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Conformal invariance has become an essential ingredient in contemporary 

quantum field theory (1,2). Conformal field theories can be constructed in any 

dimension but only for d=2 they exhibit a radically different behaviour. Main 

between them is the fact that the symmetry group becomes infinite-dimensional. 

After conveniently parametrise its generators in terms of Fourier components 

one obtains the familiar Virasoro algebra (3). To be more precise the group is 

Vir©Vir, with one Virasoro algebra for each space-time direction. The fact 

that the symmetry group is infini le-dimensional makes the theory an exactly 

solvable conformal theory. Furthermore, two-dimensional field theories hold 

several other properties which are missing when formulated into higher­

dimensional space-times .. Main between them ai,e those properties which make 

quantum field theory a physically sensible theory. 

The ideal situation would be to have a theory formulated from the very 

beginning in four dimensions and exhibiting the previously mentioned 

properties: conformal invariance and the appearance of an infinite-dimensional 

symmetry group. An attempt in this direction was recently done [4) by relying 

on infinite-dimensional extensions of conformal algebras similar to the 

Virasoro extension of the little conformal algebra for d=l,2. However, the 

existence of this infinite-dimensional symmetry group is more a postulate than 

a consequence of the theory. Here we undertake a radically different approach 

to obtain the desired behaviour of the theory. 

In a conformal field theory the symmetry generators are the conformal 

Killing vectors. They are solutions of the conformal Killing equation. Only 

for two-dimensional spaces the solutions are infinitely many giving rise to an 

infinite-dimensional symmetry group. A closer analysis of the conformal 

Killing equation shows that this critical dimension is closely related to the 

rank of the metric. In fact, since the metric is a second-rank tensor, in the 

conformal Killing equation will appear two terms containing derivatives of the 

Killing vectors. After contraction with the metric a 2 ls contributed which 

leads to the critical dimension d=2. Therefore, the critical dimension for 

which the theory exhibits the critical behaviour ls determined by the rank of 

the metric. In order to get a conformal behaviour for higher-dimensions we 

need a higher-rank metric and a corresponding hfgher-rank· conformal Killing 

equation. 

In order to prove our claim we consider space-times described by higher­

rank metrics. Throughout all the work we use algebraic and differential 

properties of higher-rank forms which are currently under study (5). We make 

the analysis for the physically interesting case of rank four but the 

generalisation to any rank ls straightforward. Associated there would be a 



fourth-rank completely symmetric metric tensor GµvAp· This metric is used to 

raise and lower indices and to make contractions. The second-rank case is 

exceptional in the sense that the metric takes vectors into vectors, i.e., it 

is an isomorphism between the tangent and cotangent bundles. In the fourth­

rank case however a contravariant vector is mapped into a third-rank covariant 

tensor. Now the conformal Killing equation involves a fourth-rank metric and 

therefore 4 terms containg derivatives of the third-rank Killing tensor will 

appear. After contraction with the metric a 4 is· contributed which leads to 

the critical dimension d=4. One can easily check that in this case the 

symmetry group is infinite-dimensional. 

To our regret, due to the nature of this approach, we must bore the 

reader by exhibiting some standard and well known results in order to 

illustrate where the new approach departs from the standard one. Let us start 

by making some elementary considerations on field theory. We will restricts 

our considerations to generic fields ¢A described by a Lagrangian 

;f_ = :f.(¢A, ¢\l 

where ¢A =8 ¢A. The field equations are 
µ µ 

o:f. 
o¢A 

8:f. 

8¢A 
- d II µ = 0 , 

µ A 

where we have introduced the generalised canonical momentum 

II µ 
A 

8:f. 
-A 
8¢ µ 

The energy-momentum tensor is given by 

xµ = ¢A IIµ - aµ :f. 
V V A V ' 

and satisfies the continuity equation 

d Xµ = - ¢A ~ = 0 
µ V V o¢A 

(1) 

(2) 

(3) 

(4) 

(5) 

The first comment relevant to our work is in order here. The definition (4), 

of the energy-momentum tensor, guarantees, through (5), its conservation on­

shell. This definition is independent of the existence of a metric. This is 

what we need in the next stages where we are going to disentangle from the 

usual second-rank metric. 

Let us now make some considerations on conformal field theory. The main 

properties that a conformal theory must hold are: 

Cl. Translational invariance, which implies that the energy-momentum tensor 

Xµv is conserved, i.e., eq. (5). 
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CZ. Invariance under scale transformations which implies the existence of the 

dilaton current. This current can be constructed to be [6] 

Dµ = JIµ 
V 

V 
X 

The conservation of Dµ implies that Xµ is traceless 
V 

(6) 

d Dµ = JIµ = O (7) µ µ • 

where the conservation of JIµ, eq. (5), has been used. 
V 

Now we look for the possibility of constructing further conserved 

quantities. We concentrate on currents of the form 

Jµ = 1{µ .,.v 
V <-, • 

(8) 

then 

d J 11 =J{µ d £:.v = 0 
IL V µ 

(9) 

In order lo obtain more infor·ma lion from this equation we need to introduce a 

further geometrical object allowing us to raise and low indices. To start with 

we consider the usual second-rank metric but we will see that other, higher­

rank, objects can also do the game. A further restriction will be to flat, 

constant, metrics. The generalisation to the curved case is straightforward 

and involves only minor technical details. 

Let us then consider the usual Minkowski metric 1Jµv· Then we define 

Jf'w = Xµ 1JAV 
A 

I;µ= 1Jµv I; . 
. V 

If (10) happens to be symmetric eq. (9) can be written as 

d Jµ = ~ xµv ca 1; + a 1; l = o. 
µ 2 /!V V/! 

( 10) 

(11) 

( 12 l 

Furthermore, if the energy-momentum tensor is traceless the most general 

solution to (12) is 

a I; + a I; - _dz 1J (1Ja~ a £:.a)= 0 , (13) 
µ v v µ µv a 1, 

i.e., the I;' s are conformal Killing vectors for the metric 1Jµv 

Now we make some considerations on the solution to eq. (13) for d=2. In 

two dimensions one can always find null coordinates (,+, (,-, such that lhe I ine 

element can be wr·itten as 

2 + -ds = 2 d(, d(, . 

The only non-null components of the metric are 

+-
11._ = 1) = 1 . 

:i 

( 14) 

( 15) 



The solutions to eq. (13) are then 

i:;• = f c,:;· i 

I; g(i;-l 

(16a) 

(16b) 

where f and g are arbitrary functions. Only for d=2 the set of solutions (16) 

is infinite-dimensional. Now we define 

u (f) 
+ 

i:;• a 
+ 

rc,:;·J a 
+ 

Cl7al 

u (g~ i:;- a g(,:;-l a ( 17b) 

These quantities satisfy the commutation relations 

{U (f ) , U (f )} 
+ 1 + 2 

u (f f • - f f ' ) 
+ 1 2 2 1 

(18a) 

{U (f), U (g)} = 0 
+ -

(18b) 

{U_(gl), U_(g2)} U - (gl g2 • - g2 gl' ) . (18c) 

Relations (18) are essentially the algebra of two-dimensional diffeomorphisms. 

After conveniently parametrise them in terms of Fourier components one gets 

the familiar Virasoro algebra. To be more precise- there is one Virasoro 

algebra for each null direction. 

Some observations are in order here. The parametrisation (14) is 

independent of the signature of the ground manifold. Euclidean and Minkowskian 

signatures are obtained with 

+ 
,:;- = U ± i V (19a) 

+ 
,:;- = t ± X (19b) 

respectively. Furthermore, only in a flat space one can write the line element 

as in (14). It will be this the notion of flatness, which we call null 

flatness, that will be used for the generalisation to higher-rank case. 

Let us now generalise the previous results to fourth-rank metrics. Let us 

start by considering a space-time described by a fourth-rank line element 

4 µ v A p ds = G , dx dx dx dx , ( 20 J µv,._p 

where Gµv">..p is the completely symmetric fourth-rank metric. The determinant is 

defined by 

G = det(G ) = 1 µ1 .. ·µd 
µv">..p d! E 

The inverse metric Gµv">..p is defined by 

p .. ·p 

1 d Gµ .. ·p 
E l 1 

4 

G 
µd'"Pd 

(21) 

,, I 
l 

) 

Gµv">..p - 1 µµ2 .. ·µd 
- (d-l)!G E 

pp • •_•pd 
2 Gµ .. ·p E 

2 
2 

G 
µd .. •pd 

(22) 

and satisfies the relation 

Gµcx/3, G = cP 
vcx/37 v 

(23) 

We start by defining currents as in (8). As before they will give rise to 

conserved quantities if their divergences happen· to vanish. In analogy with 

(10) and (11) we define 

Hµv">..p = Hµ Gcxv">..p 
Cl'. 

µcx/37 <: 
I;µ = G "cx/3, 

(24) 

(25) 

If the energy-momentum tensor happens to be symmetric eq. (9) can be written as 

d Jµ = ~ Hµu"><p ca 1; +·a 1; + a 1; + a 1; J = o. 
µ 4 µ v">..p v ">..pµ ">.. pµv p ">..µv (26) 

Furthermore, if the energy-momentum tensor happens to be traceless we obtain 

a 1; + a 1; + a 1; + a 1; - i G c ccxf3r5 a 1; J = o . c 21 l µ v">..p u ">..pµ ">.. pµv p µv">.. d µv">..p ex (305 

This is the obvious generalisation of the equation for the second-rank case, 

( 13). 

Comparison of this equation with eq. (13) illustrates the comments at the 

introduction concerning the appearance of a number of terms equal to the rank 

of the metric. 

Now we make some considerations on the solutions to eq. (27) for d=4. For 

fourth-rank metrics there is no intuitive notion of flatness as for the 

second-rank case. In analogy with (14) we assume that flat spaces are 

described by fourth-rank line elements of the form 

ds4 = 24 di;1 dl;2 di;3 di;4 

In this case the only non-null components of the metric are 

G 1234 

G1234 1 
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(28) 

(29) 

The solution to eqs. (27) involves a finite-dimensional piece and an infinite­

dimensional one. The infinite-dimensional one is 

I;µ= fµ(i;µl (30) 

where the f's are arbitrary functions of the singl~ coordinateµ. As before we 

define 

u (f) 
µ I;µ aµ fµC,:;µl a 

µ (31) 
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In the previous formulae there is no summation over repeated indices. The 

previous quantities satisfy the commutation relations 

{Uµ(fl ), Uv(f2)} = oµv Uv(fl f2' - f2 fl') . (32) 

As in the two-dimensional case, relations (32) are the algebra of four­

dimensional diffeomorphisms. After conveniently parametrise them in terms of 

Fourier components one gets one Virasoro algebra for each null direction. The 

full symmetry group is Vir0Vir0Vir0Vir. Furthermore, only in four dimensions 

the solution to eqs. (27) gives rise to an infinite-dimensional symmetry group. 

Therefore, we have .succeded into implementing conformal invariance for 

d=4. We have seen furthermore that the rank of the metric is essential to 

implement conformal invariance in higher dimensions. It must be furthermore 

observed that the appearance of the conformal behaviour for some critical 

dimension is a geometrical property of the base space and therefore model 

independent. Therefore any attempt at the implementation of conformal 

invariance in four dimensions by relying only on the second-rank metric is 

condemned to fail. The next step is of course to construct a realistic model 

on lines, for example, similar to the Polyakov string. This will be reported 

separately [7]. 

Some final speculative remarks. In the eventuality of constructing a 

sensible conformal field theory in four dimensions, the metric Gµvli.p' in 

analogy with the second rank case, the string, would be an induced metric, or 

an effective field. One would be therefore automatically describing the 

effects of gravitation. The natural question is how this theory would connect 

with the usual theories of gravitation based on the second-rank metric. In 

trying to answer this question we have discovered the existence of spaces 

which are separable in the sense that the metric can be written as 

Gµvli.p =g< µvhli.pJ. This does not imply any singular behaviour for the four­

metric, as can be verified from (21). The line element is written as 

ds4 = (ds2 ) 
g 

@ (ds2
) 

h 
(33) 

More surprising is the fact that in the flat (null), low energy, regime the 

signatures of both pieces are almost fixed. There are only two possibilities: 

(4,0)®(1,3) and (4,0)®(2,2). Of course, the first one is to be chosen as that 

describing the low energy behaviour of such a theory. In this case only the 

Minkowskian piece would be observable. This would explain why if the universe 

is described by a fourth-rank metric, at large, low energy, scales it looks 

Riemannian. The results on this direction will be reported somewhere else [8]. 
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