


I, Introduction

'Attemptslof solving the problem of localization of the energy-
~.momentum characteristics of the gravitational field take their start |
from the early works of founders of General Relatiyity.However,unjil
" now there is no common opinion of all specialists about this questi-
on, For solving any phyeical probleﬁ cormected with the gravitation
" the Einstein equations are‘as a rule used. Most dlfficulties of the
“classical General Pelativity ‘result from the invarlance of the Eln- ”
utein equations with respect to the group of dlffeomorphicms. ‘
llathematical constructions corresponding to the physical ob-
servableg are often ill-defined as pseudotensors and integrals of
the spatial components of tensor densities. nspeciallv, this concerns
such coxceptions as the energy and momentum. )

In the present work, the structure of energy-momentum charactéé
ristics of .the gravitational . field is investigated. It 1is found
that those characteristics may be defined in prlnciple but & nore
detail investigation shows that these conutructlons have no concerh

~to the energy and momentum.

To prove these gtatements, we proceed as follows, We beg11
with a more careful consideration of the Noether theorems and then
we gee that in certain cases the Noether algorithms do not define
the conserved quantities describing the local dynamics of fields.
FPurther, we attempt to apply these algorithme to the Einstein equa-
tiong. As it has beén shown in papers /I'§[for constructing the gra-
vitatioral Lagrangian it is necessary to introduce the background
connection into the theory (see also /4/). If the background connec-
tlon does not permit the group of motions, then the congervation
laws are absent, But it would be logical if the background connection -
has the maximal mobility /4/. The presence of the group of motions
of the background connection leads to the existence of conserved
Noether currents. But the structure of these currents is such that
the conservation laws become improper and the group of action inva-
riance can be extended to the 1nfinite-parémeter pseudogroup. In
the last part of the paper the question about this extensionrwill'be
investigated in ‘detail.

2, Noehter’s theorem and the structure of the
conserved currents
Let ug consider a system described by the fields qDA where A
is the collective’index. Let équations for '<pA follow from the
condition of action functional
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where [, ig the lagrangian, being stationary.

(1)

The statement known . as the first Noether theorem was formulated

in the first section of the famous Hoether. paper /- If the action-
is invariant under the 1 -parameter Lie group C;z , then Y linear-
ly independent combinations of the variational derivatives turn into
divergences, i.es
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Where :T(A) are expressions »nameo the Noether currents, qf-.
are variatlonal derivatives, }{'A are the representation genera~
‘torsfcorresponding to the transformations of QJA under 6;7, .

Let the action (I) be invariant under a continuous group which .
may be parameterized by'p arbitrary functions of the:coodrdinates.
e shall denote this group as (;pﬁﬂ. . If one singles out a'sub—~-

- group C} from the group (;Pg, N then according to the first hoethsr
theorem, B « local conservation laws will take place..

In'Sect.u of paper it has been formulated snd proved that
if ‘Gd ‘is'a subgroup of the group C#Do , 8ll currents f;;) may
be represented in the form : ¢ o .

;T $ zzlzx P + EB & ) . )
; () (») (x) 2 g (3 )

where A if tlj O and B:“ satisi‘iea the condition
3 Eh) . These currents were named improper currents by Noether.
”he inproper currents cen be represented by a derivative of an anti-
gyrmetrical potential .

Let there be any group (;Z" which includes groups 6%4 and
C;pco as subgroups and G;z transformations of the dynamical
variables must be derived from G?v ones by giving a concrete
expression to the group parameters,‘ i.e. the “representatlon",of
C;T “ in the qOA "gpace" is ‘the "subrepresentation" of 6

A General structure of the Noether current is ss follows :

4 .
jm o W+ B Cm ‘ .
where fXO) and B(” were defined earlier and C{A is a
_proper component of the current. The field charge 1s a flrst 1nteg-
ral of equations of motion corresponding to a one - parameter broup

of the action invariance. As it appears from (4), if C:;f

4

O, i.e.

2.

if the current is improper,then the formally calculated charge becomes
a trivial since it does not depend on equations of motion.
. For the nontrivial charge to exist it is necessary for the term
C}A) be present. It is a term that does not permits the group of
the dynamical invariance- to be extended to the infinite - parameter
ore. It is more exact to say that the following statemant can be
valid: . » ' _ :
If C(M-—O , then the group C;% can be included in the group
GZ’ as a subgroup of the action invariance. If C;"A’#U then
the group G;z cannot be included in the group 6;2» as a subgroup
of the action invariance. . . - .
Further we shall see that we may take as an example the gravita-
tional field. But for investigation of the Einstein eguations it is
necessary to use the correct variational principle.

3. Variational principle and the theory of gravitation
w1th the background connection

Iet us conslder vacuum Einstein’s equations
G. =0, | (5)
}K
where G RJK 7 Rgak 1s the Einstein tensor, R R é? is the cur —
vature scalar, = Q is the Riccil tensory

Po_ P Py P S P S
QJ.(.K a}rik ai.r-'jk-*—rjsr’ik risr‘;x

is the Rieman tensor,

%(agm K%M—B%m

is the Christoffel’s symbol.

For using Noether algorithm it is‘necessary to find a suitable
Lagrangian. But if we will do it, unsurmountable difficulties occur.
For avoiding them, the background connection must be introduced into
the theory 4/. It is assumed that the ba Fground affine connection

¢ ¢ o_
coefficients r"k are symmetric, rﬂnm-q m ¢+ The difference

P ="t —rs,

Km Km (6)
is a tensor. It is called the affine-deformation tensor. Being va-
ried with respect to g}ik , the action
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S=|T o'

M
with the Lagrangian )
L= wf-?g,";}"""(P (= —PgaP ) o

leads to the equations which coincide with the Einsteinvones, if the
background connection satisfies the conditions

v .
Q'(LK) ! :
where Q ‘k is the Ricci tensor of the background nonrection.
let us consider a general Lagranglan

(9).
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It is supposed that the backgrouvd connection is svmmetric. Je

denote by ‘7 the covariant derivative with reqpect to - rﬂn‘h .
Let the following ternms be defined as

oL _ o
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S = JLdI ~ S as
is the action functlonal, comma before index meang the partial
_ derivative, What do these terms mean see /41 or

The action .S is invariant under the Lie variatlons with an

arbitrary vector fleld ’

where

~

sxt=gsts

SEE ==V VeF)+R, e
ng”—:*(gmav (e ¥ )+9, V(E?‘)*‘E?V?mn_(m)

Here £ is an infinites 1mal parameter, R

is the curvatu”e
amn ;

tengsor of the background connection,

But more exactly, this action invariance is to be called the
covariance tecause changing the functioral type of the Lagrangian by
the group of symmetry whose action on the‘nondynanical fields, i.e.
on the background connection, is not trivial. '

Llet the «ackprouvl congection pernits the 7y -parameter group
of motion, and let f>J’A j
equations

fZ , generate this group i.e. the

m ngin+_Qamn§im::O (19)

are satisfied. Then infiritesimal transformations of the group. in-
variance are

: (A g
83:*:_5 T : (20) -

S%M;:_(%ma\\%n(smf(i”%nu m(E %M) E ?1\ d%mh - (=1

According to the firstfﬂoether theorem the follow1ng identities take
place 4 H

} . mn ‘
J(M” an(a)qj 1 _ (22)

where

ak a X o
I =6 _ VvV §(>\) §(M , . (23)

_']_ a v a
anmz——zﬂ?(x)va%mn—%mav;\?m ‘ (24)
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4. The groups of invariance erd the structure of currents i Since S v ig arpitrary, it follows from (30) that .

. Let the action be invariant not only under (20)-(2I), hut also A v _(g — .
under the group generated by the following infinitesimal transforma- b §>(%) a ‘ (31')
tions of the dynamlcal fields : '

8 %m:-(gma.v (89 ?(n)_‘-%nav (5V $(. )‘+Sl) ?,(M %mh (25)

: 154 ‘ -—J‘____ . : -
where Sv are arbltrarv infinitesimal functions of the coordinates ] . BJJ (M— ?(M at'{j V (T‘ij ?(M : (32)
vanisching at the integration limits. Then e Lol ! Tt ’

o If it is assumed that 81) =1 in (28), then the left-hand side of
/\ (28) coincides with the right-hand side of the (22). Consequen*1y~
l .

and tecause (3I) is true, we obtain

&S~ ngm FImnt £ =0 L e EN vaﬂ ?w) 3 (-ViF,

P )T Gy e
b ()\) AY L
How we substitute the terms of K%m"‘ imn this formulal -nen,k\vo . S Herce, . ) ‘ .
obtain BN ) R . oL (34)
B B ¢ TatBhe . ©
CAME Ty V(650 o =0, | *
(—2— v g()\)v%mn %ms ?} ) X= (27) where ' »
To transform the integrand we shall use the identity that can be ' - , . a B& — N . R .
verifled eagily: o) . . -
mn (A) s v Thus, from the action invariance with respect to. (25) 1t follow" that
(fj ((?—517 $(>~) s%rnn %m;v (51) $(>\) ) (e8) - ) _ the Noether currents corresponding to (20)-(2I) are improper. -

How we shall investigate the inversion of this statement. let us
™ p v : o consider the common Noether current -(I2). Let A*):—‘Cg* ?:‘M .
:51) \V4 '(_ET —-—v ('(Ij 8}7 ? ), \ ' - Let us show that if C("”‘ O , then the group of the action invariance
- n m n 72 ' which is G-,l can be extended to the group GZ defineq at the end
‘of sect 2. ‘ ! e T e
By virtue of (28) the expression (22) can be transformed 1nto

K Km O :
- T =15 o (32). We have
ga T\‘"] <%mor. N ‘ o

where

(29) o - 1 e T
: : [ ; - ‘ o
Vm is a covariantk derivative with respect to the Christoffel o a J' ‘?( v ‘&}‘ _ a(ri;& ? ) o (35)-
symbols. Since W,  is a tensor density of weight one, the last B or AL R T a (M7 -
term irn the right-hand side of (2)8) is an ordinary divergence and ; ’
it may be discarded because SV O at the integration limits. o ‘ a (B (l] s ,._ v-tl)- 8 (-[IT » (36)
Then we are only left with - ! 8] (o8} (M g‘(x) ?(M)
o | A ‘ - ;\ Since 3. Bm , if C‘(*M: O . then the expression (36) turns into
S (A__} V tljao(qx-’() - (30) - ‘ a ; | |
_ v ?m a ¥ o , ] ' ?m Vk(ﬂd——o, 7 (37)

mn

It means that there are % identities among the equations ¥ = 0.
~These identities can be symbolically written down ag
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fwm"(x’)/\m{,x’, x)o(qx%o, | (38)

where are generdtors
Amn(H 8

o, . . . -

e = X X —X). (32)

Am’m‘;(x L 0)==F el XV, 8 (
H it vative of

Here ?;nm Gma §(” V 8 (x—x) is a covarlar ‘deri

the four-dimensional 8 -functlon with re"Dect to x° . let us con-

51der the infinitesimal transformations

C o v (e I §_ - |
?A%mn(x)_gAmn(A)‘(x’x)gv (I)d xa (40)

where 8')’(” are arbitrary infinitesimal functions of coordinates
vanishing at the boundery of the range of integration, let us sub-
stitute (39) into (40) and perform the integration. Then we ohtain

8/\%mn————"(%m V. (89" ?( ))+%n \ (3\)0!?5(6; N an

Now we shall find the action variation

S S "J g, o( I ' (42)
mn ‘ -
If we substltute (40) 1ntJ (42), theri we e"”’

SS jSv(x)ot:ij 5% (I)A (x, Jc)o(x 0.

mh(‘,\)

It neans that the actlon is 1nvarlant with respect to the group
genersted by (4I). But generators (39) are not independent, and not
all of the parameters” S-v‘“’ are essential., For -generators to
be independent, the system of equations . k

’ () 7 Y ’ )
(x =0 L 43)
JAmnm(x,x) Sv Yol x'= o

) ' .
must have a single solution S vi: O for arbitrary QG
If we substitute the definitlon (39) into (43) and perform
integration, we obtain

(A)
\7"(§mm8v )= 0. : (44)

It is clear, that the left-hand side of (44) up. to a factor coinci-
.des with the right~hand side of (4I). Consequently,. the condition
that all parameters in (41) are ecsential coincides with the conditi-

on that the solution &97L of the system (44) is single.

Let us consider an arultravv point M within the range of in-
tegration, Let the orbit of the .point ™M , l.e. the multitude of
the points of the area which can be: transferred to-the poirt M by
the transformations of the group GA( ", be denoted by the term Qn .
let among the vector fields ?(M there be exactly m fields
which are zero fields in M « It can te assumed without loss of
generality that the zero fields.are §( ), S’ 1, e, N It means
that f( ?) form the ILie algebra of the staclllty subgroup of the
point ("f .« In differential geometry the stabilitwv subgroup is more
often called the group of isotropy of ™ . Let'us denote this group
by the:symbol HM . E T
, 30, the vector T'Leids ?’ ) y = rY\*i...,,fi e , are not"gq‘uai
to zero.in M ., 1y should be remarked ‘that these fields do not ‘ge-

.nerslly form.the Lie algebra. let-us prove that in any’ nelghaornood

of the point M- they form a set of basis fields of the orbit Q
Indeed, according to the. Frobenious theorerm 8/ the integral

curves.of .the fields ¥ ,,, compose a family of the submanifolde”

of the ipitial manifold, because they form the Lie algebra. EBach +

of -the points.of the initial manifold belongs to one of thege submarni--

folds which are orbits. of these -points, A 11near envelope gpanned-

over ‘?U) at the point M  1is a tangent space for the QM « Let

it te denoted by..T,, . . Since <«n| s then T, coincides

with the linear envelope of g(x)' . Then, \QM is homogéne-‘-

ous under.action-of the G— by definltlon. Therefore, Q. is iso-

morphic - to. G / M whlch is a factor space ‘of the grecup of - motior N

to the group of isotropy. Hence, dim Qu=dimG,~dimH 72-m=p Consequent -

1y, the ‘dimension of the linear envelope ?’(5) [ © is equal ‘to the ~
number of .the vectors. ¥  , therefore, these vectors in Mo
form a vasis set of T . ' ‘

Vector fields: '?’(u “are essuned to be dlfferentiable, therefc—
re there is any neighborhood u,.,, of the:point ™M  in which the-
se filelds remain_lzlinearly independent, and because their integral
curves completely belong to ‘Q‘.)\ , then in WL the vector fields

'%’(_x, form a basis set of Q, " w C

*  Let us consider a vector field H= ?’( )5\) « In. (J(M an’
arbitrary vector field: tangent to Qn can be decomposed over the
fields '?’(“ with any variable coefficients 5.. Consequently, ‘in-a
neightorhood of M any a prlori given tangent to Ql‘" vector field

()»‘



m ) . (x)
can be obtained from & by a suitable choice of Sv ¢ . It means,

the generator of an arbitrery diffeomorphism of CQ at the point ™
has the form F, SV .

low we return to (44). Tt has been shown that ir the meighbtorhood
of M an artitrary, tangent to qu , vector field can be decomposed
over the fields . ?(8) . The field ?ma‘v“’ for arbitrary Sv &y
tangent to Qn since all ’?M ‘are tangent to O\M . Therefore,
for any S\f"rs 5 (8{ can be picked out such that in some neighborhood
of M, ﬁ”Sv“Lg $3¥. Then (44) transforms to the form -

Vn(?(x,m)s )" (45)

e
But (45) is the Killing equation for the covector fielu Qn‘ ;T S 0

As an arbitrary metr1c tensor has no Killing vectors, then the on;v
solution of (45) is 7 =0 , and since ‘57 \m aTe 11near1y indepen-
dent, we obtain %vm O . ¥

Sumarizing we conclude that the group gererated by the infini-~
tesimal transformatione (4I) have p-essential paraneters depending on
cogrdihates, i.,es« it is the: group Gpo; . It is-the group of the
metric transformationskcorreeponding to-arbitrary diffeomorphisms of
the orbits. The diffeomorphism of ~the orbits is such a Aiffeomorphism
of the whole manifold thet integral curves of the generating vector
fields do not. leave the-orbits. It must be emphasized that the elements
of group C;Pao are not diffeomorphismsbecause they'do not act on the’
coordinates. It is exactly the metric maps. Lo i

So, .if C‘:’M— O , then the group G4 can be extended to the
group 'G}i. including C;Q ~.as . a subgroup. It is easy to be convin-
ced of that G—.,-_=G-Z®G—pa, , where the ‘symbol-. @ -
product. Reeslly, G'P°° is invariant in G-;_ © ,°the Cartesian pro-"*
duct Ger Gpro 1is supplied by the -multiplication with the system-of
the automorphisms of Gpe. depending-on (G, , and the groups GP'z’
and GP;o‘“as subgroups‘of Gs- cari‘be intersected only in theunit ele~

means semidirect

ment because Gpos does not act on the coordinates. :

The Cartesian product Gy and Gpe.’ is a multitude of all ordered
pairs (%,%m) , where G is an element of Gy »and ‘g, is
an element of Gpor .« Let G, and G, be elements of G, ,
and Gi.. and G,. ~ be elements of Gpoo . Action of the pair
(3; Qo) om {;c*;’ (1& consist on successive application of the
operations qw and g . to {I‘ %mn (I)} . Therefore to obtain
the group structure the Cartesian product GT>< GP«, must be supp-
lied ty the multiplication vias the scheme

10
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1

. oo . , g: .
-(g”;%w)x(% 132" (3,925 Gues %oa)s ' ~(46)

-1
where %1?-3=%291»%2 ie irternal automorphism of G’poa . It ie

just (4%) that means the Cartesian product being semidirect product.
¥nstein’s equations (5) are obtained by varying the action with

the laprangian (8) when the condition (Y) on the tackground connecti-

on‘holds. The presence of the group of motions of the background con-

nection leads to the conservation laws connectedVWith3fhe‘space—timef

/d/,’the‘co}respondingTCﬁrrents

symmetries, . But as it was. shown ‘in
are improper,fco:sequently these conservation laws are degenerated
into the. trivial laws. Yher this takes place, then action of the

group of motions on the dynamicel variables can be extended to the

“infirite-parameter group of transformations, If we' want to have,

among the conservation laws, those which may be interpreted-as the
conservation.of the energy-momentum, then-the group of motions must
contain four abelian subgroups: It means that the action of "this
_group iz transitive. The orbit of an arbitrary p01nt appears. to be
the whole manifold, and the infinite-parameter extension of" the group

of motions appears to act on the of arbitrary diffeomorphisms.

G mn
It is a well-known dynamical invariance of the Finstein equations,

which is usually understood as a consequence of its general coverian-

5. Concluding remarks

Despite the well-known dynamical invariance of the Zinstein
equations, the question of constructing the conservation laws remain
oren because for applying the Noether =algorithms the su1tab1e
Lagrangien must be picked out. After clearing up that the'background
connection must be introduced into the lLagrangian, the hope has been
arisen that-the problem of localization of the energy-momentum charac—
teristic of the gravitational field will he solved, As it i=s seen,
these hopes have not justified oneself: The G;q

Hinstein equations remains to be true for the action, which leads to
the conserved quantities being improper. -

The questlon ahout the physical mesning of the background connec-

invariance of the

tion remains to be open, but - in recent time there have been underta-
ken attempts to give a physical intepretation for this object /9, IO/

.
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" 3axomsl coxpanenuﬂ B Teopuu rpaBHTaan ; : ’
c @OHOBOH CBHSHOCwa ‘

KoppeKTHOCTb narpanmena nonxona K ypaBHeHHﬂM BHHMTEH—‘
Ha TpeGyeT BBegeHHs B T€ODPHI0 @onosou a¢¢uHHou CBA3HOCTH.
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‘BEHHbIMH', 4 rpynna HHBAPDHAHTHOCTH LefcTBUA . MoxeT 6HTb pac—,

| umpena ‘mo 6ecKoHequ-napameTpuqecxon nceBnorpynnu Hu

HonpoGHo uccneuoBaHo HOCTpoeHHe TaKOPO pacmupenuﬂ
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background connection leads to the existence of conser- ‘

“and ‘the group of the action invariance can be extended to;f'
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1" ved: Noether 's currents. But the structure of these cur—f-“"‘
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