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1 Introduction 

Some time ago, a new type of supersymmetric exten'sions of Wess-Zumino- .\"o,·ikov-Witten 
(WZNW) sigma-models has been constructed (1, 2): These systems possess·S0(-1) x ·u(I) 
N = 4 2D superconformal symmetry (3, 4) and stem from nonline~r realizations· of the 
latter. Their bosonic fields parametrize the manifolds S0(4) x U(l) x U(l )or SU(:2) x U( I). 
The bosonic fields valued in the abelian factors (as well as the ferrriionic' fields) are origi~ally 
described by free actions. How:ever, as was shown in (1, 2J, the action of one of such fields ( of 
the 2D dilaton) can be modified by a potential Liouville term accompanied by appropriate 
Yukal\'a -couplings to fe~mions. l\'ilh mai11taining the underlying supci-co11fornial symmetry 
in the S0(4) x U(l) x U(l) case and wit_h reducing it ioSU(2) N = 4 superconforll),al 
symmetry in the SU(2) x U(l) case. Thus, the models proposed in (1, 2] can _be regarded 
as N=4 superextensions of at once two conformal theories: Liou ville theory and WZN\\I 
model 1• These.models are expected to have interesting applications. for example in 
connection with stringy, instantons and solitons (6] and in the theory of noncritical strings 

· and superstrings (see, e.g:, recent paper (7]). 
Keeping in mine! these possible uses of the models in question, and also for coupling 

them in an unambiguous way to appropriate superfield 2D supergravities, it is desirable 
to have their manifestly supersymmetric description via N=4 2D superfield. In (1, 2), the 
ba~ic constrai~ed superfields accommodating the irreducible field contents of these models 
ha\·e been defined and a superfielcl fobp of the relevant equations of motion has been gi\·en 
(as well as the on-shell action~ of these systems). Later on·, the_se constra:ned superfields 
have been used to work out the corresponding on-shell superconformal calculus, both in 
classical and quantum cases (8, 9J. However; it remained an open problem how to construct-. 
complete off-shell actions in terms of unconstrainted 

1
N=4 superfieids (prepotentials). Re

call that the superfield actions for N = 1 and N = 2 super-Liouville models were known 
for a long time (10, 11]. . 

This problem is solved in the present paper 2 • We start in sect.2 with recapitulating (in 
some improved form) the basics of the constrained superfield description of SU(2) x U(I) 
and S0(4) x U(l) x U(l) N=4 WZNW models and th.eir super-Liouville deformations. In 
sect. 3 we pass to unconstrained prepotentials and study the transformation properties of 
the latter under N = 4 ;mperconformal ·group. · We find t\vo possible transformation laws of 
the prepotential under SU(2) N = 4 superconforinal group (SCG), corresponding to the 
_two type~ of N=4 twisted scalar supermuliiplel (1, 13, 14]. While in the SU(2) x'U(l) N = 
4 case it suffices to have one prepotential, in the S0(4) x U(l) x U(l) N..= 4 c_ase we 
are led to introduce two prepotentials possessing different transformation properties with 
respect to a fixed SU(2)· N = ·1 subalgebra of S0(4) x U(l) N = .J. superconformal 
algebra. In sect. 4 we construct the off-shell superfield actions of the SU(2) x U(l) and 
S0(4) x U(l) x U(l) N:,; 4 WZNW • Liouville models and show that in components and 

11n the case when·no Liouville terms are.present, a wi\Je~ class ofsuc·h. N=4 sup~rconformal WZNW 
models li'as been discovered in (5]. : • ·· · . · ·· · · ' · 

. 2 111 a recent preprint (12] an off-shell action for the SU(2) x U(l) WZNW model has been constructed 
in N,=: 4 extended (N = 4 harmonic) superspace. . • ' . 
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after elimination of auxiliary fields they are reduced just to tlie actions given earlier [2]. 
The superfield Liouville term in the case of SU(2) x U(l) model is given by the Fayet
Iliopoulos term of the prepotential, while in the case of S0(4) x U(l) x U(l) model.it has· 
a bit more complicated structure, including two independent prepotentials. -

.• . . 

2 N = 4 WZNW - L~ouville systems: descriptioi'i via 
constrained superfields · 

2.1 The S0.(4) x U(l) x U(l) WZNW - Liouville superfield equa-

tions· 
The superfied equations describing the S0(4) X U(l) X U(l) N=4 superconfonnal WZNW 
- Liouville sigma model 9f (2] read· • · ·· · ! · : ·' : · · , · 

D~qi.1: +D;qij =. !_F,;1:D;qi1 . • . (2.1) 
2 

D!:qi.1: + D!qi.lc = ½~..iD!q!I: (2.2) 

D!: (q-1 n;ql = im (F,k1qii + .91qil: - F,il:qi.1 + 2a t_lcjlr qb') (2.3f 

Here m and c, are some coupling constants, ijkl · • • are vector S0(4) indices, iikl is 
a totally: antisymmetric tensor, Dt, D! are covariant. spinor derivatives satisfying the 
anticommutation relations : · · · · 

{D i D;} ·- 2'6;; a· · {nini.}· - ?"f,U a··. +• + . _- I +• _, _ - -1 - _ 

·{nt,nl} = o {2.4) 

and ordinary and underlined indices are related to the. ( +) and (-) light-cone branches 
of 2D N = 4 superconfonnal group (these are rotated by two independent Kac-Moody 
groups S0+(4) and-80_(4) gauged by the coordinates :i:+ and :i:-, respectively). The 
matrix N = 4 superfield q ii is defined as follows . : . . · · 

, qii = qii exp{-u}, (2.5) 

where u is a superdilaton and ii" is the orthogonal matrix superfield parametrizing the 
coset S0_(4) x S0+(4)/S0(4}. The equations (2.1) and (2.2) are the superfield irre
ducibility constraints,. (2.3) is the equation of motion. · As· a consequence of eqs. (2.1 ), 
(2.2), q ii describes off shell 16 + 16 degrees of freedom [2] .. After exploiting eq. (2.3), this 
number is reduced to· 8 + 8. Note that one more physical bosonic field, apart from the 
dilaton u(:i:) = u(z) I (hereafter, sl~h means restriction to the 8 independent parts) and 
six S0-(4) x S0+(4)/S0(4) coset parameters, appears as a. solution of the differential 

constraint 
8_A+ -B+A~ = 0 ~ A:1:(:i:J = 8:1:~(:i:), 

A+(:i:) = :ljk/D~ (q-1 D,f.qt' 1·, A-(:i:) = 1~,;iiMD!: (q-
1 

D!~)H I 

~

-,-·-•-"• ·-------
'1. 0 

- ,_. .• '. ·, 'l '1'U/'"',ri1'iff' 
15i·A-~·,! .. _'""1~~~ hh,.lw ,. 

. 
'T: :::. ~;(( ,'lt;l(),iJiUJruj I 
•• ~. 1 ·• 1 · =-EKh %•.J,:.·•~• }~ft._ I 

, ·-.,.'llf--t• tl't' tV t :,... 
-~ -~.,-,.. ---- + 

(2.6) 



which is a consequence of (2.1), (2.2). The additional U(l) symmetry characteristic of 
S0(4) x U(l) N = 4 SCG [3) comes out as a freedom in solving eq. (2.6) and it is realized 
as constant shifts of the field ¢(x) (it is the rigid part of the whole U(l) Kac-Moody 
symmetry). · · 

Now, let us rewrite (2.1) - (2.3) in a more convenient form. To this end, we represent 
S0±(4) as direct products of two SU(2)'s and substitute the S0(4) vector indices by the 

. doublet SU(2) ones according to the rule 

A;-+ A""= ....!._A;(o-;)"'0 

,/2 

Ai.-+ A_ru! = ~Ai(ui-)!!!!.. 

· Here,. the greek and latin indices refer to two different groups SU(2) forming S0+(4) 
(S0_(4)) (SUr(2) ·a.i:td SUII(2) in what follows). As was shown in [9], the matrix superfield 
qf!!!,/3b can be divided, without loss of generality, into the product 

where 

q ao,Pb _ f!fJ ob· - = ql q2- ,. 

2fJ { } - !!./3 o6 .{ } ~ ob 

(2.7) 

. q1 = exp ::-u1 q1 , q2- . :"' exp -::-u2 . q2- . 

U .: ef> U 9 •ao,P~ -o,J -ob . (•) ') 
UJ = 2 + 4 ' U2 = 2 - 4 ' q-_ = ql- q2- ' --~ 

qi, ·ii2 are 2 x 2 unitary (and unimodular) matrices and ¢(;) = ¢(z) 1: The original con
straints (2.1), (2.2) and their consequence (2.6) prove to lie satisfied (A±(x) are expressed 
through ¢(x) just according to eq. · · (2.6)), if the superfields qi, q2 obey the following 
constraints · · 

D "'" !!./3 + DP•. !!."' - 0 D !!.!! f!_a + D f!.g_ g_a - 0 (? 9 ) + ql + ql - , - ql - qi - -• a 

. n;-qt-+n:bqr= o, n:1ql" + n_filqr = o. c2.9b) 
Such superfields, first defined in [l) and re-discovered in [13), comprise two 8 +·s'N = 4 
scalar off-shell supermultiplets called in [13) "N = 4 twisted "; Thus the considered N = 4 
WZNW - Liouville sigma model is represented in terms of two different N = 4 · twisted 
scalar multiplets. Using the relation 

; . , ·t .. 
D=D+ ¢ = 4ima ql', (2.10) 

which follows from eqs. (2.3) and (2.6), the dy~amica.l"~quation (2.3) can ~!so be rewritten 
,_via q1, ,q2 . . · 

· D_!!.!I. (q;t D;"q[!:') = im(l - 2a) t."'""lq1!!./3 qf" (2.lla) 

D:1{q2t D;"ql·0
) = im(l + 2a) t 00qi2°' qt. (2.llb) 

Thus we have equivalently rewritten ·eqs. (2.1) • (2.3) as the set of coupled equations 
(2.9), (2.11) for two N = 4 twisted superfields qf"', ·qf". This representation is most 
convenient for our further purposes. 
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2.2 Component content 

The off-shell component structure of the s~perfields q1, q2 can be revealed by the standa.r_d 
method of projections, acting on these-superfields by spinor derivatives and taking account 
of the consiraints (2.9). Proceeding in this way, we find that qt·" includes the following 
8 + 8 independent compol!-ents · 

. qf"'(:t) = exp{-u1} ii{L"' I, B!l.0
( ) -

1 13 fll!'.!!. ( -·1 D..,0 !!.) I 1 X - 16 qlg_ - ql /3f!. + ql-, . (2.12) 

e1~"(x) = l_1anA•!!.1 
4ql f!_ + ql A • 

"'"( ) 1 I) Ao /3 -la I e17° X = 4 , _;:-q11 ql/J- " 

(this definition is chosen for further convenience). Other components"either vanish or are 
expressed through (2.12) with the aid of the'relations 

D Sd D "'0 qb - · 2ii0 ta-, 8 qM + + l -- .. +t 
Df!D:1 q/.., = -2frl!!!e~ 8_qt' . (2.13) 

following from the constraints (2.9) and the algebra of N = 4 spinor derivatives (2.4). · 
Analogously, for qf" we have · 

qr(x) = exp{-u2} qr I, B2~"'(x) = /6q2~ D: (q;i! D_f0qt) I (2.14) 

& "'"( ) - 1 -1• D QC ! I & f!!!( ) - l•D ~ b -1 !I. 1 · . '>2+ X - 4q2 t_ + q2 c , • '>2- X . - 4 - q2 £ q2 b • . 

0 As will be shown later, in both sets the fields u, q; e+, f- are physical and Bi, B2 are 
auxiliary (actually, this is clear already by the dimensionality reasons). 

Acting on the superfield equations (2.11) by spinor derivatives and using the idea't-ities 
listed in Appendi_?C, we find the component equations of our S0(4) X U(l) x U(l) N = 4. 
WZNW - Liouville sigma model . . 

• B1e.• = -¼ im(l-' 2a) q,e.• exp{-2u1} 

8+8_u1 = 1/2 (1 - 2a) [m2exp{-2(u1 + u2)} 
. • (& . . 00 QQ & & . ... "'"' & - Im ">2- !!.!! q2 qc . ">2+ ao + ">2- !!.!! q2- ql- '>l+ 04 

& · "" aa & & oo e_a & • )] . + '>I-!!.!! q2- ql- '>2+ c>o + '>1- !!.!! q2 ql ',,l+ oo 

a_· ( Ki!!. 8+ii") = -im(l - 2a) (6~ !!.!I. qf" qi2° 6+ Po + i2-~ q2!.• qr el+ P• 

a-et; 
a+el'!-

as 2,a t . . , a.,, oa · ·) 
+e1- e.a. q2- qi ... 2+ P• + e1- !!!!. q2- · q• e1+ P• 

= ;c1 -2a)(e2-!!'.9. + e,..:.a) qr qf"' 

= -~(l - 2a)(6+ om+ el+ a;.) qr q1~
0 

B2
2

"' = -"¼ im(l + 2a) qi2° exp{-2u2} 

5 
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8+iLu2 = 1/2 (1 +2a}[m2 exp{-2(u1 +2u2)} 
. • (t •• a+a t t ao c,a t -,m .. 2- 2ll q2- qc . ..2+ a• + .. 2- 29. qi . qc .. I+ ao 

!l• £1> t t . l!.• 2.<>t )] . + e1-..29. q2 _ql ._2+aa + .. 1-ga q2 qi ._l+ao 

8 . (•-1 8 -!•) - q2 6! +q2 = -im(l + 2a) (e2-2ll qr q12._a e2+ ab+ e2-2ll q21!• q,2.a el+ 06 

a-et; 
a+el= 

aoaat & aoaat) +e,- !!.!!. qi qc .. 2+ 06 +,.,_!!.!!.qi qi- .. I+ 06 

= ;c1 +2c:tH6-!!.!!.,+ e1-~) qr ql!."_ 

· m ( ) •• · aa = -~(1+2a)6+oo+et+ao q2 qi-. 
-· 

2.3 Transforrµation properties 

(2.16) 

. We turn now to discussing tlie invariances of the superfield system (2.9), (2.11). As was 
shown in [2, 3, 4], the pure N = 4 WZNW sigma model following from (2.9), (2.11) in 
the limit m = 0 respects SO(4) x U(l) ~ 1SU1(2) x SUu(2) x U(l) N = 4 supercon~ 
formal symmetry. The same turns out to be true in the general case of m ,f; O. As it 
follows from the results of. [9), the corresponding N = 4 superconformal algebra can be 
obtained as a closure of two its different -SU1,11(2) N = 4 subalgebras, so henceforth we 
limit our consideration to the transformations which belong to these defining subalgebras . 
The transformation law_s of the superfields lq1, q2 under the full SO(4) x li(l) N = 4 
superconfotmal symmetry are given in (9). ' . . . / 
• . The N.= 4 superspace coordinates transf6rm under these two SU1(2) and SUu(2) N = 
4 SCG's as follows (as usual, we limit our consideration to_the (+)light-cone subspace 

1and the related branch of N = 4 SCG) · · 

59+a• 

sx+ 

1 n'..•E · l D 00 E = 2i + l + 2i· + 11 

E 1 D a•E (}; . E 1 D aoE (}. + = r.+ 2 +. 1 ao + 11 + 2 + 11 aa,. 

where the superparameter~ E1 and Eu obey the constraints ' 

·v l(ovb) E O D (aavf3l E o' . + +l 1 = , + . +a 11 = . ' . 

(2:17) 

(2.18) 

and collect the relevant sets of the SU1,11(2) N_ = 4 superconformal transformation param
eters (those of two independent 2D conformal transformations, four local supersymmetries 
and SU1(2) arid SUu(2) Kac-Moody symmetries forming the SO(4} one). The associate 
su~erfield transformations leaving invariant (separat~ly) eqs. (2.9) and (2.11). are given by 

~·aa 1 g/3D""D E·. 
oq,- = -41q1 + +Pa l 

oqr = -~qi D;"D+abE11. (2.19) 
4i ·• _ . 

. It is worth remarking that qr ( qr) is scalar under· 5Uir(2) _(SU1(2)) SCG and is rotated 
in its SU(2) indices by SU1(2) (SUu(2)) SCG. To our knowledge, the existence of thes~ 

,,-...-,...-

,,,,_r"'"'_,,-·- 6 
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I 
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two N =:= 4 twisted multiplets having different transformation properties with respect to a 
fixed SU(2) N = 4 SCG has been first noticed in [14). · · 

2.4 Reductions to the SU(2) x U(l) WZNW and WZNW - Li-
ouville models 

As has been already mentioned, the SU1(2) and SU11(2) N = 4 superconformal invariances 
of eqs. ·(2.9), (2.11) (and, hence; their commutant, SO(4) x U(l) N'= 4 superconformal 
invariance) are also maintained in· the limit m · = 0, where. this system splits into the two· 
decoupled sets of equations for q1 an<l q2 · · 

D 00 !!fl + D /3• ga - 0 D !!.!!. {!_a + D {!_I!. ga - 0 + q, + q, - ' - q, - qi - (2.20a) 

D. i!a ( -t/3 D "" !!."') _;. 0 . . . . : · .· (? ?Qb) - q, /1 + , q, - ' ' . -·-. ·. - :/' . ' . . . 
and analogously for q2• Eqs. (2.20) describe the SU(2) x U(l) N = 4 WZNW sigma 

· model [l, 2). It is a simple exercise to check that eqs. (2.20a) (the off-shell constraint) 
and (2.20b) _(the equation of motion) are separately covariant under the tranfsormations 
(2.17), (2.19). · . . . , . 

_A less trivial reduction is effected by putting in (2.9), (2.11) 

( ab b 1. f!fJ ~J 
_a= -?, q2 = fl! . or a= -

2
, q1 ~ f-· , - . 

(2.21) 

These two options are equivalent up to ihe interchange SU1(2) +-> SU11(2), so it suffices 
to consider, say, the first ~ne. It reduces (2.9), (2.11) to the following set 

· D ... !!fl + D /3~ !!". :... 0 . D !!.!!. {!_a + n"f!.e. f!O - 'o + qi + , qi - • • - ql .. . - ql - · . (2.22a) 

D~ (q;1f. v;al"') = 2im f°"' fl!• q,!!fl. (2.22b) 

These are the equations of SU(2) x U(l) N =AWZNW • Liouville sigma.'model con
structed for the first time in fl] 3 • The S0(4) x U(i) N = 4 superconformal symmetry 
of the initial model is now reduced to the semi-direct product of SUr(2) N = 4 super• 
conformal symmetry and global SU(2) symmetry :whicli rotates in a. uniform way the 
latin ·doublet indices g_, a (so as to lea.ve invariant the antisymmetric "tensor f~~). This 
global SU(2) is the only trace of the second SU(2) N = 4 superconformal symmetry to' 
survive the above reduction. Of course, in the limit/ m =. 0 this second SU(2) N = _ 4 
superconformal symmetry and, hence, the whole S0(4) x U(l) N = 4 one a.re restored .. 

In terms of independent components of q1, eq. (2.22b) amounts to the following set_ of 
equations (we suppress the suffix 1)" 

se.•· = 1 .•• {·2} -- im f- exp - u 
2 : 

3This model has b_een recently re-discovered in (7) in a _N = 1 superfield 'form1dation. 
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8+8_u = m2exp{-2u} - im t-'l4 {-o,a{+o,a <f'"' 
a. (·-1 a -fJ") 2· · 00 e · e · ,.,. _ q.,,E!. +q- = - im t- '>-!a'>t"'a ~- (2.23) 

a &"'4 aa "'tie +-..:- = -me- q- _'>+"'" 

8_{:° = m t-'l" q!!"' {-29. 

Correspondingly, in thi~ model we have S bo~ons and S fermions off shell and 4+4 on shell. 
It.is wy to write the off-shell component actions which lead to eqs. (2.15), (2.16), 

(2.23) and, after eliminating auxiliary fields, are redu~d to those given in [2]. However, we 
postpo~e gi~ing these actions to constructing an unconstrained superfield description of 
the systems under consideration. They will be obtained from the corresponding superfield 
actions.· 

we·conclude this.Section by several.comments concerning the terminology. 
. The fuH symmetry of eqs. (2.9), • (~-11) in the limit m = 0, where they describe 

pure N = 4 super-WZNW model, is actially wider than SO(4) x U(l) x U(l) N = 4 
s~perconformal one: it is given by two in ependent SO(4) x U(l) x U(l)SCG's acting 
independently on q; and q2 (the correspon ing SU(2) N = 4 SCG's _are represented by the 
transformations (2.17), (2.19) with two independent sets of the superparameters Er, .E11 ). 

. The fields u1(x):::: U1 I, u2(x) = U2 I can be regarded as the parameters of two independent 
U(l) Kac-Moody groups, hence the bosonic manifold of this' model can be identified ~vith 

: SU1(2) x SUu(2) x U(l) xU(l) ~ SO(4) x U(l}x.U(l) 4, ,yhich explains the denomination 
we use for this WZNW model. .' , · 

Analogously, the abbreviation ~SU(2) x U(l) N:::: 4 WZNW" for the reduced model 
(2.20) originates from the fact that this model possesses one SU1(2)xSUu(2)xU(l) N = 4 

• _superconf~rmal symmetry, with" u(i) = u I and qf"'(x) =; ijf"' I parametrizing the groups 
U(l) and SU1(2) and, hence, with SU(2) x U(l) as the bosonic target manifold. 

· TheLiouvillem ,6 0 deformation (2.11), (2.9) oftheSO(4)xU(l)xU.(l) N = 4 WZNW 
sigma model enjoys the invariance only with respect to a diag~nal SCG in the product of 
the two aforementioned SO(4) x U(l) SCG's, so _the full internal symmetry group of.this 
model is SO(4) x U(l) Kac-Moody group. Accordingly, one of the involved scalar fields 
(the combination u1(x) + u2(x)) ceases to be the U(l) group parameter, being rather a 
goldstone field describing the spontaneous b'reakdown of 2D conformal symmetry (the 2D 
dilat~n); The Liouville deformation (2.22) of the SU(2)xU(l) N = 4 WZNW sigma 
model (2.20) displays a restricted superci>nformal invariance with respect to. SU(2) N = 4 
SCG multiplied by some extra rigid SU(2) realized on spinor fields. Thus the full internal 
symmetry acting on the bosonic fields is reduced to SU(2) Kac-Moody symmetry and 
the field u(x), like in the previous case, loses the status of the U(l) group parameter. In 
spite of these reductions of the internal symmetry groups, we name the N ~ 4 WZNW -
Liouvile systems in question the SO(4) X U(l) x U(l) and SU(2) x U(l) ones, in order to 
point out their genetic relationship with the correspoading N = 4 WZNW sigma models. 

. i . . 
4 Depending on the boundary conditions imposed on the fields t11, u2, one may regard them taking 

values either in U(l) or in its non-compact version R(l). · 
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3 Solving the constraints. Prepotentials 

The problem of construction of superfield actions for the above systems is difficult to solve 
dealing with the superfields <If"' and tzi0 

because they are constrained. One way (perhaps, 
most perspective) to overcome this difficulty is to re-interpret the constraints (2.9) as a 
kind of the harmonic analiticity conditions [15], to represent q1 and q2 as unconstrained 
superfields given on some analytic. subspace of a harmonic extension of N = 4 2D super
space and to write the relevant actions as integrals over this analytic subspace. Basically 
keeping to this strategy, Rocek, Schoutens and Sevrin have recently constructed an off- , 
shell superfield action for the SU(2) x U(l) N = -I WZNW sigma model [12]. \\"e propose· 
here an alternative approach to constructing such actions, staying in the framework of 
the conventional N = 4 2D superspace. It is based upon solving the constraints (2.9) · via 
unconstrained prepotentials. · · · 

I~ fact, the general solution ~o these constraints has been given by Siegel several years 
ago [16]. It is easy to show that (2.9a), (2.9b) become identities after representing 

aa = 16b;:-N;· ½ !!• (3.1) qi-.. = 16D3 !!9.D3 "'0 '\I. (3.2) q2 2- 2+ 2 g_a 

f)3ao 
I = D"'D~1•n•> . 

". ..\, 
f>Jao = n•Dh'D"'l. 

2 ..., , r , (3.3) 

where ½ !!•• ½ g_a are unconstrained N = 4 ,superfielcls, the prepotentials. The represen
tation (3.1), (3.2) exhibits a freedom under the following gauge transformations of the 

· prepotentials 

.SV. !!.• = D I( !!,(a6)a + D }"' (!!k)aa 1 +a6. I -f!! 'J 

.SV, g_a = D 1( g({Ja)a + D }" (~a• 
2 +/Ja 2 . -~ '2 , (3.4) 

where Ki, K2 are unconstrained supergauge parameters . 
The transfoi:-mation rules of the prepotentials under two SU(2) N = 4 superconformal 

symmetries can be deduced from the requirement that for qi, q2 the transformations 
(2.19) are ,reproduced. 'After some labour (using the identities (A.11) - (A.13) listed in 
Appendix), these are found to be 

.5½ JlG . = 8+Er ½!!<I+ ; 8+Eu ½ !!G - -b n.:c.D:~c)En ½ ~ 
.S½g_a = 8+E11 V2g: +; 8+Er ½.!!"' -b n;(.,,D+-,JrEr V2~. (3.5) 

It is amusing that these transformations are in a sense complementary to those of qi, q2: 

with respect to SUr(2) (SU11(2)) · N = 4 SCG the prepotential ½ (V2 ) behaves as a scalar 
density (with the conformal weight 1, in contrast to q1(q2) 'which has zero weight) while 
with respect to SUu(2) (SU1(2)) it undergoes also a local SU(2) rotation in external 
indices (and possesses the conformal weight 3/2) . 
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After fixing Wess-Ztimino gauge with respect to (3.4), the component content of Vi, V2 
is reduced to that of qi, q2• The precise relation of the WZ gauge components of Vi to 
(2.12) is as follows (we o~it the suffix 1) 

f;3__22.fJ;•va. I = 1 "'"' 16 q-
D .iJ3<>•fJ3o•v I +ob - - + !!.• = q!!" e+ ob 

n_llib:i!!.b!"'"Va• I'= e- l!i q.!a"' (3.6) 

fl _!'!!fl +ob D: 23. D! 00 V !!.•·I = 16 (B~b +e-cl e+ob q 2 "'}. 

The relation between l'2 in WZ gauge and q2 is basically the same, up to the interchange 
of greek and latin doublet indices. ' 

4 N = 4 WZNW - Liouville superfi.eld actions 

4.1 SU(2) x U(l) model 
. . 

Now we are sufficently armed to construct off-shell superfield actions for the models we are 
interested in. We begin with the simpler case of SU(2) x U(l) N ;= 4 WZNW - Liouville 
system. · 

Our- aim is to find an unconstrained N, = 4 superfield action which would respect 
SU1(2) N = 4 superconformal and gauge (3.4) symmetries and result in eq. (2.22b). To 
this end; it is advantageous to make use-of the constraints (2.22a) to rewrite (2.22b) in 
the following equivalent form 

< l.(.), 

q~1 p' D~ (q~~ n:•q~) - Sim~!!.• =·0. ( 4.1) 

The two terms in eq. (4.1) are separately covariant under SU(2) N = 4 SCG, so the 
action must consist of the two independent parts, 

S
SU(2) _ SSU(2) + S, 

, WZL - WZ • m, .(4.2) 

producing, respectively, the first and second items in (4.1). 
. It is easy to guess the form of Sm: it is none other than the Fayet-Iliopoulos term.for 

the prepotential V!!• 

Sm ~ -Bini I cf xd80 .;a•v !!• (4.3) 

-(up to an overall coupling constant in front of the action). It is invariant under gauge 
transformations (3.4) and, with taking account of the SU1(2) N = 4 SCG transformation 
property of the superspace integration measure · 

8(d2xd80) = -8+Er_(d2xd80) 

also under SU1(2) N = 4 superconformal symmetry. 
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(4.4) 

,;l 

~ ,1 

IJ I 

lj./1 
I~ 
' 

i: 

The form of the action responsible for the first piece in ( 4.1) is not immediately obvious. · 
To understand how it could be constructed, let us apply to the N = 0 (purely bosonic) 
case and recall the procedure of restoring the action of bosonic H-'ZNW sigma model by 
the corresponding equations of motion. 

To be more specific, we consider the equation of SU(2) WZNW model 

a (--1 a -13") o - qof!. +q- = . (4.5) 

The most direct way to reproduce this equation from the action principle is to allow ij 
to depend on some extra parameter t and to consider the action ( discarding the overall_, 
coupling constant) . 

Swz = J iflx_[ dt a_ (r;;~ 8+ii!") (ii~l 81 ij~
0

) (4.6) 

q!!P-(t = 1) = q!!P, ijg/J (t = 0) = 0. 

After simple manipulations including integration by part, this action can be recasted into 
the familiar form of the WZNW sigma model action 

S 1 jd2 a -v>.a --1 WZ = 2 X +q- _q,.!L 

+ 1 !_,, •1ldt(·--,,pa --l)[c'-~-,a --1)(-wva --1) (8. a)] , -
2 

a-x · q- 1 q,p>. q- +q'Y!!l q- _q.,., - + +-> -
0 - -

where the second term is recognized as the WZNW one. It is important for us that the 
action can be taken in the form (4.6). The integral overt entirely drops out only in the 
variation of ( 4.6) .. To show this, it is convenient to introduce the quantities 

A±·= ij.;.1 8±ii, As= ij-1 Sij, A1 = ij-1 81 ij 

which are related by the identities of the sort 

.SA+= -AsA+ + 8+As + A+As· 

(4.'7) 

(4.8) 

With making use of these identities, the process of varying (4.6) is substantially simplified 

1
1 

1
1 d . . 

_ 8 
0 

dt 8_A+A1 = 
0 

dt dt (8-A+As) = 8_A+As. (4.9) 

Equating this variation·for arbitrary Sij to zero, we come to (4.5), 
The superfield action S~j2l producing the first term in eq. (4.1) can be con~tructed 

analogously to the action ( 4.6) · 

1 . 

S SU(2) = _1_jt12xd8() { dt __ [q'-l{JD!!!.(q-1 D""'"qr!.)] av wz 64 J2 Jo . 2 - /3f!. + " t a•• 
(4.10) 

q gJJ ( t = 1) i, q !!I\ q gJJ ( t = O) = 0 , 
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where the numerical coefficient 1/64 was included to.have a proper normalization of the 
component action. 

To prove the correctness of (4.10), one should, like in the bosonic case, compute the 
variation of (4.10) with respect to the prepotential V.!!.• and check that the t integral in 
this variation can be removed. Calculations are simplified to a great extent with using 
the irreducible projection.superfields defined in eq. (2.12). The superfield Lagrangian in 
(4.10) can be rewritten in their terms as 

L~J2l = -16 1• dt cxp{2u},B.!!.• 81V.!!.•. 

' 
Discarding full spinor derivatives, the variation of (4.11) can be put into the form 

6LSU(2) 
wz D+'4D_~exp{2u} 81V.!!.• 6q!!.." + D_~exp{2u} n;• 81V.!!.• 6q!!..,, 

n;• exp{2u} D!11- 81 V!!.• 6q !!.." + exp{2u} D;~D!11- 81 V !!.• 6q !!.." 
16 exp{2u} B!!.• 681Vi!_a. 

( 4.11) 

( 4.12) 

Going from 6q to 6V by eqs. (3.1), (3.2), discarding full derivatives and exploiting identities 
(A.4) - (A.11), we finally put H~J2l into the form with 6 and 81 interchanged, that is, 

6L~J2! ~ -·[ dt ~ (exp{2u} B!!.~ W!!..) = -exp{211} B!!." fl"!!.•. , (-1.13) 

This is the desirable result. 
· The action (4.10) exhibits invariance under both SU(2) N = 4 SCG's defined in 

sec.2.3 and, hence, under SO(4) x U(l) N = 4 SCG. This may be checked either by using 
the above formula for the variation and substituting the active form of the infinitesimal 
superconformal transformations· of V!!.• (at a fixed point of N = 4 superspace), or by 
considering a passive form of SU(2) N = 4 superconformal transformations, i.e. making 
use of the transformation laws (2.19), (3.5), ( 4.4) and those of covariant spinor derivatives 

W.;4 = -~ D;"D+-,c (E1 + Eu) n:;_c. (4.14) 

With the help of the identities (A.3) and (A.8) one also proves the invariance of (4.10) 
under gauge transformations (3.4). 

Thus we have found that"the off-shell superfield action of SU(2) x U(l) N = 4 WZNW 
sigma model is given by the expression (4.10) while its Liouville extension by 

S= 64
1pf d2xd80{[dt [q-~ 11 n~(q°p~D+'4q~!!)]81V!!..-8imE!!"V!!.~}. (4.15) 

We stress once more that the action (4.15), in contrast to (4.10), respects a restricted su
perconformal invariance, that is under SU1(2) N = 4 SCG and an additional global SU(2) 
group which uniformly rotates the indices fl, a. The maximal 2D N = 4 superconformal 
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symmetry is restored only in the limit m = 0, when (4.15) becomes the action of pure 
SU(2) x U(l) N = 4 WZNW sigma model. 

Now, choosing WZ gauge for \/00 , it is straightforward to integrate in (4.1-'i).over O's 
(using again identities (A.3) - (A.7)) and thus to derive the off-shell component action of 
SU(2) x U(l) N = 4 WZNW - Liouville model · · · 

c st'12> 
1 

·/ a2 ·{a a ·a & ""& ·a & f!!!& + •) · {•J } s··s '-'WZL = 12 X +ll _tt - l -<,+, <,+aa - I +<,- ,',-f!!! - exp -U - !!• 

+ 2imt!!"(B!!.+(-!!2_q 2"(+oa)}+)2 s1vz, (-1.16) 

where Swz is defined by eq. (4.6). Varying (4.18) yields just eqs, (2.23). For completeness, 
we also quote the form of the physic~! fields action 

SSU(2) 
IVZL 

1 j ·2 {a a ·a·&"•& ·a·tQJ!.& - d X + tl - ti - I -<,+ <,+oa - l +<,- ',-£!.,! -!2.' . . . ' 
l 

+ 2im t!!"(-f!!!q 2 "(+oa} +.J2Swz • 

m 2 exp{-.2u} 

(-1.17) 

It coincides with the action given iii [2]. Recall that the coupling constant J is quantized 
on topological grounds [17, 2] 

!2 __ 
-lir - I{. 

•. -1. l::' I 

with I( integer. 

4.2 S0(4) x U(l) x U(l) model 

This N = 4 WZNW - Liouville system is distinguished in that it is invariant under the 
maximally extended SO(4) x U(l) N = 4 superconformal symmetry. 

In the limit m = 0 the SO(4) x U(l) x U(l) WZNW - Liouville equations (2.11) 
become two independent SU(2),tU(l) WZNW .ones, so the kinetic term of the relevant ' 
off-shell superfield action is given by a sum of two actions of the type (4.10) dependiiig, 
respectively, on the prepotentials ½!!band ViQJJ- After rewriting (2.11), with the help 
of constraints (2.9), in a form similar to eq. (4.1), the superfield potential term is also 
easy to construct. The total off-shell action of this model is eventually written in terms of 
superfields as ·' · · 

C 1 ' • • 

~so(4l . l / (2 • ,so { f dt [ 1 -10 D !!!! ( -1 D oa /1. ) fJ V, ( 1 19) :>ivzL = 32 J2 a:xa Jo 1 - 2a. q l!!. - <71 /3/! + <Ji o i J g_a .•• 

1. -lbD.!!'.!!(-1 D"'" ~)8" ·1 2· ( go,, + !!~l/ )'} +1 +2a q2!! - q2bk +, q2a IY2,g<> - '.'n qi Y29.'.' q2 >Jg_a 

and, in terms of components, 

' S0(4) 2 J 2 {· 1 • . · oa • oa SwzL = J2 dx. l-2a(8_t118+u1 -18_(1+(if 0 •-18+(1:.-(i_9'..!!. (-1.20) 
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+ 2 exp{2u1} B/!• B1 g_a) 

+. 1 : 2a ( a_ u28+ U2 - ia_et: e2+ oa - ia+el:6- !!'.9. 

+ 2 exp{2u2}Bf0 B2 e_o) . . 
. ( uB· ~.B t: •• "" t: + 1m qi- 2 ,l,\ + 1Ji lg_• + <,2- ~ q2-,' .qi-. <,2+ ,\a 
f: u •• f: •• u f: f: •• .,., f: ) } + <,2-~ q( q2- <,I+ ,\a+ e1-~ q2- . qc <,2+ ,\a+ <,I-~ q2- qi- '>I+ ,\a 

. 2 1 2 1 · 
+ J2 1 _ 20 S1 wz + J2 1 + 20 S2 wz . 

Here S2 wz is given by the expression analogous to (4.6) 

S -Jd211dt{) (--la -~c)·--la -~· 2 WZ - X - q ab +q q cc t q · 
! 0 ' - -

( 4.21) 

Eliminating the auxiliary fields B1_, B2 in (4.20) yields 

s~0l2 =. ;2 J d2x { 1 _
1
2a (a_u18+u1 - i~-et+~el+ oa - i8+et'!e1- !!'.9.) \ (4.22) 

+ l: 2a (a_u28+u2 ~ i8_et:e2+ oa - i8+el!e2-!l!!,) 

+ im (im exp{-2(u1 + u2)} + 6-l!!. qr q/" e~+ ,\a 

f: ,\,\ •• f: f: •• u f: f: •• .\.\ f: ) } + <,2- ~ ql- q2- <,I+ ,\a+ <,I-~ q2- ql- <,2+ ,\a+ <,I- M q2- qi- <,I+ ,\a 

2· 1 2. · 1 . . 
+ J2 · 1 _ 20 S1 wz + f2 1 + 20 S2 wz 

that coincides with the physical fields action of ref. (2]'. The quantization conditions for 
the coupling constants f and a are as follows (2) 

f 2 J l l K1 - K2 -=-+- a=-__,;;,---'-
4 1r K1 K2 ' 2 1<1 + K2 ' 

(4.23) 

•. where the two independent integers Ki, [(2 come from two SU(2) WZNW actions in 
( 4.20), ( 4.22). . 

, Let us inspect symmetries of the superfie)d ac_tion (4.19). As was already explained in 
the previous Subsection, each of two kinetic terms in (4.19) is invariant under the whole 
SU1(2) x SU11(2) x U(l) N = 4 SCG. It rem~ins to prove the invariance of the superfield 
Liouville terms. We first note that these two terms actually coincidemodulo a total.spinor 
derivative, as ihis can be easily seen·from eqs. (3.1), (3.2). Then, it suffices to study the 
transformation properties· of one of them, say, of ½aa<ri"· The corresponding piece of the 
action is invariant under SU1(2) SCG by the same r~asonings as (4.3), since <fi" is a scalar 
with· respect to this SCG. and ½ transforms so as _to compensate the transformation of 
the N := 4 superspace integration measure. , As concerns SU11(2) N = 4 superconfo~al 

14 

·:) 

transformations, both q2 and ½ transform. with nontrivial conformal weigh~ (see eqs. 
(2.19), (3.5)), the total weight being just opposite in sign to the weight of the measure 
(which transforms under both SCG's according to the same rule (4.4)). The SUu(2) local 
rotation part· of these transformatons does not contribute because of manifest SUu(2) 
invariance of \'ig_o«li"· Thus the N = 4 super-Liouville term in {4.19) is in~ant under 
both SU(2) N = 4 superconformal symmetries discussed in sect. 2.3 and, hence, under 
t_he maximally extended SU1(2) x SU11(2) x U(l) N = 4 superconforaml symmetry. The -
invariance of this term under the gauge transformations (3.4) can also be easily checked: 
gauge variation of the integrand is proportional, up to a total spinor·derivative, to the 
constraint on·q2 (or on·qi, if one prefers to deal with the term~ qf0 1,'2 20). Finally, we 
recall (see the end of sect. 2) that the symmetry of (4.19) in the N = 4 WZNW limit 
m = 0 becomes the product of two independent S0(4) x U(l) N == 4 superconformal 
symmetries realized on q1(½) and q2(½), respectively. The super-Liouville term coupl~· 
q1 to q2 and so breaks this produd symmetry down to the diagonal S0(4) x U(l) N = ·4 
SCG. 

5 Conclusion 

In this paper we re-formulated N = 4 WZNW - Liou.ville sys_tems of ref. (1, 2) in terms · 
· of unconstrained superfield prepotentials,' constructed the relevant off-sheU superfield and · 
component actions and examined their symmetry properties. The next· steps co~ld be 

· to promote these actions to local N = 4 superconformal symmetry by coupling them to 
superfield N = 4 supergravity, to interpret them as results of fixing superconfoI1Dal gauge 
in the appropriate coupled N = 4 supergravity - matter systems and to establish their -
relationship with non-critical N = 4 fermionic strings and superstrings on the quantum 
level. For SU(2) x U(l) WZNW - Liouville model this range of problems was explored 
in the component approach in {7). It remains to reveal implications of the maximally 
extended S0(4) x U(l) x U(l) WZNW - Liouville tnodel (4.19). We belie~ that the. 
manifestly invariant unconstrained supi;:rfield approach developed here is most' suitable for 
analyzing these and, hopefully, more general systems ( e.g., those involving Liouville or 
Toda extensions of the models listed in ref.' (51) from ~ common point of view. · 

It is also tempting to relate the superfield actions (4.15), (4.19), via a kind of Hamilto
nian reduction, to the superfield actions of some more general super-WZNW sigma models, 
like this has been done for bosoruc Louville and Toda. actions in (18). This would allow to 
establish a link between N ·= 4 superconformal symmetries of the N :d 4 WZNW - Liou-· 
ville systems and generalized super Kac-Moody symmetries of the prototype super-WZNW 
models. · · 
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Appendix 
Here we quote a number of useful identities which can help an inquisitive reader in checking 
some proofs and statements. 

1.ldentities following from constraints (2.9} 

We limit our consideration to the superfield qf0
; for q2f!" the same relations are valid, 

up to the replacement of greek indices by latin ones and vice versa. In subsequent formulas 
. we omit index 1 altogether. 

As a consequence of the definition (2.8), q!!!.0 obeys the relations 

q!!!.a = tgfj_ ta/3 (q03)t = tgfj_ ta/3 q~1 = -q!!!.a 

tgfj_ t 0 /3q~~ = -exp{2u} q!!!.0 • 

(A.1) 

(.4.2) 

Then, exploiting the constraints (2.9a) and the algebra of spinor derivatives (2.4), we 
deduce the following identities 

n;• exp{2u}= 2 e.;" exp{2u}, D!f! exp{2u} = 2 e!f! exp{2u} (A.3) 

. n!f! n.:· q !!!." = 16 (B !!.• + e- !!!.!!. q !!!."e.:·) (A.Al 

D:!2- a•= ..::.2 q-1 /3:r B!!.", n;• e~ =.2 q-1 
"~ B!!." • (A.5) 

n!f! e_t~ = i lg! a~q!!!...,q-:;~-2 e~ e_!!.~, n.:· e+\ = i t~b q ,4}_a+q~--'"-2 e.:b e+·,,, (A .. 6) 

D-~ Bfl" = 2 e-~B9.~+2i q:a-e+"/3, D+:Aa Bfl" = 2 e+ >.a Bf1"-2i 8+f~!!!.qf (A.7) 

n;_<c Bfl•l = -2 e;_(c Bfl•l 

n;<c n;,\ exp{2u} =· 0 . 

(A.8) 

(A.9) 

The proof ~f thes~ identities follows a common pattern. As an illustration, we.derive 

several relations. · 

Proof of (A.3): . 

D:;" exp{2u} =DJ"(...,! q~\ q-1 >.~) = -n:;• q H q-
1 >.~ 

2 - -

( 
-1 D.,. "") ( -1 -1>.>.) 1 t:• -1-, -1>.>. 1 {2 } e:-vn = q>.!!. + q- .q,,~q - =-~.,+>.q~ q -= 2exp u "+. 

,, 16 

Proof of (A.4): 

B ~. - I /Jn!!!.!!.( D..,. t!.)- l /3 Da -1 D..,. t!. 
. - 7 16 q 9. - q /3(!_ + q.., - 16 q 9. - q /J[!_ + q.., 

I /3 - 1 D!!!.!!.D-,a t!._ t:!!.. ""t:• 1 D2AD..,. 
+16q9.q/J~ - + q-,--.,_!!.q-.,+ ... +16 .,. + qir'f. 

Proof of (A.9): 

"1(!!.'£} {} "1(!!.( { £>) D:: D_ 2 exp 2u = 2 D:: exp 2u} {_
2 

{. } -,(!!. rl { }. -,(!!. d =4exp 2u {:: {_
2

+2exp 2u D:: {_
2 

= 4. exp{2u} e.<!!. e:l! ~ 2i f(!!S) a_q'I" q~ -4 exp{2u} e!-<' e!1! = 0. 

!!.Identities. with N = 4 spinor derivatives 

D c,a D /3b = i fo/3 tab8 - ! f"'/3 D "I(• Dbl - ! f •6 D (oc nP> 
2 -, 2. C 

D-,<•n~ n<00D/Jj = 0 

no(a D/3b) = -D/J(a nob): 
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CynepnoneBbie ,D;eAcTBHH AJl~ N = 4 B3HB . 
CHrMa MO,D;eJIH C JIHYBHJlJleBCKHM B3aHMO,D;eii:cTDHeM. 

IlonyqeHbl HBHO cynepcHMMeTpHtIHb!e qJOPMYJIHpOBKH ,D;ByxMep
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H SU (2) N = 4 cynepKOHq>opMHbIX CHMMeTpHH ~ 

Pa6oTa Bb!IlOJIHeHa B na6opaTopniI TeopeTHtieCKOH qJH3HKH 
, OIDIH ." • . . . 
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' . 
We preserit a manifestly supersymmetric formulation of 

two-dimensional SU(2)xU(l) and S0(4)xU(l)xU(l) N = 4 su
perconformal WZNW sigma models as well as their Liouvill 
extensions via unconstrained N = 4 superfield prepoten
tials. We. construct off-shell actions for th~se systems, 
both in N = 4 2D superspace and ordinary space, and stu-:
dy.the,invariance properties of the actions under 
S0(4)xU(i,) and SU(2) N = 4. superconformal symmetries. 

. The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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