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, A phase space (PC) structure in rminisuperspace cosmological models with 
gauge fie.Ids is investigated. It is sho~n for. the SO(n), n > 3, gauge group that 
the_ physical PS differs from an ordinary plane·. Due to this phenomen~n. the 

· ,.path' integral representation_ gets modified for. the ·ground state. wave. function· 
· of the Universe. It is also argued .that _the wormhole size quantization should 

change du_e to a non trivial physical PS structure of gauge fields. · , . 
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1. Recently much attention has been devoted to the study of the , 
Einstein-Yang-Mills system in quantum cosmology. This system is rather 
difficult by itself. Following, however, Ref.[l] one may introduce a set of 
simplifying assumptions and consider closed cosmologies with an R@ S3 

topology. In this case gauge fields on homogeneous space are described 
by the S0(4)-invariant ansatz [2]-[4]. The reduced system (the minisu­
perspace model) contains only a finite number of degrees of freedom cor­
responding to gravitational and gauge fields. Nevertheless, it is believed 
that the model keeps some dynamical features of the original field theory. 
In particular, it has two local symmetry groups, the reparametrization 
and gauge ones. 

It is known that models with a gauge symmetry may have a non­
trivial phase space (PS) of physical degrees of freedom [5]-[7]. In the 
present letter we study the physical PS structure of the minisuperspace 
model. In particular, PS for one of physical variables in the case of the 
SO(n) gauge group, n > 3, turns out to be a cone unfoldable into a half­
plane. We also argue that this phenomenon gives rise to a modification of 
the path integral representation for the ground-state wave function of the 
Universe and, as a consequence, the quasiclassical approximation changes 
in the minisuperspace model. Then we consider wormholes. \i\Tormholes 
can be treated as gravitational instanton type solutions, i.e. as solutions 
of the euclideanized classical field equations corresponding to tunnelling 
through classically inaccessible region [8], [2]-[4]. We observe that the 
wormhole quantization rule [2],[4] should be modified due to the physical 
PS reduction if a gauge group has a rank higher than one. 

2. In the minisuperspace approach to the Einstein-Yang-Mills sys­
tem, a metric has the SO( 4)-invariant form. The most general form of 
such a metric, i.e. a metric which is spatially homogeneous and isotropic 
in a space R@S3 topology, is given by the Friedmann-Robertson-Walken 
ansatz 

(1) 

where N(t) and e(t) are arbitrary non-vanishing functions of time; G is 
. the gravitational constant and wi are the left-invariant one-forms ( i = 
1, 2, 3) on the three-sphere satisfying the condition dwi = -Eijkwi I\ wk. 

The ansatz for gauge fields in the metric (1) was suggested in Refs.[4], 
[9]. Gauge fields with the SO( n) group, n > 3, are described by a scalar 
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x = x(t) ER, a vector x = x(t) E R 1
, / = n-3, and a real antisymmteric 

l X l matrix y = y(t), i.e. y = YaTa, Ya ER, Ta .are generators of SO(l), 
so that the effective minisuperspace action of the Einstein-Yang-Mills 
system reads 

1 Jt
2 

N [ ( e ) 2 
2 2 4 s = 2 dt; - Nate + e - A e + 

t1 

+ (!atxr + (!Dtx r -2V] {2) 

where Dt =at+ y is the covariant derivative, A2 = 2GA/91r, A is the 
cosmology constant; 

V ~ 3: [ ( x' + x' - ~:)' Hx'x'] (3) 

is the potential of the Yang-Mills fields, a= g2 /41r is the fine structure 
constant. 

The action {2) is invariant under two local groups, the reparametriza­
ton one 

t - t'(t), 
dt' 

N(t) - N(t')dt (4) 

and the SO( l) gauge group, under which only variables x and y transform 
as follows 

x- nx, Y - nynT + na n,T 
t ' 

(5) 

where n = expwaTa E SO(l), n,n,T = n,Tn, = 1 ~nd Wa = Wa(t) are 
arbitrary functions of time; other variables remain unchanged. Due to 
these local symmetries, variables N and y turn out to be pure unphysical 
because their canonical momenta vanish, 

8S _ 0 
PN = 8.N - ' 

8S _ 0 -~-' 'lra- D'!Ja (6) 

here the dot means the time derivative. So, N and y play a role of the 
Lagrangian multipliers. 

Determining canonical momenta Pi!, p and Px of the remaining vari­
ables (!, x and X, respectively, we may find the canonical Hamiltonian in 

2 

the standard way, 

H = 
N 

2
(! [-p!- e2 + A2 e4 + P! + p 2 + 2V -yaaa] 

N [Hun - Yao-a] 
(! 

(7) 

where aa = pTax. However, the system has the primary constraints 
(6) [10] therefore it is necessary to find all th~ secondary constraints 
calculating the Poisson brackets of H with the constraints (6) and putting 
the results equal to zero [10]. In so doing, we find that all the secondary 
constraints are equivalent to the following 

Hun 
aa 

0, 

0. 
(8) 

(9) 

As a consequence, the Hamiltonian vanishes, which is always the case for 
systems with a reparametrization symmetry. It is easily to be convinced 
that all the constraints are the first-class ones [10]. 

Equation (8) is the classical Wheeler-DeWitt equation for the min­
isuperspace model. The constraints (9) generate the SO( l) gauge trans­
formations of the canonically conjugated variables x and p. However, 
not all of them are independent. The number of independent constraints 
is l - I since any vector in R1 has a st~tionary subgroup SO( l - I) ( a 
vector x E R1 can be always directed along one of the coordinate axes by 
a gauge transformation). Therefore a "partilce" described by a vector x 
has only one physical degree of freedom. Really, .it is a radial motion be­
cause the quantities aa coincide with components of the particle angular 
momentum in R1. 

3. Consider now the physical PS structure of gauge field degrees of 
freedom. Obviously, the total PS of these variables consists of points 
( x, p) E R 21 and (x, Px) E R 2 

( we ignore the pure unphysical degrees 
of freedom (Ya,7ra = 0)). The physical PS is a subspace of the total PS 
picked out by the constraints aa = 0 and an identification of all points 
connected by gauge transformations on the surface of the constraints ( the 
latter points correspond to the same physical state of the system). 

Variables x and Px are gauge-invariant therefore their PS is a usual _ 
plane, R 2

. The general solution of Eq.(9) is p = tx where a function of 
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time e is determined by dynamics (by the potential V). This solution 
means that only radial excitations are admissible. Further, one may 
always direct a vector x along one of the coordinate axes with the help a 
gauge transformation (the unitary gauge), for example, we put x; = 8;1x. 
As a consequence, p; = 8;1p, p = ex. However, this is not the encl. There 
remain residual gauge transformations forming the Z 2 gauge group with 
the help of which one may change the sign of x : x --t ±x ( the gauge 
rotations through the angle 1r). 

The residual gauge group cannot decrease a number of physical de­
grees of freedom, but it reduces. their PS. Indeed, the sign of p should 
change simultaneously with the one of X due to the equality JJ = ex. 
Hence the points (x,p) and (-x, -p) on the phase plane R 2 are gauge 
equivalent and should be identified. The phase plane turns into a cone 
unfoldable into a half-plane that is just the physical PS because the gauge 
arbitrariness is exhausted. The same result may be found by consider­
ing the motion in the gauge-invariant canonical variables r = !xi, JJr = 
(p, x)/r [7]. 

A modification of the physical PS leads to some consequences in the 
corresponding quantum theory. For example, the path integral approach 
differs from the usual one [6],[7],[11] and, as a consequence, a quasi­
classical approximation changes [7],[12]. Quantum Green functions have 
unusual analytical properties [13]. Therefore we may expect the appear­
ance of analogous features in our system. As we show below, that is 
really the case. 

4. According to the Dirac quantization method [10] of systems with 
the first-class constraints, to get a quantum theory corresponding to the 
classical one, we change all the canonical variables qOI and pOI, where 
qOI, POI mean the sets (x, e, x), (P,Pe,Px), respectively 1, by operators 
with the canonical commutation relations 

[<iOI, fa.el = in80l,e; (10) 

the operators of constraints (8), (9) must annihil_ate physical states. The 
equation corresponding to Eq.(8) is the Wheeler-DeWitt equation. In 
the coordinate representation it reads [9] 

1 
2 [n

2 e-p (Be o ePfJe) - e2 + >..2e4-
1 We omit again the pure unphysical degrees of freedom Ya and N [14],[7]. 

4, 

- r?a~ - ri2a~ + 2v] 1/Jph(q) :;= E1/-'ph(q) ( 11) 

where E is an arbitrary constant arising from the matter-energy renor­
malization [1]. The real number p > 0 is usually introduced in order to 
take into account a curvilinearity of the minisuperspace (it reflects also 
the operator ordering problem here) [1]. The quantum version of Eq.(9) 

reads 
0"a7Pph(q) = 0 (12) 

where :f:> = -in8x. The functions 7Pph are normalizable by the following 

condition 
(X) (X) 

j deep j dxj dxl1/Jph(q)l 2 = 1. (13) 

0 -(X) RI 

The operator Hwv in (11) is Hermitian with respect to this scalar prod­

uct. 
Equation (12) means that physical states are invariant under SO(l)-

rotations of the vector x, i.e., they ares-states 'IPph(x, X, e) = </>(r, X, e) = 
</>(z) where r = lxl. Moreover, theses-states shoukl be even, 

</>(r,x,e) = </>(-r,x,e) · ( 14) 

because the potential V is an analytical function. One may also prove 
the same property for the variable e 

</>(r,x,e) = </>(r,x,-e). (15) 

Indeed, due to the parity of Huv in e we may divide all solutions of 
Eq.(11) into the even and odd ones. However, only the even ones have 
a regular behavior at e = 0 (wave functions should be regular [15], [l]). 
When e --t 0, the first term in Hwv is only essential, therefore, </> ~ 
ev lv, v = (p-1 )/2, lv being the Bessel function. We must select from all 
solutions of (11) only those which possess the asymptotics ev lv, e --t O; 
the odd wave functions, obviously, have not it. 

To formulate our quantum theory only via physical variables, we in­
troduce the spherical coordinates. Since </> are independent of the angular 
variables, we get instead of ( 11) 

1 [-,,; - e2 + >-.2e4 _ n2a~+ 
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+ fa;+ 2V + 2veff] <PE(z) = E</>E(::); 

yef J = __ 1i.2_p_(p_-_2_) + _ti2_( l_-_l_) ( l - :3) 
8e2 8r2 

(16) 

(17) 

where Pa = -ine-v au O e" 'V = (p - l )/2, Pr = -ili,r-v' Or O r"
1

' v' = 
(l - 2)/2 are the Hermitian momentum operators. The corresponding 
scalar product reads 

00 00 

j drde j dxµ(z)</>F;(z)</>E1(z) = SEE' (18) 

0 -co 

where µ( z) = r<1- 1> eP; we include the total solid angle into the norm of 

<PE· 
Let us turn now directly to describe the quantum theory in terms of 

the of path integral (PI). The following amplitude 

U~h(z, z') = (zl exp (-¼11Hwv) lz') , (19) 

where 77 is the Euclidean conformal time ( d71 == dr / I?, T = -it), is the 
standard object in this approach because in the limit 77 -+ oo this kernel 
gives the ground-state wave function of the Universe [1]. 

When deriving PI for the amplitude (19) in the usual way based on it­
erations of infinitesimal kernels Ufh, <: -+ 0, we meet certain difficulties. 
The first is the existence of the non-trivial measure µ( z) in the scalar 
product (18). The reduction of the integration region in (18) represents 
the second, more serious problem for calculating the iterations. Indeed, 
according to (18) a convolution of two infinitesimal amplitudes (18) con­
tains integrals over a semiaxis (r > 0, e > 0). So, in the limit <: -+ 0 
we get a PI on a semiaxis and its calculation is indefinite even for the 
simplest systems such as a free particle and an oscillator ( we cannot cal­
culate an infinite dimensional Gaussian integral in semi-infinite limits). 
The latter, in fact, reflects the physical PS structure in the theory. Note 
that in contrast with the variables r, the PS of which is reduced due to 
the gauge symmetry 2 , the PS of e is reduced at the very beginning (see 
(13)) because only e > 0 have a physical meaning: 

2One should not, however, think that the PS of the radial variable in the corre­
sponding non-gauge model' (y = 0 in (2)) is a half-plane. A careful analysis shows 
that PS of each variable in the spherical coordinate system,is'a complete plane [7]. 
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Nevertheless, the properties (14), (15) allow us to avoid these difficul­
ties and to get PI with a standard measure where integration is carried · 
out over all variables in infinite limits. We do not give here its derivation 
because it may be easily done by the method suggested in [16). The final 
formulas read -

00 

ph I _ z ef f II ~ II I J d 
11 

U11 (z, z) - (µ(z)µ(z 11 )) 1!2 U11 (z, z )Q(z , z ), (20) 

-co 

Q(z, z') = S(x - x')Q(e, e')Q(r, r'), (21) 
Q(r, r') = S(r - r') + S(r + r') (22) 

where dz = drdedx, the k~rnel Q(e, e') coincides with the one in (22) 
and ' 

Uef f( I II) 
T/ z ,z J Dz exp (-¼seff[z]), (23) 

ri" 

3eff[z] = t f d11 [-e2 - e2 + ,\2e4+ 
ri' 

+ _;y2 + r2 + 2(V + yeff)] . (24) 

Here in (23) the symbol Dz= DeDrDx means the standard measure of 
the Lagrangian PI and initial conditions are defined as z( 71') = z', z( 71 11

) = 
z 11

; the dot in the effective action seJ f denotes the derivative with respect 
to the conformal time 77. 

The operator Q entering into (20) shows that together with a direct 
trajectory connecting points I?, e' or r, r' one should take into account 
contributions into the transition amplitude of trajectories going from -u' 
to e and from -r' to r. It resembles the motion on a semiaxis restricted 
by the impenetrable barrier at zero when the trajectory reflected from the 
"wall" contribute to the transition amplitude as does the direct trajectory 
[17). The difference, however, is that in the latter case there exists the 
boundary condition v,lr=O (or 1flu=o) and because of it a contribution 
of the reflected trajectory is taken with the opposite sign. Therefore the 
operator Q(r, r') = S(r-r')-S(r+r') is antisymmetric in rand r'. There 
is no "wall" at zero in our theory, but the existence of the residual gauge 
group (see (14),(15)) gives effectively the boundary condition 811 </>l 11=o = 
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qref>lr=O = .0 that leads to the operator Q (22), symmetrical in both 
arguments. It resembles also a reflection of a quantum particle without 
JJ 

?,ny change in its phase. 
r Thus, we have found·that·PI for the minisuperspace model in a quan­
t~m cosmology is modified due to the physical phase ( configurational) 
space reduction. The amplitude (20) gives the ground-state wave func­
tion of the Universe in the limit 'f/ -+ oo. Therefore, we may expect that 
its quasiclassical calculation turns out to be also modified. 

5. When calculating the integral (23) quasiclassically, one should find 
~ stationary trajectory Zst satisfying the equation 

c53eff[z] = 0, Z ( 'f/) = Z st ( T/) • (25) 
( 
The condition 

3eff[Zst] << n, (26) 

is assumed to be valid for this trajectory. Since the effective quantum 
correction veff to the potential is proportional to n2, we may approx­
imate (25) by the classical equations of motion 8S = 0. However, a 
contribution of the effective quantum correction taken on the classical 
trajectory may be infinite due to the singularity at fl = r = 0. Hence, 
the condition (26) is broken if a classical trajectory goes too near the 
points fl = 0, r = 0. This singularity cannot be eliminated by using 
trajectories satisfying (25) because they have a gap at r = 0 and fl = 0. 
Therefore, the quasiclassical approach in neighbourhoods of these points 
is forbidden. It is necessary to solve the exact quantum problem. 

The exceptional case arises at p = 2 and l = 3 when vef f = 0 
and a quasiclassical approach is correct in neighbourhoods of fl = 0 and 
r = 0. The singularity of the multiplier (µ(z)µ(z'))- 1!2 = (flfl'rr')- 1 in 
the kernel (20) cancels because of the operator Q action. 
' If we are interested in the wave function behavior far from points 

fl = 0, r = 0 ( when the effective quantum correction to the classical 
action is much smaller than the action itself), then Eq.(20) orders only 
the symmetrization 9f the quasiclassical kernel (23) with respect to the 
group Z 2 0 Z2 (fl -+ ±fl, r -+ ±r) 3

. We may also neglect the measure 
µ contribution in (20). Since the scalar product contains /J,, we may 

3The symmetrization in (! is trivial here because the quasiclassical amplitude (23) 
depends analytically on (!2 [l]. 
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consider the kernel JLUt eliminating then µ from the scalar product. 
The multiplier (p(z')/JL(z")) 1!2 is equivalent to an additional term(~ n) 
in the system action because 

,,,, 

(
JL(z'))l/2 1 
JL(z") = exp 2 Jd1]JL-~8~Jt (27) 

,,, 
where z(17') = z' and z(17") = z". 

Thus, the measure Jl as well as vef 1 ase essential only for calculating 
quantum corrections to the leading term of a quasiclassical series, but 
the Z2 symmetrization in r should be always done as it is ordered by 
Eq.(20). 

6. Another example where the physica.l PS structure of gauge fields 
plays an important role is the wormhole quantization, first encountered 
in Ref.[2] for the gauge group SU(2), but in this minisuperspace model 
the PS of gauge fields is a plane because SU(2) ~ SO(3), i.e. l = Q. The 
case of an arbitrary gauge group was considered !!1 [4] where, however, 
the non-trivial structure of the physical PS was not taken into account. 

Consider the Euclidean version of the equation of motion for the sys­
tem (2) ( -it = T, y -+ iy) and introduce the Euclidean conformal time 
'f/. Due to the SO(l) gauge invariance of the equation of motion we may 
always put x;(17) = 8;1x(17), i = 1,2, ... ,/. It means that the physical 
state changes are described by x varying along the first axis ( the uni­
tary gauge). In other words, one may always choose arbitrary functions 
Ya(1J) (choose a gauge) so that x;(77) = 0, i = 2,3, ... ,l. It was shown 
in Ref.[4] that there exist periodic solutions :r(17), g(17) and y(17) with 
periods Tx, T 11 and T\., respectively. If we interpret the solution fl(17) as 
a wormhole connecting two points in the same space, the gauge fields 
should be the same at both the sides. Since x( 17) and x( 17) are periodic, 
the period T11 (the time between two fl-maxima) should be an integer 
multiple of their periods [2], i.e. 

T 11 = nTx = mTx (28) 

where n and m are numbers. The relation (28) leads to the exponential 
quantization of a wormhole size [2]. 

The relation (28) is valid if the physical PS of gauge fields is assumed 
to be a plane. However, as we have shown above, that is not the case 
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for the variable x. Its PS is a cone unfoldable into a half-plane. Since x 
oscillates around x = 0 [4] with a period Tx, we find focthe physical pe­
riod Tt = Tx/2 (points x < 0 are gauge equivalent to points x > O; T!h 
is the time during which the system returns to an initial physical state. 
Therefore the quantization rule of wormholes (28) should be changed, 

h m 
Te= nTx = mT: = 2 Tx. (29) 

As a consequence, the quantization of the wormhole size is also modified. 
If the theory contains other fields realizing a certain gauge group 

representation, periods of their physical oscillations would be defined by 
powers of the independent Casimir operators for a given representation 
[7]. 

7. We have considered the simplest case of the gauge group S'O(/+3). 
In principle, the case of an arbitrary gauge group changes nothing in 
our investigation, only technical details are complicated. We have also 
not included fermion fields into the minisuperspace model. Fermion de­
grees of freedom may also have a non-trivial PS structure due to a gauge 
symmetry [7] and, moreover, the corresponding quantum description has 
specific features as compared with the bosonic case [18]. We will study 
such models elsewhere. 
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