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I. Introduction 
I 

Attempts of solving the problem of localization of the energy-
monentuo characteristics of the gravitational· field take their start 

from the early works of founders of General Relativity.However,unJil 
now there is no common opinion of all specialists about this questi
on. For _solving any phyeical problem connected with the gravitation 

the Einstein equations are as a rule used. Most difficulties of the 
cl"lssical General R~lativity resuit 'rrom the ini:rariance of the Ei~
stein equations with respect to the group of diffeomorphisms. 

i:!athematical constructions corresponding to the physical ob

servables are often ill-defined as pseudotensors and integrals of 
the spatial components of tensor densities. Especially, this conc8rns 
such conceptions as the energy and momentum. 

In the present work, ·the structure of energy-momentum characte-
ristics of the gravitational . field is investigated. It is found 
that those characteristics may be defined in principle but e more 

detail investigation shows that these constructions have no concern 
to the energy and momentum. 

To prove these statements, we proceed as follows, We begin 
with a more careful consideration of the Noether theorems and than 
we see that in certain cases the Noether algorithms do not define 

the conserved quantities describing the local dynamics of fieldo. 
Purther, we attempt to apply these algorithms to the Einstein equa
tions. As it has be.en shown in papers /I-~(for constructing the gra

vitational Lagrangian it is necessary to introduce the background 
connection into the theory (see also 141). If the background connec

tion does not permit the group of motions, then the conservation 
laws are absent. But it would be logical if the background connection 

has the maximal mobility 141• The presence of the group of motions 
of the background connection leads to the existence of conserved 

Noether currents. But the structure of these currents is such that 
the conservation laws become improper and the group of action inva

riance can be extended t.o the infinite-parameter pseudogroup. In 
the last part of the paper the question about this extension will be 
investigated in detail. 

2. Noehter'e theorem and the structure of the 
conserved currents 

Let us consider a system described by 
is the collective index. Let equations for 
condition of action functional 

the fields <pA where A 

cpA follow from the 



S= 5Ld\x, 
( I ) 

where l is the lagrangian, being stationary. 
The statement known.as the first Noether theorem was formulated 

in the fi;st section of the famous lloether paper 151 : If the action 
is invariant under the t' -,.parameter Lie group G'I: • then. "( linear
ly indepe:rcdent combinations of the variational derivatives turn into 

divergences, i.e •. 
j A 

d~<;-.1 ==f ~X r»>, ;\= 1, ... , "t, .. <2 fs. 
where :f [-;-> are expressions . named the Noether currents, ~ = ~ 
are var;ationai derivatives, x;J are the representatio~ genera'f:. 
tors· corresponding to the transformations of cp A under G'I:' • 

Let the action (I) be invariant under a continuous group which 
may be parameterized by p arbitrary functions of the. coordinates. 

·Ne shall denote this group as Gpoo • If one singles out a. sub

group G't from the gz:oup Gp= , then according. to the first Ifoeth-)r 
theorem, "t local conservation laws will take place •. 

In Sect.6 of paper / 5/ it has been formulated and proyed that 
. J 

if G"C is a subgroup of the group Gp= , all currents J(>-l may 
be represented in the form 

Ji -A .i- + B; 
• (:>-) - 0,.) (-;-) ' () ) 

J ~ 
where A(>."'( 0 if 1:J.lA= 0 , and B (>.) satisfies the condition 
d,B' =0 • These currents were named improper currents by Noether. 

" {J.) ' • . 
The improper currents can be represented by a derivative of an anti-
s;y-rnmetrical potential /G/ • · 

Let there be any group G;z:: , which includes groups Gz and 
Gpoo as subgroups and G't transformation? of the· dynamical 

variables must be derived from Gp°"" ones .bY giving a .concrete 
expression to the group parameters, i.e. the "representation" of 

G 'L in the c:p A "space" is ·the "subrepresentation'' of Gr-
A General structure of the Noether current is as follows 

where 
proper 

i = .Bi +Bi +C .i .I,>-1 (>-) (}.) <>-> 
A~.>-J and B t;, · were defined 

component of the current. The 

. CJ 
e~rlier and _ /;,.\ is, _a 

(4 ). 

field c!J_'arge is a first integ-
ral of equations of motion corresponding to a or.e - parameter group 
of the action invariance. As it appears from (4), if Ct,

1
, 1 0, i.e. 
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if the current is improper,then the formally calculated charge becomes 

a trivial since it does not depend on equations of motion. 
. For the nontrivial charge to exist it is necessary for the term 

Ct>,.) be present. It is a term that_ does not permits the group of 
the dynamical invariance· to be extended to the infinite - parameter 

one. It is more exact to say that the following statemant can be 

valid: 
If C~(= 0 , then the. group 

G~ as a subgroup of the action 

G-~ can be inclu?ed in the group 

invariance. If C .!- to . then 
(~) 

the group Gz cannot be included in the group 
of the action invariance. 

G~ as a subgroup 

Further we shall see that we may take as an example the gravita~ 

tional field. But for investigation of the Einstein eguations it is 

necessary to use the correct variational principle .• 

where 

J. Variational pri,nciple and the theory of gravitation 

with the background connection 

Let us conb 1.der vacuum Einstein's equations 

G =o }K ' 

vature 
G-j.;Rjk.-1 R~jt- i~ the Einstein tensor, R= Raif« is 
scalar, R.;..k= Rpj.lC is the Ricci tensor, 

P P P· P s p S 
R .. = a. r. - a. r. + r . r. ;_ r. r. 

J-LI< J- tK r, J-1< }S lK LS J-K 

is the Rieman tensor, 

p i pa. . r. =-Q_ (a.a +8 a .-8 a. ) 
ti< 2 0 L (/ a.K. I< 0 Q.!. a (1 <.K 

is the Christoffel's symbol. 

(5) 

the cur-

For using Noether algorithm it is necessary to find a suitable 
Lagrangian. But if we will do it, unsurmountable. difficulties occur. 

For avoidinJ them, the background connection must be introduced into 

the theory 41. I.t is a_ssumed that tpe b~lcground affine connection v, rvL L 
coefficients r are symmetric, -= ~ • The difference 

rem ""' ..,~ 

pi = ri - r' 
Km 1em 1<m (6) 

is a tensor. It is called the affine-deformation tensor. Being va-

ried with respect to a.. , the action a ,1:: 
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S = J L oi":x (7) 

with the Lagrangian 

r-.; ~ mn a g. a _g 
L = -v'-CJ ~ ( p mg pan- PgaP mn) (8) 

leads to the equations which coincide with the Einstein ones, if the 
background connection satisfies the conditions 

V 

R =O 
(iK) f V (9) 

where Q, 
. l 1< is the Ricci tensor of the background connection. 

Let us consider a general Lagrangian 

L = L ( CJ,mn ; al< 'a"mh : 
V I< ) r-mn . (JO) 

It is suppo3ed that the background connection is symmetric.JVi 
denote by VK the covariant derivative with respect to r rnh 

Let the following terms be defined as 

ik-:-dL 
Q d~tnn,K 

" 'l .· - ('I< a <}mn - L Oct ? 

~K d L c-K cK 

0 a ='"'\ . , (CJ,maon+ 9'na 0 m), 
0 Ca:mn,! · 

Tp"mn Z~-==2{~-- d. 'JL· 
bClmn dClmr, J da . -<J . -o - dmn,J-

) . 

mn ~ S • d L • . 
t:>. =---0 V k - V 

where K s r tnn d r:.., ,, 

f
. 'l 

S== Ld.X 
is the action functional; comma before index means the partial 
derivative. ?fh;t do these terms mean see / 4/ or 17!. 

(II_) 

(I2) 

(I3) 

(I4) 

(I5) 

The action S is invariant under the Lie variations with an 
arbitrary vector field 

. S X}- c _fj ; 
(H,) . 

,j. 

V K s r n,n 
(I7) 

v .J K vi( a 
-(V v'(E'?')+R · E~): 

h1 n I' amn ~ 
· v ct v a . av 

b gmn==-( <a-ma~ ( E'f )+SJnaVm(Ef )+Er ~~r,)·(I8) 
VI< 

Here £ is an infinitesimal parameter, Ratnh is the curvature 

tensor of the background connection. 
But more exactly, thiri action invariance is to be called the 

covariance because changing the functional type of the Lagrangian by 
the group of s;vm.r:ietry whose action on the· nondynaoical fields, i.e. 

on the background connection, is not trivial. 
Let the_ bi,ck1:;round r0ncection pernits the "t -parameter r;roup 

01' motion, a~d let 5"'J-)•-"=f "t , ger!erate this group i.e. the 7 (>- .... ; , 
equations 

V v· I< VK a 
0 V. -E:: + R · ~ =O V m n 1 (;I.J · am n '?" (:\) (I9) 

are satisfied. 'i'hen infir?i teoimal transformations of the group in
variance are 

; - (;,..) ,i s :X - [_ ~ (1-1 (20) , 

V (,1.I Ci. V (>-I C( (1' \ ct V 

SSlmn -(C!maV/f rc)+'anYmC£ <fc) +E t',., ~ <¾mn )_ (2I) 

According to the firat· noether theorem the following ider.tities take 
place 141 : 

J mn 

oj-Jc;,.,., = Xmn(?.> ¥ (22) 

where 

JJ_Q,\KV ct.+ j ct. 

(A)- a -V: ?r;>,) t,a. 'f (;>-.) . (23) 

.1 av v a X ___ '5" Va -a \J-<? 
mn(;,-) 2 t l>-l a a mn ttma tl '? (Xl 

(24) 
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4. The groups of invariance and the structure of currents 

. Let the action be invariant not only under (20)-(2I ), hut also 

under the group generated by the following infinitesimal transforma
tions of the dynamical_ fields : 

- _ . V (~) CX V {~) c:t . (?- \ Q v . 
SK<a,ln-;; (<Jm~ ~(b"9 ~~.,)+in~'{Pr)) r-;,.,l-t-aJ rr~, i <Ji'Yl.,), (25) 

wh~re b ·/.>.l ~re ar1::i trary infini tesinal functions of the coordinates 

vanisching at the integration limits. Ther; 

· sgs- Ii 
SK S := bSJmfl Skgmn d X = 0, (2G) 

Hovi we substitute the terms of bKCJ,m~ ir;t-o this for.:iula~ Then, we 
obtain 

5 mn i f-"l s v v . (>.J s lJ.. . · 

¥ C7Sv ~.,.,~SJrrin-qmsv'n (S~:.'f°c)) d x~ Q, <27) 

To transform the integrand we "shall use the identity that can be 

verified easily: 

mn i c;,.J s v v p.> s 
1¥ . {(z8v 'fc>->'1/Jm:-9rms fjn (o-v f'"()) - (28) 

. (1--l n !YI v m D (.>.> 11 

= s V "f(A)vm ¥n - vm (if n -y r ()..)), 
where 

K Km 
T.,..T =1±7" Q ~ 
'±' a. Oma (29) 

'vm is a covarian\ derivative with respect to the Christoffel 
symbols. Since 1±7" ct is a tensor density of weight one, the last 
term in the right-hand side of (28) is an ordinary ·divergence and 

it may b:e discarded because b)}(i.~ 0 at the integration limits. 

Then we are-only left with 

rs (;i,.)~,i. v T,Tct 'I.J. = 
j y 'l \>-1 ct ':t' - 0\. X O. 

. ! 

(JO) 

6 

1' 

1) 
\}: ,, 

l t' 

I 

(~ 
r 

C' (,-) 
Since o,) is !lrbitrary, it follows fron (JO) that 

~.t V a 
'? (A) a¥ i = 0 (JI) 

C' ().) 
If it is assumed that o 1) == i in (28), then the left-hand side of 
(28) coincides witj;l the right-,.hand. side of the (22). Consequently, 

. . -~ . ' 

-.!- j. Cl. V _ K · a ) c\J (>-;= "f(,..I ~ WJ -~ c ¥a 1(:;,) i 

and tecause (JI) is true, we obtain 

. _j. V j. . a. . _\ a. 

c\J(>-l -v: Ctff C{·-<f,.,.J== 8/-Wa•·°'fc,..1 ). 
Hence,'. 

where 

J .i- . W~'fa. Bj =- + 
( :>- l ct (;\) ( Jd ' 

i - . o1 Be>-,= o. 

(32) 

(33) 

(.34) 

'fhus, from the action invariance with respect to, (25) it follows that 

the lfoether currents corresponding to (20)-(21) are improper. " 

now we shall investigate the inversion of this statement. Let us 

consider the conm1on Uo~ther curren.t (I2). Let A;~,=-¥i 7'~
1

• 

Let us ohow that if c:M == 0 , then th~ group of the action invariance 
which is G,z- can b~ extended to the group G 1:- defined at the end 
of sect 2. 

By .virtue of (28) the expression (22) can be transformed into 
(32). We have 

! - a. . I< j a,: 

(\J().) - °'f ().) vi<. w Cl - dJ ( w a -r ().)) . (35) 

or 

} . .i: ~ . i ) a \J. I< i a 
. 3/ B(>-> -t'y a. ~,_,+C (>-> =fo., 1< '¥a -8/1:ff a 'f cM). (36) 

Since a. BJ =O, if ct {}) Cf,.,= O , then the expression (36) turns into 

a IC 

"f{>-) ~ Wo:=O. 
It means that there are "( identities among the equations 
These identities can be symbolica1ly written down as 

7 
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ST..-T mn ,, ,, q , 
'f' (:x )J\.mMtx, :X)ol X =O, (J~) 

where J\.mnC>-J are generators 

.A . (x~x)=-fc,.l(·mc~n1n,8(X~.XL 
mnp.1 

(39) 

Here rr>-lm='amo. ~(~I; '1~ 8 (:X:'-'.X) 
the four-dimensional S -function with 

sider the infinitesimal transformations 

is a·covariant derivative of 

respect to :r' . Let us con-

C' ( ( , C' <M , IL ,, 
~'a,mn X)= JArnnc,_/X, X) ov (X) d :X, (40) 

C (>,.) 
where o 'Y are arbitrary infinitesimal functiono of coordinote~ 

vaniohing at the boundary of the rar.ge of integration. Let us sub.;_ 

stitute (39) into (40) and perfori:i the integration. Then we obtain 

1 (>-) Cl · (;>.) a 
~<a-mn -y(~mc.V/S-v "'fc)+<=Jn~qtn(Sv fc)L (41) 

Now we shall find the action variation · 

S 
1 mtt LL 

~ S = Z"fp ~ 'tmn ct X. (42) 

If we substitute (40) into (42), then we {!";It 

(' ye C~l , jl j 1 mn , 'L oS-= ov(x)ot.:X -2 1il (J:)j\ < 
1
(x,xJol x=O. A.· mn,.. 

It means thst the action is invariant with respect to the group 

generated by (41). But generators (39) are not independent, and not 

all of the parameters· S -v 0" are essential. For generators to 
be independent, the system of equations 

f , b P.l , cll.J. , A (X,X) V (X) X =O 
mncl<J 

(43) 

h 
. . (' ,, (;,.) 0 

muot ave a single solution O " = for arbitrary Shn O • 

If we substitute the definition (39) into (43) and perform 

integration, we obtain 

V C> S (7,) 
<n ~ (1,1 rn) 'Y )= 0. (44) 

8 

It is clear, that the leff-har.d side of (44) up.to a factor coinci

.deR with the right-hand side of (4I). Consequently, the condition 

that all parameters in (41) are essential coincides with the conditi
on that the solutior. S ·/";,,, C of the system (44) is single. 

let us consider an arbitrary point M within the rane;e of ir.

te~rntion. I.et tbe orbit of the point M , i.e. the multitude of 

the points of the area which can ,be transferred to the point M by 

the transformations of the group G"C , be denoted by the term QM • 
Let among the vector 'fields ~ there be exactlv tn fieBs 

• "l' (>-l " 
i~hi..-;h are zero fields in M • It can be assumed without loss of 

generality that the zero fields are -~(fl•, g-= i, .. , m • It means 
that Zcf') form the Lie algebra of the stability subgroup of the 
point M .• In differential geometry the stability subgroup is more 
often cs lled the group' of isotropy of' M • I,et, m, · denote th is r:roup 
b,y the Gj'lll!.Jol HM, • 

So, the vector fi.elds ~ , ~= rn+i, .. ,, "'t , are not'equal 
('() . 

to zero in M • It should he remarked· that these fields do not ge-

nerally form the Lie algebra. Let us prove that in any neighborhood 

of' the point M they form a set of basis fields of the orbit QM 
Indeed, according to the ProbeniouP. theorem/SI the integral 

curves of the fields 'f u,, compose a family of the submanifolds"· 
of the initial manifold, ;,ecause they form the Lie algebra. Each 

of the points of the initial manifold belongs·to one of these submani
folds which are orbits of these points. A linear er.ve lope spanned 

over ""f 1_,. 1 at the point M is a tane;ent sp~ce for the QM • Let 

it be denoted by, TM • Since ~'i'l ll'I ·= 0 , then TM coincides 

with the linear ~nvelope of ~no li--i • Then, QM is homogene.;; 
ous under action of the• ,G-'l .by definition. Therefore, QM is 'iso

morphic to. G't /HM which, is a factor space 'of the group of ·motion· -
to the group of isotropy. Hence, chm QM=dimG-r -d,,~ f-t='l'-lll = p • Consequent -

ly, the dimension of the linear envelope ~( > I . is equal to the 
~ M . ' number of .the vectors,• ~ , therefore, these vectors in M 

forr.i a basis set of fM · 
Vector fields, 'f C~J are assuried to be differentiable, therefo-

re there is any neighborhoor1 UM of the: point M in which the-
se fields remain .,linearly independent, and because their integral 
curves completely belong to Q t1 , then in Ll. 

11 
the vector fields 

~("I form a basis set of QM • . . 
Q m m <: (l(J '( Let us consider a vector fi.eld h = -.;::- O v • In v M an 

( ~ (1/l 
arbitrary vector i'ield tangent to QM can be decomposed over the 

fielr1o T(tl with an:, variable coefficiento. Conoequently, in• a 
neighborhood of M an.v a priori 1;iven tsngent to QM vector field 

IJ 



m 
can be obtained from '? by a suitable choice 

(' ,, ) 
of ov • It means, 

QM at the point M the generator of. an arbitrary diffeomorphism of 

has the form -<f (l',l b yf~I • 

Uow we return to (44). It has been shown that ir. the neighborhood 

of M an arbitrary, tar.gent to QM , vector field can be decomposed 

over the fields 'f(~) • The field 'fcxlS/>-I for arbitrary b yo-> is 

tangent to QM :ince all "'f"(JI) are tangent to QM • Therefore, 
for any S vc"1 S )) (~I can be picked out such that in sol!!e neighborhood 

M '<' (~I <l(~J 
of , 'fc),.,o)) = fc~fll . Then (44) transforms to the form 

>!'· (gl . 

v(n (l\x1rn,Sv J =O. (45) 

But (45) is the Killing eqaation for the covector field hm= ~ b~<~I 
( ?111"" 

no Killing vectors, then the onl~ 

since ~ gl l'Y' are linearly indepen-

As an arbitrary metric tensor has . . 
solution of (45) is ~ = 0 , and 

· • <' • ri1 m dent, we obta:m ov = D • 
Summarizing we conclude that the group eenerated by the infini-

tesimal transformations (41) have p essential parameters depending on 

coordinates, i.e. it is the group GP""' • It is the group of the 

metric transformations corresponding to arbitrary diffeomorphisms of 

the orbits. The diffeomorphisrn of the orbits is such a diffeomorphism 

of the whole manifold that integral curves of the generating vector 
fields do not leave the orbits. It !!lust be emphasized that the elements 
of group Gpoo are not d iffeomorphis:rns because they· do not act on the· 

coordinates. I~ is exactly the metric maps. 

So, if Cr.,== 0 , then the group G'l: can be extended to the 
group G'2: including G-z as a subgroup. It is easy to be convin

ced of that G~ = G-1: :El G-roo , · where the symbol ~ means semidirec t 

product. Really, G-poo is invariant in G-'t , the Cartesian pro-
duct Grz X Gp.,.. is supplied by the multiplication with the system ·of 

the automorphisms of Gpoo depending on G-i: , and the groups G''I: 
and Gp.;,,, as subgroups of G:; can be intersected only in the unit ele

ment because GP°" does not act on the coordinates. 
The Cartesian product G'I: and 6\.., is a multitude·. of all ordered 

pairs ( <iJ- ;. g 00 ) , where Ci} is an element of G'I: , and <i} 00 is 

an elenent of G-p.... • Let ';I- i. and 'irz be elements of G,r 
and ~ 1.,.. and (} 2 .,.._ be elements of G-poa • Action of the pair 

('ii-; <}oo J on f ::X: 6 ; 'A.,.,_p:J} consis_t on successive application of the 

operations ';½-"" and <J, ; to f .x"; <a,r,,,n (rJ} . Therefore to obtain 
the group structure the Cartesian product G-i: X Gr,.., must be supp

lied by the multiplication via the scheme 

IO 

('}i. :ca1.,.,)x·<ca2 :12 00 )= C<:a-/h; CJ1~ ca2.,,,,J, (46) 

w!:ere gl.:;=q;g1_<;t 2 ic inter!'lal autonorphism of GP.,., • It is 
just. (4G) that ~eanp t~e ~artesian product being semidirect product. 

,,nstein's equations (5) are obtained by varying the action with 

the L,!';rane;ian (8) when the condition (~;) on the background connecti

on holds. The nresence of the group of motions of the background con

nection leads to the conservation laws connecter1 i~ith the space-tine-· 
s~"lTir.letries, But as it' was ·shovrn in / 4/, ti::~ corresponding.,.currents 

are improper, co:rnequently theoe conservation laws are degenerated 

into the trivial laws. 1hen· this takes place; the~ a6tion of the 

r,;ro11r of notlom, or, the dynmnical variables can be extended t'o the 

· infiJ,ite-parameter group of transformations, If we ·want to have, 

among the conservation laws, those which may be interpreted as the 

conservation.of the energy-momentum, then the group of .motions must 

contain.four abelian subgroups~ It meane that the action of'this 

,group is transitive. The orbit of an arbitrary _point appears to be 

the whole manifold, .and the infinite-parameter extension of· the group 

of. motions appears to act on the 'i}rnn of arbitrary diffeomorphisms. 
It is a well-known dynamical invariance of the Einstein equations, 

which is usually understood as a consequence of its general covarian

ce. 

5. Concluding remarkn 

DeRpite ·the well-known dynamical invariance of the Einstein 

equations, the quest ion of constructing the conservation law_s remain 

oi:en because for applying the Noether a lgori th□s the suitable 
Lagrangian must be picked out. After clearing up that the background 

connection must be introduced into the Lagrangian, the hope has been 

arisen that·the problem of localization of the energy-momentum charac
teristic of the gravitational field will be solved. As it iP .seen, 

these hopes have not justified oneself: The Git= invariance of the 
F:instein equations remains to be true for the action, which leads to 

the cons~rved quantities being improper. 

The question about the physical mem,ir:g of the background connec
tion remains to be· op·en, but in recent time there have been underta
ken attempts to give a physical intepretation for this object / 9 ,Io/. 

I 1. 
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TeHTIOKOB. M .H. . 
3aKOHhl coxpaHeHHH B TeopHH rpaBHTa~HH 
C ¢OHOBOfi CBH3HOCTblO 

\ . 

EZ-91-:-3I9 

. KoppeKTHOCTh narpaH)Kena rrop;xop;a K ypasHeHHHH 3AmrITefi:.... 
Ha Tpe6yeT ssep;eHHH B TeopHIO ¢oHOBO}I a¢¢HHHofi CBH3HOCTH. 
Cyrn;ecTBOBaHHe rpyrrnbl ,l];BmKeHHfi ¢onosoA CBH3HOCTH IlpHBO)];HT · 
K HaJIHllHIO coxpaHHIOII(HXCH TOKOB HeTep. Ho CTpyKTypa 3THX 
TOKOB TaKOBa, l!TO 3aKOHbl COX.paHeHHH CTaHOBHTCH Heco6cT
'BeHHblMH, a rpyrrna HHBapHaHTHOCTli p;eficTBHH MO)l;eT 6bITb pa·c
UIHpeua p;o 6e cKoHe.qHo-napaMeTpnqecKofi rrceBp;orpyrrnbI JI11 -~ 
Ilop;po6no 11ccJieA.OBaHo nocTpoeu_11e TaKoro pacrn11pemrn. · 

Pa6oTa BbIITonnetta B Jia6opaTopm'1 TeopeTJ~qecKof1 .¢n31-1Ku 
0115111. 
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Tentyukov M.N. EZ-91-319 
Conserv~tion Laws in .the Theory 
of Gra;itation with·the Background 
Connection 

A correct Lagrangian approach to the Ei11stein equa-. 
tions requires introduction of the background.affine con
nection. The presence of .the group of motions o·f the. 
background connection leads to the existence of conser
ved Noether ~s currents. But the structure of these cur-· 
rents is such that the conservation laws ·become improper 
and the group of the action invariance can be extended to 
the infinite-parameter Lie pseudogroup. The construction 
of.this extension is:investigated in detail. 

The inv~stigatio~ has been p.erform~d at. the Laboratory,, 
Theoretical. Physics, JINR. · . : · 
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