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1. Recently much attention has been devoted to the study of the .
Einstein-Yang-Mills system in quantum cosmology. This system is rather
difficult by itself. Following, however, Ref.[1] one may introduce a set of
simplifying assumptions and consider closed cosmologies with an R ® S>
topology. In this case gauge fields on homogeneous space are described
by the SO(4)-invariant ansatz [2]—[4]. The reduced system (the minisu-
perspace model) contains only a finite number of degrees of freedom cor-
responding to gravitational and gauge fields. Nevertheless, it is believed

that the model keeps some dynamical features of the original field theory.
~In particular, it has two local symmetry groups, the reparametrization
and gauge ones.

It is known that rnodels with a gauge symmetry may have a non-
trivial phase space (PS) of physical degrees of freedom [5]—[7]. In the
present letter we study the physical PS structure of the minisuperspace
model. In particular, PS for one of physical variables in the case of the
SO(n) gauge group, n > 3, turns out to be a cone unfoldable into a half-
plane. We also argue that this phenomenon gives rise to a modification of
the path integral representation for the ground-state wave function of the
Universe and, as a consequence, the quasiclassical approximation changes
in the minisuperspace model. Then we consider wormholes. Wormholes
can be treated as gravitational instanton type solutions, i.e. as solutions
of the euclideanized classical field equations corresponding to tunnelling
through classically inaccessible region [8], [2]—[4]. We observe that the
wormbhole quantization rule [2],[4] should be modified due to the physical
PS reduction if a gauge group has a rank higher than one.

2. In the minisuperspace approach to the Einstein-Yang-Mills sys-
tem, a metric has the SO(4)-invariant form. The most general form of
such a metric, i.e. a metric which is spatially homogeneous and isotropic
in a space R®S? topology, is given by the Friedmann-Robertson-Walken
ansatz

Jude”dz” = i—f—f— (—Nz(t)alt2 + o' (') (1)

where N(t) and p(t) are arbitrary non-vanishing functions of time; G is
.the gravitational constant and w* are the left-invariant one-forms (¢ =
1,2,3) on the three-sphere satisfying the condition dw’ = —g;jpw’ A wF.
The ansatz for gauge fields in the metric (1) was suggested in Refs.[4],
[9]. Gauge fields with the SO(n) group, n > 3, are described by a scalar
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X = x(t) € R, a vector x = x(¢) € R, I = n—3, and a real antisymmteric
IxImatrixy = y(t), i.e. y = yT°, y. €R, T° are generators of SO(I),
so that the effective minisuperspace action of the Einstein-Yang-Mills
system reads

t2
1 N 4 2 2 2 4
S = 2/dt—[—(N3¢g) +0°— A" +

+ (%atxf + (%Dtxy _ 2V] (2)

where D; = 0, + y is the covariant derivative, A2 = 2GA/97r, A is the
cosmology constant;

—ﬁ 2 2_§Z ? 2,2
V—37r [(X +x 2a) +4x°x (3)

is the potential of the Yang-Mills fields, o = g?/47 is the fine structure
constant.

The action (2) is invariant under two local groups the reparametriza-
ton one

o), N - NS (4)

and the SO(I) gauge group, under which only variables x and y transform
as follows

x — Ox, y — Q0T + 00,07 | (5)
where @ = expw,T* € SO(I), QQT = QTQ =1 and w, = w,(t) are

arbitrary functions of time; other variables remain unchanged. Due to
these local symmetries, variables N and y turn out to be pure unphysical
because their canonical momenta vanish,

65 _, 5S
3 g = T
PN =N 594

=0, (6)

here the dot means the time derivative. So, N and y play a role of the
Lagrangian multipliers.

Determining canonical momenta p,, p and p, of the remaining vari-
ables p,x and x, respectively, we may find the canonical Hamiltonian in

2

the standard way,
H = _]! [ 2 2 /\2 4 2 2 2V al —
= 3 —p,— 0 + A0 +p,+p°+ —yad]z
N .
=7 [Hup — ya0°] : (7)

where 0% = pT®x. However, the system has the primary constraints
(6) [10] therefore it is necessary to find all the secondary constraints
calculating the Poisson brackets of H with the constraints (6) and putting
the results equal to zero [10]. In so doing, we find that all the secondary
constraints are equivalent to the following

’ HUD = Oa (8)
o = 0. : (9)

As a consequence, the Hamiltonian vanishes, which is always the case for
systems with a reparametrization symmetry. It is easily to be convinced
that all the constraints are the first-class ones [10].

Equation (8) is the classical Wheeler-DeWitt equation for the min-
isuperspace model. The constraints (9) generate the SO(l) gauge trans-
formations of the canonically conjugated variables x and p. However,
not all of them are independent. The number of independent constraints
is | — 1 since any vector in R' has a stationary subgroup SO(I —1) (a
vector x € R! can be always directed along one of the coordinate axes by
a gauge transformation). Therefore a ”partilce” described by a vector x
has only one physical degree of freedom. Really,.it is a radial motion be-
cause the quantities o* coincide with components of the particle angular
momentum in R

3. Consider now the physical PS structure of gauge field degrees of
freedom. Obviously, the total PS of these variables consists of points
(x,p) € R¥ and (x,p,) € R? ( we ignore the pure unphysical degrees
of freedom (y,, 7, = 0)). The physical PS is a subspace of the total PS
picked out by the constraints o, = 0 and an identification of all points
connected by gauge transformations on the surface of the constraints (the
latter points correspond to the same physical state of the system).

Variables x and p, are gauge-invariant therefore their PS is a usual
plane, R?. The general solution of Eq.(9) is p = £x where a function of



time £ is determined by dynamics (by the potential V). This solution
means that only radial excitations are admissible. Further, one may
always direct a vector x along one of the coordinate axes with the help a
gauge transformation (the unitary gauge), for example, we put z; = 6;;2.
As a consequence, p; = 6;1p, p = £x. However, this is not the end. There
remain residual gauge transformations forming the Z, gauge group with
the help of which one may change the sign of z : = — Za (the gauge
rotations through the angle «).

The residual gauge group cannot decrease a number of physical de-
grees of freedom, but it reduces their PS. Indeed, the sign of p should
change simultaneously with the one of z due to the equality p = £a.
Hence the points (z,p) and (—z,—p) on the phase plane R? are gauge
equivalent and should be identified. The phase plane turns into a cone
unfoldable into a half-plane that is just the physical PS because the gauge
arbitrariness is exhausted. The same result may be found by consider-
ing the motion in the gauge-invariant canonical variables r = |x|, p, =
(p,x)/r [7].

A modification of the physical PS leads to some consequences in the
corresponding quantum theory. For example, the path integral approach
differs from the usual one [6],{7],[11] and, as a consequence, a quasi-
classical approximation changes [7],[12]. Quantum Green functions have
unusual analytical properties [13]. Therefore we may expect the appear-
ance of analogous features in our system. As we show below, that is
really the case.

4. According to the Dirac quantization method {10] of systems with
the first-class constraints, to get a quantum theory corresponding to the
classical one, we change all the canonical variables ¢, and p,, where
dos Po Mean the sets (x,0,X), (P,P, Px), respectively !, by operators
with the canonical commutation relations

[das P} = ihbag; (10)
the operators of constraints (8), (9) must annihilate physical states. The
equation corresponding to Eq.(8) is the Wheeler-DeWitt equation. In
the coordinate representation it reads [9]

1
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1We omit again the pure unphysical degrees of freedom y, and N [14],[7].
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— 1?02 — 1’0% +2V] dplg) = Epnlq) (11)

where E is an arbitrary constant arising from the matter-energy renor-
malization [1]. The real number p > 0 is usually introduced in order to
take into account a curvilinearity of the minisuperspace (it reflects also
the operator ordering problem here) [1]. The quantum version of Eq.(9)
reads

*Ypu(g) =0 | (12)

where p = —thdx. The functions ¥, are normalizable by the following

condition
/dg 0 /d\/dxh/)ph =1. , (13)

The operator Hyp in (11) is Hetmltlan with 1espect to this scalar prod-
uct.

Equation (12) means that physical states are invariant under SO(!)-
rotations of the vector X, i.e., they are s-states ¥n(x, x,0) = é(r, X, 0) =
#(z) where r = |x|. Moreover, these s-states should be even,

$(r, x,0) = ¢(=1,X,0) (14)

because the potential V is an analytical function. One may also prove
the same property for the variable o

¢(r’4\/v Q) = ¢(7'a Xv_g)' (15)

Indeed, due to the parity of Hyp in g we may divide all solutions of
Eq.(11) into the even and odd ones. However, only the even ones have
a regular behavior at ¢ = 0 (wave functions should be regular [15], [1]).
When p — 0, the first term in Hwp is only essential, thervefore, ¢ ~

0*J,, v = (p—1)/2, J, being the Bessel function. We must select from all
solutions of (11) only those which possess the asymptotics 0*J,, o0 —= 0;
the odd wave functions, obviously, have not it.

To forinulate our quantum the01y only via physical variables, we in-

troduce the spherical coordinates. Since ¢ are mdependent of the angular
variables, we get instead of (11)

[ p — 0%+ \%p? h28§+

oo | —



+ P+ 2V +2VeH] ¢p(2) = Edp(z); (16)
esr_ Fpp—2)  R(I-1)(1-3)
vell=- 8p? 8r? (17)

= (p - 1)/27 pr = —iﬁ?‘_",a,. o 1.u’, v =
The corresponding

where p, = —thp™"0, 0 ¢¥
(I —2)/2 are the Hermitian momentum operators.
scalar product reads

/drdg/dxu(z)tﬁ}‘g(z)gﬁ};'(‘z’) = dgE (18)

where u(z) = -1 ?; we include the total solid angle into the norm of
P5. :
Let us turn now directly to describe the quantum theory in terms of
the of path integral (PI). The following amplitude

U7H(e,') = Glexp (it ) 1)

where 7 is the Euclidean conformal time (dp = dr/p, 7 = —it), is the
standard object in this approach because in the limit  — oo this kernel
gives the ground-state wave function of the Universe [1].

When deriving PI for the amplitude (19) in the usual way based on it-
erations of infinitesimal kernels UP*, ¢ — 0, we meet certain difficulties.
The first is the existence of the non-trivial measure p(z) in the scalar
product (18). The reduction of the integration region in (18) represents
the second, more serious problem for calculating the iterations. Indeed,
according to (18) a convolution of two infinitesimal amplitudes (18) con-
tains integrals over a semiaxis (r > 0, ¢ > 0). So, in the limit ¢ — 0
we get a PI on a semiaxis and its calculation is indefinite even for the
simplest systems such as a free particle and an oscillator (we cannot cal-
culate an infinite dimensional Gaussian integral in semi-infinite limits).
The latter, in fact, reflects the physical PS structure in the theory. Note
that in contrast with the variables r, the PS of which is reduced due to
the gauge symmetry 2, the PS of g is reduced at the’ ve1y begmmng (see
(13)) because only ¢ > 0 have a phys1cal meanlng

(19)

20One should not, however, think that the PS of the radxal variable in the corre-
sponding non-gauge model' (y = 0 in (2)) is a half-plane. A careful analysis shows
that PS of each variable in the spherical coordinate system.is a complete plane {7].
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Nevertheless, the properties (14), (15) allow us to avoid these difficul-
ties and to get PI with a standard measure where integration is carried -
out over all variables in infinite limits. We do not give here its derivation
because it may be easily done by the method suggested in [16]. The final
formulas read

< dzll o -
ph ’ — eff " "ot
) = l o U0, @)
Q(z’z/) = 6(X - X,)Q(Q’ Ql)Q(ra 1‘,), (21)
Q(r,r) = §(r— r') +6(r+r") (22)
where dz = drdpdy, the kernel Q(g,g) coincides with the one in (22)
and
! 1 1
U,‘;ff(z ,2') = /Dzexp (—%—Se”[z]>, (23)
1 7]"
sl = 3 /dn [—6® —o® + X%+
n' : ,
+ X2V + Ve, (24)

Here in (23) the symbol Dz = DeDrDx means the standard measure of
the Lagrangian PI and initial conditions are defined as 2(y') = 2/, z(n") =
2"; the dot in the effective action S°// denotes the derivative with respect
to the conformal time 7.

The operator @ entering into (20) shows that together with a direct
trajectory connecting points g, ¢’ or 7, r/ one should take into account
contributions into the transition amplitude of trajectories going from — o’
to ¢ and from —r’ to r. It resembles the motion on a semiaxis restricted
by the impenetrable barrier at zero when the trajectory reflected from the
"wall” contribute to the transition amplitude as does the direct trajectory
[17]. The difference, however, is that in the latter case there exists the
boundary condition %|,=o (or t#|,=0) and because of it a contribution
of the reflected trajectory is taken with the opposite sign. Therefore the
operator Q(r,r’) = §(r—r')—&(r+r') is antisymmetric in r and r’. There
is no "wall” at zero in our theory, but the existence of the residual gauge
group (see (14),(15)) gives effectively the boundary condition 8,¢|,=0 =

7



gr¢lr=0 = 0 that leads to the operator @ (22), symmetrical in both
~ arguments. It resembles also a reflection of a quantum particle without
any change in its phase.
;. Thus, we have found-that-PI for the minisuperspace model in a quan-
tum cosmology is modified due to the physical phase (configurational)
space reduction. The amplitude (20) gives the ground-state wave func-
tion of the Universe in the limit 7 — co. Therefore, we may expect that
its quasiclassical calculation turns out to be also modified.

5. When calculating the integral (23) quasiclassically, one should find

4 stationary trajectory z, satisfying the equation
85 [2) =0, z(n) = za(n). (25)

{
The condition
SeHf 2] < B (26)

is assumed to be valid for this trajectory. Since the effective quantum
correction V¢// to the potential is proportional to %%, we may approx-
imate (25) by the classical equations of motion 65 = 0. However, a
contribution of the effective quantum correction taken on the classical
trajectory may be infinite due to the singularity at o = r = 0. Hence,
the condition (26) is broken if a classical trajectory goes too near the
points ¢ = 0, » = 0. This singularity cannot be eliminated by using
trajectories satisfying (25) because they have a gap at r = 0 and p = 0.
Therefore, the quasiclassical approach in neighbourhoods of these points
is forbidden. It is necessary to solve the exact quantum problem.

The exceptional case arises at p = 2 and [ = 3 when V¢// = 0
and a quasiclassical approach is correct in neighbourhoods of ¢ = 0 and
r = 0. The singularity of the multiplier (u(z)u(z'))7'/? = (g¢'rr’)™" in

the kernel (20) cancels because of the operator ) action.

If we are interested in the wave function behavior far from points
o0 = 0, r = 0 (when the effective quantum correction to the classical
action is much smaller than the action itself), then Eq.(20) orders only
the symmetrization of the quasiclassical kernel (23) with respect to the
group Z; ® Z; (¢ — +p, r — £r) 3. We may also neglect the measure
p contribution in (20). Since the scalar product contains p, we may

 3The symmetrization in g is trivial here because the quasiclassical amplitude (23)
depends analytically on o? [1].

consider the kernel [tU,’;h eliminating then g from the scalar product.
The multiplier (y(z")/pt(z"))/? is equivalent to an additional term (~h) .
in the system action because

"

n(z) )" 1
(;z(z”)) =Py /dnﬂ_%agl‘ (27)

77,

where z(7’) = 2’ and 2(3") = 2".

Thus, the measure p as well as V¢// are essential only for calculating
quantum corrections to the leading term of a quasiclassical series, but
the Z; symmetrization in r should be always done as it is ordered by
Eq.(20).

6. Another example where the physical PS structure of gauge fields
plays an important role is the wormhole quantization, first encountered
in Ref.[2] for the gauge group SU(2), but in this minisuperspace model
the PS of gauge fields is a plane because SU(2) ~ SO(3), i.e. [ = 0. The
case of an arbitrary gauge group was considered in [4] where, however,
the non-trivial structure of the physical PS was not taken into account.

Consider the Euclidean version of the equation of motion for the sys-
tem (2) (—it = 7, y — ty) and introduce the Euclidean conformal time
1. Due to the SO(!) gauge invariance of the equation of motion we may
always put z;(n) = dax(n), i = 1,2,...,I. It means that the physical
state changes are described by z varying along the first axis (the uni-
tary gauge). In other words, one may always choose arbitrary functions
Ya(n) (choose a gauge) so that z;(n) = 0, i = 2,3,....1. It was shown
in Ref.[4] that there exist periodic solutions x(n), o(7) and \(3) with
periods T, T, and T\, respectively. If we interpret the solution o(n) as
a wormhole connecting two points in the same space, the gauge fields
should be the same at both the sides. Since x() and x(n) are periodic,
the period T, (the time between two g-maxima) should be an integer
multiple of their periods [2], i.e.

T, =nT, =mT, (28)

where n and m are numbers. The relation (28) leads to the exponential
quantization of a wormhole size [2].

The relation (28) is valid if the physical PS of gauge fields is assumed
to be a plane. However, as we have shown above, that is not the case
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for the variable z. Its PS is a cone unfoldable into a half-plane. Since x
oscillates around z = 0 [4] with a period T3, we find forthe physical pe-
riod TP* = T, /2 (points < 0 are gauge equivalent to points & > 0; T?*
is the time during which the system returns to an initial physical state.
Therefore the quantization rule of wormholes (28) should be changed,

T, = nT, = mT?" = %Tr. (29)
As a consequence, the quantization of the wormhole size is also modified.
If the theory contains other fields realizing a certain gauge group
representation, periods of their physical oscillations would be defined by
powers of the independent Casimir operators for a given representation
[7].
7. We have considered the simplest case of the gauge group SO({+3).
In principle, the case of an arbitrary gauge group changes nothing in
our investigation, only technical details are complicated. We have also
not included fermion fields into the minisuperspace model. Fermion de-
grees of freedom may also have a non-trivial PS structure due to a gauge
symmetry [7] and, moreover, the corresponding quantum description has
specific features as compared with the bosonic case [18]. We will study
such models elsewhere.
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