameter stablhty subgroup

2 : T ol ,1:,, -
H o {J_if 'ﬁzanfF J+ +-\/——Lt1 (J +\/—L) J+ JO", (52)*

,r’__b— \/3__ : \/3_
! vL0+,—L01 -1\_“_2‘.11—1 Jl 92

From the pomt of view of the 31(3 R) factor algebra. (4. 11), these combmatrons of generatorszb ‘
form the maximal parabollc subgroup in the diagonal SL(3, R). Note also that just’the.above -
combination of J% 1 L, but not each of these generators sepalately, forms a_closed algeb1a o

~_with the remaining H-generators
‘Now, an element of the coset space G/[H can be pal ametrrzed as follows

g_G/H—e _—‘e"’lil fli "’71‘#

‘Here, in a.ccordance ‘with the prevrous lea.sonmgs z* are the d =2 Mml\owskl space c001d1-
constxtute an mﬁnlte towe1 of tlle,

“nates, and the parameters-fields u(z), (), v (2), ¢t (2),.
goldstone ﬁelds The group G.acts on the coset (5 3) from the left .

wumuu¢,)—azum, )h;TZTTf{” ‘whf

where go(/\) is an arbitrary element of G and k belongs to the subgroup H. The arrangement o

of the group factors as in (5. 3) is convenient in' that the transformation laws of coordinates - - oy
- tinder conformal transformations (go = exp En__l A.Ly) comcxde with the ordmary ones (2.2), o
“while the variations of u(z) and ¢(z) depend only on the space coordmates =%, but not on'the -

coordma.tes ﬁelds

- ,('_,)'_'u(i.)* ((’)+/\++6,\) PR
&ﬂﬂ = ¢w)—¢e)—o el s (5®;

a.lso deducedfrom the general formula (5. 4)." For' z* and u(z), ¢(z) we get the following

transformations (we wrlte down here only the transformatrons gene1 ated by the + bxanch of'

thegloqu) » I RN
g = - ‘/5 +2f(‘[¢1+£1) a(z)

-
B
SN
Of
I

e

5,,;5(5)" B (fzmex) (I)+3 (LM(‘) S CCRE

"The parameters my, ma reﬂect a freedom in extractmg “the diagonal SL(3 R) group in SLH(3, R) x
§LT (3 R) .

—L ) A%, Afz, e higher spin g‘enerators}, '

e L
T —

u(L++L VU +I5 b el (5.' 3)

We see tha.t conformal transformat.xons of these ﬁelds c01nc1de with the Toda latt1ce ones (2 3),’_" ;
‘ﬁm | ’ ‘

The J, tra.nsforma.tlons of the Mml\owskx space coordmates and parameters ﬁelds can be :

= —%—— (\/—1/’1 +§1> (I) + (61/;2 +2\/—£1) ‘, (56) ! =y : E

where the function a(:r) COllects constant parameters of thegroup element Jo:
gO=expzan n ','. Zan
n=-2 C - n=-2

ones is that J,, have no realizations on the coordinates z+ a.lone - these genera.tors necessa.rlly

g iz " mix the space coordinates with the goldstone fields ¢1,¢2,§1,§2 Moreover, in fact we deal "

- here with an infinite-dimensional nonlinear’ representatlon of W3°°, because the fields thy, &) are
“transformed through higher-spin fields ¢2,§2,¢3,£3 and so on.- It is 1mpossxble to single out i in.
our coset space any finite-dimensional coordinate subset closed under W3 . We stress that at
this step the transformations of goldstone fields taken at a fixed point. contain in each term -
“no more than one field derivative which is due to the field- -dependent sh1ft of z in (5.6). The -

<4 ... same is. true, of course, for higher-spin transformations which appear in the Lie brackets of . .
401" 7(5.6). 'How- to obtain the standard higher-derivative realization"of . Wy proceedmg from these v~

- pure geometric transformations?- A key to this problem is provided by the inverse Higgs effect.

S In order to utilize it, one needs to construct covariant Ca.rtan forms on the coset space G/H G
ol : These are 1ntroduced by the standard relatlon [7]

| -‘dg— Z wiL*'+ Z MIE+LL, e
n=—1 Leinm=2l s S : o :
.’where dots stand for the forms entermg with the higher spin generators Let us stress that
-the transformation law of Cartan forms (5. 7) is more complicated than in standard nonlmear
- realizations (mcludmg those of Virasoro group) [7); because the coset (5 3) is not ortonormal in

© . v :Cartan’s sense’, Nevertheless for our purpose it suffices to be sure that all the forms assocratedi- i

w1th the coset gene1 ators stlll transform homogeneously Let us quote several ﬁrst forms m (5. 7) o

et = ‘“ch(\/— B)dzt . wo = du- zg;tdz

S T e“,[(dfl +£ ?dz* + z/a*”dz 3£z*dz )chlﬁ¢)+
ST +—(d¢1 +6¢,*£1*dz —4¢§‘dx )sh(x@b)] N (2R
i ;,'9,2““,% 2"(d£*+4£1*£2*dr —4£*dz') Lr S

Lpenllinad

e%effsht‘@¢>¢¢*.‘, , g oot
“l (asmszd;aaw;sew) o
(d¢1+e¢;*£1*dz - 4%3ds*) ch(V3 ¢)] 6y

S
kﬂl,—e

5R,ecall that the ortonormahty of some coset G'/H means tha.t the generators belongmg to the coset can be :
chosen''sa.that; being commuted with those from the stability subgroup; they always yield themselv& but not
.the H—generators This is ohvrously not the case for our coset (5.3). - : : [

.- The main peculrarlty of transformations’ (5.6) and their cruc1al dlfference fiom’ the conformal sy



i i
¥

o
;
F
b
{

OF = e [4p (dek + A6EEERE — 4eEdst) T dy —g v .—3¢* *Zd:r: +
| ‘+3¢ dz* +4§1*¢2*dz + 1295 dt —5¢*dz

We see that the fields t/)l 2 EE -, enter mto some coset spa.ce forms linearly and homogeneously
Hence, a.ccordmg to a genera.l theorem of [8], they can be covariantly expressed in terms of u

- and' ¢ by equating some pro_]ectlons of these forms to zero. The same is true for the higher-spin
goldstone fields. - Without entering into _details, the complete infinite set of the inverse Higgs -
covariant - constraints expressmg all the goldstone fields through u, ¢ and der1va.t1ves of the

latter is as follows :

""’0+“"0'f'—‘, Q++Q— ,.4.4, .
wily =0, w]..—O , =0

where l;t means that a given Cartan form is pro_]ected onto dz , respectlvely

From the explicit expressions for the lowest Ca.rta.n forms (5. 8) (5. 9) we obtaxn the followmg =
. 'expresswns for some lower spm parameters- ﬁelds : :

g = duu(z) , PE= §3i¢(z) : «
& = Lo reaE@rtoe@y] T s

¥ = G h@dle), e

Let us ‘stress that the constramts (5. 10) are purely kmema.txcal a.nd do not 1mply equa.tlons of
*motion; “Their role is to covariantly express. a.ll the pa.ra.meters of our coset (5.3) in terms of,

u(z), qS(I) and derivatives of the latter.

Now we may substitute the expressions (5. 11) into the tra.nsforma.tlon laws (5 6) and check :

that the resulting spin 3 transformations of W;" precisely c01nc1de w1th those of the Toda lattice

fields (3.6):

il.

; 6u(:l:) = u’(z) - u(z)

"5¢(I) = (1) - ¢(1)

"(.7:) =~ —-a (:r:)au + a(r) (2(611)2 = 2(6</>)2 - 0% )

Thus we ha.ve succeeded in deducmg the Toda rea.llza.tlon of nonlinear Ws symmeury sta.rtmg »

- from ‘a pure geometrlc coset realization of some linear higher-spin symmetry W°° In other
words, W3 arises as'a particular field realization of this huge algebra. .The cruclal role in this
phenomenon is played by the inverse Higgs constraints reducing an infinite number of the initial -~

goldstone fields to the two essential ones u(z) and ¢(z). Moreover, it turnis out that the sl

Toda lattice-equations of motion-acquire a new geometrlc mea.nmg w1th1n this approach Thxs L
is d1scussed in the next Section: : : s .

513 Toda lattlce as a nonllnear reallzatlon

So far, our ﬁelds u(z) and ¢(:L') were not sub_]ect to any dyna.mlcal equatlon To get a dyna.mlcs o

for these ﬁelds we have to carry out the covanant rednctlon of the coset G/H.

10

o |_~o for alln>1 L (s10)

‘—-—a'(I)aqS-i—a(z) (82¢+43u3¢) SRR AT ) S

ey

Tlns reductlon goes as follows Gnen Cartan forms 5. 7) deﬁned fxom the begmmng over
thc 1nﬁn1te—d1mens1onal algebla W (4 9), one imposes on them the covariant constramt EERA

| -ldg = Z wiLE + Z QiJ*
- n=-1 ) T n=—2

’=y,',5dgred e(’j' R ,’\'\(6‘.1)‘

where G is some subalgebra in Wg° (4.9);  Constraint (6.1) means that all: Cartan’ s l'orms

associated with the generators which_do not belong to the subalgebra G must be put’equal to

.:zero. Thereis only one limitation on G: to ensure covariance of the constraint (6. .1) under group

G, it must include the algebla of H (5.2). In the case at hand; the most genera.l suba.lgebra Q’\

consxsts of the following generators

1"2
RE=JH 4 >2@Lf, - (U >2@L,* ,

Gt =¥ At - (gF _BLF)

~ E [ - 2

B* - .)* mimd JF
U=Lt-L; , T= Ji - J0
"nglldl spin generators.

This algel)ra. 1nclucles the stablhty subgroup algebra (5. 7) as a suba.lgebla Let us rernind that .
all the higher spin generators in the algebra G constitute its ideal. It is a simple task to check
that the factor-algebra G / (lugher spm genemtoxs) is tl\e dlagonztl \l(J R) thh tl\e followmg
comrnuta.tlon relations: o

. [B+ B P JmImZ [U B*] =+ ~)Bi v, Ri] = iR** [U, Si] = iS*
[T Ri] —i\/_R* [T qi] = :F\/-Si [Bi R*] = \/‘m"?*, i ;,(6-3)‘ '
[Bi ﬂ:] \/§m§Ri [R+ R ] 3171,U 3\/_171,T ;
. [S+’S_] 37712(/ 3\/_7712], [Ri,Si] o \/_Bi

‘and the palametels my. and mz have the meanmg of somie inverse constant curvatures.”

I‘llc covariant 1educt10n constraints ((' 1) read in terms of the forms w‘" an(l QF f\s o

"')0 +wl] ‘=' Q++Qo —0 . . L
y C ey ,‘ 1nl+n12 \/_(1712 ml) 7
o w = f] Q
] 0 :;m% m? 4:._ ’”1+"’zQ ~_ . o V, " (61)
. "ni“__, 171111129 :
St =
Wy:.k‘ = Qn+l = 0 f01 alln'>2

6Let us remind that the Cartan’s forms belongmg to the algebra of the stab\hly subgroup o are (rans(ormed ;

inhomogeneously under G. So, puttmg tllem equal to zero would immediately break the G invariance.

- TWe are at liberty to put m? as well m} equal to zero. Tlm glvrs nse to alternalive reductlons with u(.t)A
and/or #(z) described by free actions.



Note that the set (6.4) includes our prevrously established inverse Hrggs phenomenon constraints
(5.10) as a subset, so all the parametels of our coset are expressed in_terms of u(z), q5(1) by
.the same formulas'(5.11).

It is straightforward to check that the constramts (6 4) result in an addrtronal infinite set of
equatrons for the coset parameters, which actually prove to be equivalent to two equations for.

the fields u(z), ¢(z). These equations are just the equations.of motion of the sl; Toda lattice - -

(3.2).
It is worth noting that a zero-curvature representation for the system (3. 1) on the sl(3,R)
algebra (15] automatically arises in this picture. Indeed, after imposing the constraints (6. 4),

we are left with the forms on Q (6. 2) mvolvmg the two ﬁelds u(z), ¢(z):
PR v—u—\/_qk spr L uiBe ot +
Dyeg = — *dzT R ———e dz: S 3_ud1 - 3 udzt)U +
‘red = \/§ \/3— ( + i 7
+(0_¢dz™ ~ 6+¢>da:+)T + hlgher spin generators. o (6.5)

However, as we ha.ve > already mentloned in Section 3, the hrgher spm generators constitute an
1deal in the algebra G (6 2), so the Maurer—Cartan equations for the forms

Qa@nr = -\—/_5 “"Vrd’d £ p* _\_/_5 ~u+\/'4>d :ks:h ’
+(0-udz” —0+udr+)U+(fL¢dz ~0+¢dx+)T B ()

» - are closed w1thout any contrrbutlon from the hrgher spin forms '1hus, the Maurer Cartan
Vequatlon for the group SL(3,R) nnmedlately y1elds the zero-curvature condrtlon for Qs,(;, Ry

4 Q.,I(s R = Qsl(s R) A Q,I(s R ' S8

. It is a simple exercise to verrfy that eq (6. 7) is equivalent to the Toda lattice equatrons (3. 1)

A few comments are needed concerning the geometric meaning of the above procedure. As
was explained in [9, 16] on simple examples, the essence of the covariant reduction consrstsk
in reducing a given group space .to its some lower-dimensional. fully geodesic subspace, in a:

way covariant under the original nonlinear realization. - The dynamical equations (Liouville
equation [9], the equations of conformal mechanics [16], etc) come out as the basic constraints

accomplishing this reduction. In the present case the relevant fully geodesrc subspace, defined -

like in other cases as the quotient of the covariant reduction subgroup over the stability sub-
group, coincides with the two-dimensional coset of the group SL(3, R) over its six-parameter
parabolic subgroup.. In the theory of sl; Toda lattice this manifold is expected to play the role
analogous to SL(2, R)/SO(1,1) in the Liouville (sl; Toda lattice) theory. Recall that the sl
" Toda lattice equations can alternatively. be obtained by a kind of the Hamiltonian reduction
“[17] from those of the SL(N,R) WZNW sigma model-[18]. This suggests.obvious parallels
* between the Hamiltonian and covariant reductions.’ An essential difference between these two

procedures lies in the fact that the covariant reduction produces dynamical systems starting .
from the manifolds which were not originally subject to any dynamical restrictions, while in the

Hamiltonian reduction one begins with'a dynamical system and then constrains it in a proper
way®. At present the precrse correspondence between these two types of reduction is not qmte

clear to us.

$We thank A. Isaev for suggestmg this argument to us. '
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: 7 Summary and comments

e

Finally, we briefly discuss one more interesting application of the covariant reduction tech-

" niques. If we start from the group Wi x Wi, the relevant Cartan forms are given by the same - -

expression (5.8),(5.9) in which one has to put &, = 0,41 = 0,n-='2,3,.":.- After imposing "

" the same constraints (6.4) , we again obtain the Toda lattice equatrons (3 1) for u(z) ¢(z) butv
kthey are now. accompamed by the addrtronal constraints .+« . -

T( ) ..0 - J(—s)_‘op:; ‘, R (68)‘

L Constramts (6. 8) are compatrble wrth the equatrons (3 l) bnt severely ﬁx the coordmate de-
‘pendence of u(z) and ¢(.7:) thus selecting a particular class of solutlons of the equations (3.1).
- Let Us remark that the Toda lattlce system wrth the constramts (6 8) is closely related to the :
: chlral boson theory [19] o v

C¥saiEw

-+In -this paper we have constructed for. the first trme, a geometrrc realrzatron of class1ca.l Wy
- symmetry in some mﬁnrte-drmensronal .coset space and. have: ‘shown. an intimate relation of -
"“this realization to'the sly Toda lattice equatrons The central point. of our constructron is
“'the substrtutron of ‘the nonlinear W5 algebra by the lmear algebra:W3°. which mcludes all the
. hrghex -spin. composites of the spin 2 and spin 3 generators as independent generators. This

allowed- us to ‘apply. to-the present case the powerful techniques of nonlinear realizations [7] .
supplemented with the inverse Higgs effect [8] and the:covariant reduction method '[9, 10;.:

- 16]. -The Toda lattice realization of W; on two scalar fields u(x) and $(z) amounts ‘to that l

of W52 in a coset space orrglnally involving an infinite number-of the coordmates‘goldstone ,

. ﬁelds which are covariantly expressed afterwards via u(:c) and ¢(z) by the inverse Higgs effect. -

The sl3 Toda lattice equations also arise geometrlcally as the result of utrhzlng a dynamical .-~
version of this effect, covariant reduction.” Their geometric role is to single out (together with '

_ the kinematic inverse Higgs constramts) a fully geodesic subspace in_ the initial coset space.

This subspace is homeomorphlc to the two-dimensional qiotient of. SL(3 R) over its maximal

- ‘parabolic subg) oup. Thus, sl; Toda system turns out to be associated with this special marufold -

in the same way.as Liouville theory is associated with the coset SL(2; R)/SO(l 1) {9]-
-Among possible generalizations and applications of our approach we first mention extendmg

it to other-Wy symmetries (assocra.ted with the algebras- sl(N R); as well as with the algebras
_-from other Cartan’s series, e.g. so(N))./We expect the one-to-one’ correspondence between . ,
“nonlinear realizations of these symmetries (to be more precise, of- the approprrate WN sym-" v
metries) and the related- two-dimensional Toda lattices. The mtrrnsrc relation between Toda ;- -
systems and the geometry ‘of W symmetrles estabhshed here “could ‘have . ‘many. 1nterest1ng‘ i
: consequences e.g. in W gravities, matrix models, etc. The fact that the Toda lattice fields
- can be interpreted as parameters of some coset ma.nlfolds of W, i.e."as a kind 'of generalized
‘angular variables, raises an interesting problem of embedding them into:linear representations
of Wy (WF).. Exploring this might shed more light on the interplay between Toda systems a.ndk o
-'the Tepresentation theory of W algebras, both on classical and quantum levels. '

- It is also desirable to understand in full how the linear higher-spin algebras W constructed
by Wy are related to the algebras Weo; Weoy Wites: "It seems that all Wg’s can be obtamed
from W, via appropriate contractions and truncations. ‘It'is worth’ noting that WN with

-~ different N are by no means embedded into-each other rather, the lower N algebras are

13



contractions and truncations of the higher N ones. For example the legular palt of W"° is
" expected to involve the same set of generators as in eq. (4.9), however, these generators satisfy

different commutation relations and this.is the point where the specificity of Wy as cornpa.xed )

to Ws manifests itself. ‘Also, in eq.(4.10), the generators Ly, Jm and Az, though possessing

~ the SL(2, R) multiplet structure of SL(4, R) generators, ‘generate some contraction of si(4, R)

. (modulo an infinite-dimensional ideal).’ On'the other hand, in Wj® the same set of genexatms
forms the genuine si(4, R) (once again, modulo an ideal).

" The most perspective and ambitious extension of our nonllnea.r 1ea.hzat10n apploach is to

" apply it to other nonlinear algebras and supera.lgebra.s e.g., Knizhnik- Bersha.dsky super. algcblas

[20], and, perhaps, to quantum algebras. In this way we expect to obtain new integrable systems

and to render a new geometric 1nterpreta.tlon to the known ones, such as the KdV, MkdV .and

. ; Kp hlerarchles »
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